
Notational innovations for
rapid application development

0.
00

0.
60

1.
20

1.
80

2.
40

3.
00

x

0.00

0.60

1.20
1.80

2.40
3.00

y

-12.05

-7.44

-2.83

1.78

6.39

11.00

z

Dennis Furey
Institute for Computing Research
London South Bank University

ursala-support@basis.uklinux.net

August 6, 2010

Abstract

This manual introduces and comprehensively documents a style of software prototyping
and development involving a novel programming language. The language draws heavily
on the functional paradigm but lies outside the mainstream of the subject, being essentially
untyped and variable free. It is based on a firm semantic foundation derived from a well
documented virtual machine model visible to the programmer. Use of a concrete virtual
machine promotes segregation of procedural considerations within a primarily declarative
formalism.

Practical advantages of the language are a simple and unifiedinterface to several high
performance third party numerical libraries in C and Fortran, a convenient mechanism for
unrestricted client/server interaction with local or remote command line interpreters, built
in support for high quality random variate generation, and an open source compiler with
an orthogonal, table driven organization amenable to user defined enhancements.

This material is most likely to benefit mathematically proficient software developers,
scientists, and engineers, who are arguably less well served by the verbose and restrictive
conventions that have become a fixture of modern programminglanguages. The implica-
tions for generality and expressiveness are demonstrated within.

Contents

I Introduction 10

1 Motivation 11
1.1 Intended audience . 11

1.1.1 Academic researchers . 11
1.1.2 Hackers and hobbyists . 12
1.1.3 Numerical analysts . 12
1.1.4 Independent consultants . 13

1.2 Grand tour . 13
1.2.1 Graph transformation . 13
1.2.2 Data visualization . 20
1.2.3 Number crunching . 27
1.2.4 Recursive structures . 35

1.3 Remarks . 51
1.3.1 Installation . 51
1.3.2 Organization of this manual . 53
1.3.3 License . 53

II Language Elements 55

2 Pointer expressions 56
2.1 Context . 56
2.2 Deconstructors . 57

2.2.1 Specification of a deconstructor57
2.2.2 Deconstructor semantics . 57
2.2.3 Deconstructor syntax . 58
2.2.4 Other types of deconstructors 60

2.3 Constructors . 61
2.3.1 Constructors by themselves . 61
2.3.2 Constructors in expressions . 62
2.3.3 Disambiguation issues . 62
2.3.4 Miscellaneous constructors .63

1

2.4 Pseudo-pointers . 64
2.4.1 Nullary pseudo-pointers . 65
2.4.2 Unary pseudo-pointers . 68
2.4.3 Ternary pseudo-pointers . 71
2.4.4 Binary pseudo-pointers . 74

2.5 Escapes . 80
2.5.1 Nullary escapes . 82
2.5.2 Unary escapes . 84
2.5.3 Binary escapes . 91

2.6 Remarks . 105

3 Type specifications 106
3.1 Primitive types . 107

3.1.1 Parsing functions . 107
3.1.2 Specifics . 108

3.2 Type constructors . 121
3.2.1 Binary type constructors . 121
3.2.2 Unary type constructors . 123

3.3 Remarks . 136

4 Advanced usage of types 138
4.1 Type induced functions . 138

4.1.1 Ordinary functions . 138
4.1.2 Exception handling functions 142

4.2 Record declarations . 151
4.2.1 Untyped records . 152
4.2.2 Typed records . 155
4.2.3 Smart records . 158
4.2.4 Parameterized records . 162

4.3 Type stack operators . 166
4.3.1 The type expression stack . 166
4.3.2 Idiosyncratic type operators .168

4.4 Remarks . 174

5 Introduction to operators 176
5.1 Operator conventions . 176

5.1.1 Syntax . 177
5.1.2 Arity . 178
5.1.3 Precedence . 179
5.1.4 Dyadicism . 183
5.1.5 Declaration operators . 186

5.2 Aggregate operators . 187
5.2.1 Data delimiters . 187
5.2.2 Functional delimiters . 190

2

5.2.3 Lifted delimiters . 193
5.3 Remarks . 197

6 Catalog of operators 198
6.1 Data transformers . 198
6.2 Constant forms . 199

6.2.1 Semantics . 200
6.2.2 Suffixes . 201

6.3 Pointer operations . 202
6.3.1 The ampersand . 202
6.3.2 The tilde . 203
6.3.3 Assignment . 203
6.3.4 The dot . 206

6.4 Sequencing operations . 208
6.4.1 Algebraic properties . 209
6.4.2 Semantics . 209
6.4.3 Suffixes . 210

6.5 Conditional forms . 211
6.5.1 Semantics . 211
6.5.2 Suffixes . 212

6.6 Predicate combinators .213
6.6.1 Boolean operators . 213
6.6.2 Comparison and membership operators214

6.7 Module dereferencing . 215
6.7.1 The dash . 215
6.7.2 Library invocation operators .216

6.8 Recursion combinators . 218
6.8.1 Recursive composition . 219
6.8.2 Recursion over trees . 219
6.8.3 Recursion over lists . 219

6.9 List transformations induced by predicates 221
6.9.1 Searching and sorting . 221
6.9.2 Filtering . 223
6.9.3 Bipartitioning . 224
6.9.4 Partitioning . 226

6.10 Concurrent forms . 227
6.10.1 Mapping operators . 228
6.10.2 Coupling operators . 230

6.11 Pattern matching . 234
6.11.1 Random variate generators . 234
6.11.2 Type expression constructors 236
6.11.3 Reification . 238
6.11.4 String handlers . 241

3

6.12 Remarks . 243

7 Compiler directives 245
7.1 Source file organization .245

7.1.1 Comments . 246
7.1.2 Directives . 247
7.1.3 Declarations . 248

7.2 Scope . 250
7.2.1 The#import directive . 250
7.2.2 The#export+ directive . 252
7.2.3 The#hide+ directive . 253

7.3 Binary file output . 254
7.3.1 Binary data files . 254
7.3.2 Library files . 255
7.3.3 Executable files . 257
7.3.4 Comments . 262

7.4 Text file output . 263
7.4.1 The#cast directive . 264
7.4.2 The#show+ directive . 264
7.4.3 The#text+ directive . 264
7.4.4 The#output directive . 264

7.5 Code generation . 265
7.5.1 Profiling . 266
7.5.2 Optimization directives . 267
7.5.3 Fixed point combinators . 268

7.6 Reflection . 274
7.6.1 The#depend directive . 274
7.6.2 The#preprocess directive 274
7.6.3 The#postprocess directive 276

7.7 Command line options . 276
7.7.1 Documentation . 277
7.7.2 Verbosity . 279
7.7.3 Data display . 281
7.7.4 File handling . 282

7.8 Remarks . 285

III Standard Libraries 286

8 A general purpose library 287
8.1 Overview of packaged libraries .. . 287

8.1.1 Installation assumptions . 287
8.1.2 Documentation conventions . 288

4

8.2 Constants . 288
8.3 Enumeration . 289
8.4 File Handling . 289

8.4.1 Data Structures . 290
8.4.2 Functions . 290

8.5 Control Structures . 291
8.5.1 Conditional . 291
8.5.2 Unconditional . 292
8.5.3 Iterative . 293
8.5.4 Random . 294

8.6 List rearrangement . 295
8.6.1 Binary functions . 295
8.6.2 Numerical . 295
8.6.3 General . 297
8.6.4 Combinatorics . 299

8.7 Predicates . 303
8.7.1 Primitive . 303
8.7.2 Boolean combinators . 304
8.7.3 Predicates on lists . 305

8.8 Generalized set operations .. 306

9 Natural numbers 308
9.1 Predicates . 308
9.2 Unary . 309
9.3 Binary . 310
9.4 Lists . 312

10 Integers 313
10.1 Notes on usage . 313
10.2 Predicates . 313
10.3 Unary Operations . 314
10.4 Binary Operations . 314
10.5 Multivalued . 315

11 Binary converted decimal 317
11.1 Predicates . 317
11.2 Unary Operations . 318
11.3 Binary Operations . 319
11.4 Multivalued . 320
11.5 Conversions . 320

5

12 Rational numbers 321
12.1 Unary . 321
12.2 Binary . 322
12.3 Formatting . 323

13 Floating point numbers 325
13.1 Constants . 325
13.2 General . 326

13.2.1 Unary . 326
13.2.2 Binary . 327

13.3 Relational . 328
13.4 Trigonometric . 329
13.5 Exponential . 329
13.6 Calculus . 330
13.7 Series . 332

13.7.1 Accumulation . 332
13.7.2 Binary vector operations . 333
13.7.3 Progressions . 334
13.7.4 Extrapolation . 335

13.8 Statistical . 336
13.8.1 Descriptive . 336
13.8.2 Generative . 337
13.8.3 Distributions . 338

13.9 Conversion . 338

14 Curve fitting 340
14.1 Interpolating function generators 340
14.2 Higher order interpolating function generators 342

15 Continuous deformations 352
15.1 Changes of variables . 352
15.2 Partial differentiation 355

16 Linear programming 357
16.1 Matrix operations . 357
16.2 Continuous linear programming .. . 359

16.2.1 Data structures . 359
16.2.2 Functions . 360

16.3 Integer programming . 361

17 Tables 363
17.1 Short tables . 363
17.2 Long tables . 366
17.3 Utilities . 367

6

18 Lattices 370
18.1 Constructors . 370
18.2 Combinators . 373
18.3 Induction patterns .375

19 Time keeping 380

20 Data visualization 382
20.1 Functions . 382
20.2 Data structures . 384
20.3 Examples . 388

21 Surface rendering 395
21.1 Concepts . 395

21.1.1 Eccentricity . 395
21.1.2 Orientation . 397
21.1.3 Illumination . 398

21.2 Interface . 402

22 Interaction 405
22.1 Theory of operation . 405

22.1.1 Virtual machine interface .406
22.1.2 Source level interface . 406
22.1.3 Referential transparency .406

22.2 Control of command line interpreters 406
22.2.1 Quick start . 407
22.2.2 Remote invocation . 407

22.3 Defined interfaces . 408
22.3.1 General purpose shells . 409
22.3.2 Numerical applications . 410
22.3.3 Computer algebra packages . 412

22.4 Functions based on shells .. 413
22.4.1 Front ends . 413
22.4.2 Format converters . 414

22.5 Defining new interfaces .416
22.5.1 Protocols . 416
22.5.2 Clients . 417
22.5.3 Shell interfaces . 419
22.5.4 Interface example . 422

7

IV Compiler Internals 425

23 Customization 426
23.1 Pointers . 426

23.1.1 Pointers with alphabetic mnemonics 428
23.1.2 Pointers accessed by escape codes 429

23.2 Precedence rules . 431
23.2.1 Adding a rule . 432
23.2.2 Removing a rule . 432
23.2.3 Maintaining compatibility .432

23.3 Type constructors . 433
23.3.1 Type constructor usage . 434
23.3.2 User defined primitive type example 437

23.4 Directives . 440
23.4.1 Directive settings . 441
23.4.2 Output generating functions .442
23.4.3 Source transformation functions 443
23.4.4 User defined directive example446

23.5 Operators . 448
23.5.1 Specifications . 448
23.5.2 Usage . 449
23.5.3 User defined operator example 453

23.6 Command line options . 455
23.6.1 Option specifications . 455
23.6.2 Global compiler specifications 456
23.6.3 User defined command line option example 459

23.7 Help topics . 462

24 Manifest 464
24.1 com . 466
24.2 ext . 466
24.3 pag . 467
24.4 opt . 468
24.5 sol . 469
24.6 tag . 469
24.7 tco . 469
24.8 psp . 470
24.9 lag . 470
24.10ogl . 471
24.11ops . 471
24.12lam . 471
24.13apt . 472
24.14eto . 472

8

24.15xfm . 473
24.16dir . 473
24.17fen . 473
24.18pru . 474
24.19for . 474
24.20mul . 474
24.21def . 475
24.22con . 475
24.23fun . 475

A Changes 476

B GNU Free Documentation License 477
1. APPLICABILITY AND DEFINITIONS 477
2. VERBATIM COPYING . 479
3. COPYING IN QUANTITY . 479
4. MODIFICATIONS . 480
5. COMBINING DOCUMENTS . 482
6. COLLECTIONS OF DOCUMENTS . 482
7. AGGREGATION WITH INDEPENDENT WORKS 482
8. TRANSLATION . 483
9. TERMINATION . 483
10. FUTURE REVISIONS OF THIS LICENSE 483
ADDENDUM: How to use this License for your documents 483

9

Part I

Introduction

10

Concurrently while your first question may be the most perti-
nent, you may or may not realize it is also the most irrelevant.

The Architect inThe Matrix Reloaded

1
Motivation

Who needs another programming language? The very idea is likely to evoke a frosty re-
ception in some circles, justifiably so if its proponents areinsufficiently appreciative of a
simple economic fact. The most expensive thing about software is the cost of customiz-
ing or maintaining it, including the costs of training or recruitment of suitably qualified
individuals. These costs escalate in the case of esoteric software technologies, of which
unconventional languages are the prime example, and they ordinarily will take precedence
over other considerations.

1.1 Intended audience

While there is no compelling argument for general commercial deployment of the tools and
techniques described in this manual, there is neverthelessa good reason for them to exist.
Many so called mature technologies from which organizations now benefit handsomely
began as research projects, without which all progress comes to a standstill. Furthermore,
this material may be of use to the following constituencies of early adopters.

1.1.1 Academic researchers

Perhaps you’ve promised a lot in your thesis proposal or grant application and are now
wondering how you’ll find an extra year or two for writing the code to support your claims.
Outsourcing it is probably not an option, not just because ofthe money, but because the
ideas are too new for anyone but you and a few colleagues to understand. Textbook soft-
ware engineering methodologies can promise no improvementin productivity because the
exploratory nature of the work precludes detailed planning. Automated code generation
tools address only the user interface rather than the substance of the application.

11

The language described in this manual provides you with a path from rough ideas to
working prototypes in record time. It does so by keeping the focus on a high level of
abstraction that dispenses with the tedium and repetition perceived to a greater degree in
other languages. By a conservative estimate, you’ll write about one tenth the number of
lines of code in this language as in C or Java to get the same jobdone.1

How could such a technology exist without being more widely known? The deal
breaker for a commercial organization would be the cost of retraining, and the risk of
something untried. These issues pose no obstacle to you because learning and evaluating
new ideas is your bread and butter, and financially you have nothing to lose.

1.1.2 Hackers and hobbyists

This group merits pride of place as the source of almost everysignificant advance in the
history of computing. A reader who believes that stretchingthe imagination and looking
for new ways of thinking are ends in themselves will find something of value in these
pages.

The functional programming community has changed considerably since thelisp
era, not necessarily for the better unless one accepts the premise of the compiler writer as
policy maker. We are now hard pressed to find current researchactivity in the field that is
not concerned directly or indirectly with type checking andenforcement.

The subject matter of this document offers a glimpse of how functional programming
might have progressed in the absence of this constraint. Nottoo surprisingly, we find ever
more imaginative and ubiquitous use of higher order functions than is conceivable within
the confines of a static type discipline.

1.1.3 Numerical analysts

Perhaps you have no great love for programming paradigms, but you have a real problem
to solve that involves some serious number crunching. You will already be well aware
of many high quality free numerical libraries, such aslapack , Kinsol , fftw , gsl ,
etcetera, which are a good start, but you don’t relish the prospect of writing hundreds of
lines of glue code to get them all to work together. Maybe on top of that you’d like to
leverage some existing code written in mutually incompatible domain specific languages
that has no documented API at all but is invoked by a command line interpreter such as
Octave or Ror their proprietary equivalents.

This language takes about a dozen of the best free numerical libraries and not only
combines them into a consistent environment, but simplifiesthe calling conventions to the
extent of eliminating anything pertaining to memory management or mutable storage. The
developer can feed the output from one library function seamlessly to another even if the
libraries were written in different languages. Furthermore, any command line interpreter
present on the host system can be invoked and controlled by a function call from within
the language, with a transcript of the interaction returnedas the result.

1I’m a big fan of C, as all real programmers are, but I still wouldn’t want to use it for anything too complicated.

12

1.1.4 Independent consultants

Commercial use of this technology may be feasible under certain circumstances. One
could envision a sole proprietorship or a small team of academically minded developers,
building software for use in house, subject to the assumption that it will be maintained only
by its authors. Alternatively, there would need to be a commitment to recruit for premium
skills.

Possible advantages in a commercial setting are rapid adaptation to changing require-
ments or market conditions, for example in an engineering ortrading environment, and fast
turnaround in a service business where software is the enabling technology. A less readily
quantifiable benefit would be the long term effects of more attractive working conditions
for developers with a preference for advanced tools.

1.2 Grand tour

The remainder of this chapter attempts to convey a flavor for the kinds of things that
can be done well with this language. Examples from a variety of application areas are
presented with explanations of the main points. These examples are not meant to be fully
comprehensible on a first reading, or else the rest of the manual would be superfluous.
Rather, they are intended to allow readers to make an informed decision as to whether the
language would be helpful enough to be worth learning.

1.2.1 Graph transformation

This example is a type of problem that occurs frequently in CAD applications. Given
a model for a system, we seek a simpler model if possible that has the same externally
observable behavior. If the model represents a circuit to besynthesized, the optimized
version is likely to be conducive to a smaller, faster circuit.

Theory

A graph such as the one shown in Figure 1.1 represents a systemthat interacts with its
environment by way of input and output signals. For concreteness, we can imagine the
inputs as buttons and the outputs as lights, each identified with a unique label. When an
acceptable combination of buttons is pressed, the system changes from its present state to
another designated state, and in so doing emits signals on the required outputs.

This diagram summarizes everything there is to know about the system according to
the following conventions.

• Each circle in the diagram represents a state.

• Each arrow (or “transition”) represents a possible change of state, and is drawn con-
necting a state to its successor with respect to the change.

13

 a/p

 c,m/p

 a/p

 c,m/p

 h,m/s,u,v

 a/p,r

 g/s

 a,m/v

 g,h,m/u,v

 a/p

 c,m/p

 a,m/v

 g,h,m/u,v

 h,m/s,u,v

 a/p,r

 g/s

 a/u,v

 g,h,m/u,v a,m/v

Figure 1.1: a finite state transducer

14

 a/p

 c,m/p

 h,m/s,u,v

 a/p,r

 g/s

 a,m/v

 g,h,m/u,v a/u,v

Figure 1.2: a smaller equivalent version

• Each transition is labeled with a set of input signal names, followed by a slash, fol-
lowed by a set of output signal names.

– The input signal names labeling a transition refer to the inputs that cause it to
happen when the system is in the state where it originates.

– The output signal names labeling a transition refer to the outputs that are emitted
when it happens.

• An unlabeled arrow points to the initial state.

Problem statement

Two systems are considered equivalent if their observable behavior is the same in all cir-
cumstances. The state of a system is considered unobservable. Only the input and output
protocol is of interest. We can now state the problem as follows:

Using whatever data structure you prefer, implement an algorithm that transforms a
given system specification to a simpler equivalent one if possible.

For example, the system shown in Figure 1.1 could be transformed to the one in Figure 1.2,
because both have the same observable behavior, but the latter is simpler because it has
only four states rather than nine.

15

Listing 1.1 concrete representation of the system in Figure 1.1

#binary+

sys =

{
0: {({’a’},{’p’}): 0,({’c’,’m’},{’p’}): 7},
8: {({’a’},{’p’}): 0,({’c’,’m’},{’p’}): 2},
4: {

({’a’},{’p’,’r’}): 9,
({’g’},{’s’}): 3,
({’h’,’m’},{’s’,’u’,’v’}): 0},

2: {
({’a’,’m’},{’v’}): 8,
({’g’,’h’,’m’},{’u’,’v’}): 9},

6: {({’a’},{’p’}): 6,({’c’,’m’},{’p’}): 1},
1: {

({’a’,’m’},{’v’}): 8,
({’g’,’h’,’m’},{’u’,’v’}): 9},

9: {
({’a’},{’p’,’r’}): 9,
({’g’},{’s’}): 3,
({’h’,’m’},{’s’,’u’,’v’}): 8},

3: {({’a’},{’u’,’v’}): 8},
7: {

({’a’,’m’},{’v’}): 6,
({’g’,’h’,’m’},{’u’,’v’}): 4}}

Data structure

A simple, intuitive data structure is perfectly serviceable for this example.

• A character string is used for each signal name, a set of them for each set thereof, and
a pair of sets of character strings to label each transition.

• For ease of reference, each state is identified with a unique natural number, with 0
reserved for the initial state.

• A transition is represented by its label and its associated destination state number.

• A state is fully characterized by its number and its set of outgoing transitions.

• The entire system is represented by the set of the representations of its states.

The language uses standard mathematical notation of bracesand parentheses enclos-
ing comma separated sequences for sets and tuples, respectively. A colon separated pair
is an alternative notation optionally used in the language to indicate an association or as-
signment, as inx: y . White space is significant in this notation and it denotes a purely
non-mutable, compile-time association.

16

Listing 1.2 optimization algorithm

#import std
#import nat

#library+

optimized =

|=&mnS; -+
ˆHs\˜&hS * + ˆ|ˆ(˜&, * + ˆ|/˜&)+ -:+ * = ˜&nS; ˆDrlXS/nleq$- ˜&,
ˆ= ˆH\˜& * =+ |=+ ==++ ˜˜bm+ * mS+ -:+ ˜&nSiiDPSLrlXS+-

Some test data of the required type are prepared as shown in Listing 1.1 in a file named
sys.fun . (This source file suffix is standard.) The compiler will parse and evaluate such
an expression with no type declaration required, although one will be used later to cast the
binary representation for display purposes.

For the moment, the specification is compiled and stored for future use in binary form
by the command

$ fun sys.fun
fun: writing ‘sys’

The command to invoke the compiler isfun . The dollar sign at the beginning of a line
represents the shell command prompt throughout this manual. Writing the filesys is the
effect of the#binary+ compiler directive shown in the source. The file is named after
the identifier with which the structure is declared.

Algorithm

In abstract terms, the optimization algorithm is as follows.

• Partition the set of states initially by equality of outgoing transition labels (ignoring
their destination states).

• Further partition each equivalence class thus obtained by equivalence of transition
termini under the relation implied hitherto.

• Iterate the previous step until a fixed point is reached.

• Delete all but one state from each terminal equivalence class, (with preference to the
initial state where applicable) rerouting incident transitions on deleted states to the
surviving class member as needed.

The entire program to implement this algorithm is shown in Listing 1.2. Some com-
mentary follows, but first a demonstration is in order. To compile the code, we execute

$ fun cad.fun
fun: writing ‘cad.avm’

17

assuming that the source code in Listing 1.2 is in a file calledcad.fun . The virtual
machine code for the optimization function is written to a library file with suffix .avm
because of the#library+ compiler directive, rather than as a free standing executable.

Using the test data previously prepared, we can test the library function easily from the
command line without having to write a separate driver.

$ fun cad sys --main="optimized sys" --cast %nsSWnASAS
{

0: {({’a’},{’p’}): 0,({’c’,’m’},{’p’}): 1},
4: {

({’a’},{’p’,’r’}): 4,
({’g’},{’s’}): 3,
({’h’,’m’},{’s’,’u’,’v’}): 0},

1: {
({’a’,’m’},{’v’}): 0,
({’g’,’h’,’m’},{’u’,’v’}): 4},

3: {({’a’},{’u’,’v’}): 0}}

This invocation of the compiler takes the library filecad.avm , with the suffix inferred,
and the data filesys as command line arguments. The compiler evaluates an expression
on the fly given in the parameter to the--main option, and displays its value cast to the
type given by a type expression in the parameter to the--cast option. The result is
an optimized version of the specification in Listing 1.1 as computed by the library func-
tion, displayed as an instance of the same type. This result corresponds to Figure 1.2, as
required.

Highlights of this example

This example has been chosen to evoke one of two reactions from the reader. Starting from
an abstract idea for a fairly sophisticated, non-obvious algorithm of plausibly practical
interest, we’ve done the closest thing possible to pulling aworking implementation out of
thin air in three lines of code. However, it would be an understatement to say the code is
difficult to read. One might therefore react either with aversion to such a notation because
of its unfamiliarity, or with a sense of discovery and wonderat its extraordinary expressive
power. Of course, the latter is preferable, but at least no time has been wasted otherwise.
The following technical points are relevant for the intrepid reader wishing to continue.

Type expressions such as the parameter to the--cast command line option above, are
built from a selection of primitive types and constructors each represented by a single letter
combined in a postorder notation. The typen is for natural numbers, ands is for character
strings.S is the set constructor, andWthe constructor for a pair of the same type. Hence,
sS refers to sets of strings, andsSWto pairs of sets of strings. The binary constructorA
pertains to assignments. Type expressions are first class objects in the language and can
be given symbolic names.

18

Pointer expressions such as̃&nSiiDPSLrlXS from Listing 1.2, are a computationally
universal language within a language using a postorder notation similar to type expressions
as a shorthand for a great variety of frequently occurring patterns. Often they pertain to
list or set transformations. They can be understood in termsof a well documented virtual
machine code semantics, seen here in a morelisp -like notation, that is always readily
available for inspection.

$ fun --main="˜&nSiiDPSLrlXS" --decompile
main = compose(

map field((0,&),(&,0)),
compose(

reduce(cat,0),
map compose(

distribute,
compose(field(&,&),map field(&,0)))))

Library functions are reusable code fragments either packaged with the compiler or user
defined and compiled into library files with a suffix of.avm . The function in this example
is defined mostly in terms of language primitives except for one library function,nleq ,
the partial order relational predicate on natural numbers imported from thenat library.
Functions declared in libraries are made accessible by the#import compiler directive.

Operators are used extensively in the language to express functional combining forms.
The most frequently used operators are+, for functional composition, as in an expression
of the form f+ g , and ; , as ing; f , similar to composition with the order reversed.
Another kind of operator is function application, expressed by juxtaposition of two ex-
pressions separated by white space. Semantically we have anidentity (f+ g) x =
(g; f) x = f (g x) , or simply f g x , as function application in this language is
right associative.

Higher order functions find a natural expression in terms of operators. It is convenient
to regard most operators as having binary, unary, and parameterless forms, so that an
expression such asg; is meaningful by itself without a right operand. Ifg; is directly
applied to a functionf , we have the resulting functiong; f . Alternatively, it would be
meaningful to composeg; with a functionh, whereh is a function returning a function, as
in g;+ h . This expression denotes a function returning a function similar to the one that
would be returned byh with the added feature ofg included in the result as a preprocessor,
so to speak. Several cases of this usage occur in Listing 1.2.

Combining forms are associated with a rich variety of other operators, some of which are
used in this example. Without detailing their exact semantics, we conclude this section
with an informal summary of a few of the more interesting ones.

19

• The partition combinator,|= , takes a function computing an equivalence relation to
the function that splits a list or a set into equivalence classes.

• The limit combinator,̂= , iterates a function until a fixed point is reached.

• The fan combinator,̃̃ , takes a function to one that operates on a pair by applying
the given function to both sides.

• The reification combinator,-: , takes a finite set of pairs of inputs and outputs to the
partial function defined by them.

• The minimization operator$- , takes a function computing a relational predicate to
one that returns the minimum item of a list or set with respectto it.

• Another form of functional composition,-+ . . .+- , constructs the composition of an
enclosed comma separated sequence of functions.

• The binary to unary combinators/ and\ fix one side of the argument to a function
operating on a pair.f/k y = f(k,y) andf\k x = f(x,k) , where it should be
noted as usual that the expressionf/k is meaningful by itself and consistent with
this interpretation.

1.2.2 Data visualization

This example demonstrates using the language to manipulateand depict numerical data
that might emerge from experimental or theoretical investigations.

Theory

The starting point is a quantity that is not known with certainty, but for which someone
purports to have a vague idea. To be less vague, the person making the claim draws a bell
shaped curve over the range of possible values and asserts that the unknown value is likely
to be somewhere near the peak. A tall, narrow peak leaves lessroom for doubt than one
that’s low and spread out.2

Let us now suppose that the quantity is time varying, and thatits long term future values
are more difficult to predict than its short term values. Undeterred, we wish to construct
a family of bell shaped curves, with one for each instant of time in the future. Because
the quantity is becoming less certain, the long term future curves will have low, spread
out peaks. However, we venture to make one mildly predictivestatement, which is that
the quantity is non-negative and generally follows an increasing trend. The peaks of the
curves will therefore become laterally displaced in addition to being flatter.

It is possible to be astonishingly precise about being vague, and a well studied model
for exactly the situation described has been derived rigorously from simple assumptions.
Its essential features are as follows.

2apologies to those who might take issue with this greatly simplified introduction to statistics

20

A measurex̄ of the expected value of the estimate (if we had to pick one), and its
dispersionv are given as functions of time by these equations,

x̄(t) = meµt

v(t) = m2e2µt
(

eσ
2t − 1

)

where the parametersm, µ andσ are fixed or empirically determined constants. A couple
of other time varying quantities that defy simple intuitiveexplanations are also defined.

θ(t) = ln
(
x̄(t)2

)
− 1

2
ln
(
x̄(t)2 + v(t)

)

λ(t) =

√

ln

(

1 +
v(t)

x̄(t)2

)

These combine to form the following specification for the bell shaped curves, also known
as probability density functions.

(ρ(t))(x) =
1√

2πλ(t)x
exp

(

−1
2

(
ln x− θ(t)

λ(t)

)2
)

Whereas it would be fortunate indeed to find a specification ofthis form in a statistical
reference, functional programmers by force of habit will take care to express it as shown
if this is the intent. We regardρ as a second order function, to which one plugs in a time
valuet, whereupon it returns another (unnamed) function as a result. This latter function
takes a valuex to its probability density at the given time, yielding the bell shaped curve
when sampled over a range ofx values.3

Problem statement

This problem is just a matter of muscle flexing compared to theprevious one. It consists
of the following task.

Get some numbers out of this model and verify that the curves look the way they should.

Surface renderings

A favorite choice for book covers and poster presentations is to render a function of two
variables in an eye catching graphic as a three dimensional surface. A library for that
purpose is packaged with the compiler. It features realistic shading and perspective from
multiple views, and generates readable LATEX code suitable for inclusion in documents
or slides. Postscript and PDF renderings, while not directly supported, can be obtained
through LATEX for users of other document preparation systems.

The code to invoke the rendering library function for this model is shown in Listing 1.3
and the result in Figure 1.3. Assuming the code is stored in a file namedviz.fun , it is
compiled as follows.

3Some authors will use a more idiomatic notation likeρ(x; t) to suggest a second order function, but seldom use it consistently.

21

Listing 1.3 code to generate the rendering in Figure 1.3

#import std
#import nat
#import flo
#import plo
#import ren
---------------------------- constants -------------- ------------------

imean = 100. # mean at time 0
sigma = 0.3 # larger numbers make the variance increase faste r
mu = 0.6 # larger numbers make the mean drift upward faster

------------------------ functions of time ------------ ----------------

expectation = times/imean+ exp+ times/mu
theta = minusˆ(ln+ ˜&l,div\2.+ ln+ plus)ˆ/sqr+expectatio n marv
lambda = sqrt+ ln+ plus/1.+ divˆ/marv sqr+ expectation

marv = # variance of the marginal distribution

times/sqr(imean)+ timesˆ(
exp+ times/2.+ times/mu,
minus\1.+ exp+ //times sqr sigma)

rho = # takes a positive time value to a probability density fu nction

"t". 0.?=/0.! "x". div(
exp negative div\2. sqr div(minus/ln"x" theta "t",lambda " t"),
times/sqrt(times/2. pi) times/lambda"t" "x")

------------------------- image specifications ------- ----------------
#binary+
#output dot’tex’ //rendering (’ihn+’,1.5,1.)

spread =

visualization[
margin: 35.,
headroom: 25.,
picture_frame: ((350.,350.),(-15.,-25.)),
pegaxis: axis[variable: ’\textsl{time}’],
abscissa: axis[variable: ’\textsl{estimate}’],
ordinates: <

axis[variable: ’ρ’,hatches: ari5/0. .04,alias: (10 .,0.)]>,
curves: ˜&H(

* curve$[peg: ˜&hr,points: * ˆ/˜&l ˆH\˜&l rho+ ˜&r],
|=&r ˜&K0 (ari41/75. 175.,ari31/0.1 .6))]

22

75
.0

0

95
.0

0

11
5.

00

13
5.

00

15
5.

00

17
5.

00

estimate

0.100.200.300.400.500.60

time

0.00

0.01

0.02

0.03

0.04

ρ

Figure 1.3: Probability density drifts and disperses with time as the estimate grows increasingly uncertain

$ fun flo plo ren viz.fun
fun: writing ‘spread’
fun: writing ‘spread.tex’

The output files in LATEX and binary form are generated immediately at compile time,
without the need to build any intermediate libraries or executables, because this application
is meant to be used once only. This behavior is specified by the#binary+ and#output
compiler directives.

The main points of interest raised by this example relate to the handling of numerical
functions and abstract data types.

Arithmetic operators are designated by alphanumeric identifiers such astimes andplus
rather than conventional operator symbols, for obvious reasons.

23

Dummy variables enclosed in double quotes allow an alternative to the pure combinatoric
variable-free style of function specification. For example, we could write

expectation "t" = times(imean,exp times(mu,"t"))

or

expectation = "t". times(imean,exp times(mu,"t"))

as alternatives to the form shown in Listing 1.3, where the former follows traditional math-
ematical convention and the latter is more along the lines of“lambda abstraction” familiar
to functional programmers.

Use of dummy variables generalizes to higher order functions, for which it is well
suited, as seen in the case of therho function. It may also be mixed freely with the
combinatoric style. Hence we can write

rho "t" = 0.?=/0.! "x". div(...)

which says in effect “if the argument to the function returned by rho at "t" is zero, let
that function return a constant value of zero, but otherwiselet it return the value of the
following expression with the argument substituted for"x" .”

Abstract data types adhere to a straightforward record-like syntax consistingof a symbolic
name for the type followed by square brackets enclosing a comma separated sequence
of assignments of values to field identifiers. The values can be of any type, including
functions and other records. Thevisualization , axis , andcurve types are used to
good effect in this example.

A record is used as an argument to the rendering function because it is useful for it to
have many adjustable parameters, but also useful for the parameters to have convenient de-
fault settings to spare the user specifying them needlessly. For example, the numbering of
the horizontal axes in Listing 1.3 was not explicitly specified but determined automatically
by the library, whereas that of the verticalρ axis was chosen by the user (in thehatches
field). Values for unspecified fields can be determined by any computable function at run
time in a manner inviting comparison with object orientation. Enlightened development
with record types is all about designing them with intelligent defaults.

Planar plots

The three dimensional rendering is helpful for intuition but not always a complete picture
of the data, and rarely enables quantitative judgements about it. In this example, the dis-
persion of the peak with increasing time is very clear, but its drift toward higher values of
the estimate is less so. A two dimensional plot can be a preferable alternative for some
purposes.

Having done most of the work already, we can use the samevisualization data
structure to specify a family of curves in a two dimensional plot. It will not be necessary to
recompile the source code for the mathematical model because the data structure storing
the samples has been written to a file in binary form.

24

Listing 1.4 reuse of the data generated by Listing 1.3 for an interpolated 2-dimensional plot

#import std
#import nat
#import flo
#import fit
#import lin
#import plo

#output dot’tex’ plot

smooth =

˜&H\spread visualization$i[
margin: 15.!,
picture_frame: ((400.,250.),-30.,-35.)!,
curves: ˜curves; * curve$i[

points: ˆH(* + ˆ/˜&+ chord_fit0,ari300+ ˜&hzXbl)+ ˜points,
attributes: {’linewidth’: ’0.1pt’}!]]

Listing 1.4 shows the required code. Although it would be possible to use the original
spread record with no modifications, three small adjustments to it are made. These are
the kinds of settings that are usually chosen automaticallybut are nevertheless available to
a user preferring more control.

• manual changes to the bounding box (a perennial issue for LATEX images with no
standard way of automatically determining it, the default is only approximate)

• a thinner than default line width for the curves, helpful when many curves are plotted
together

• smoothing of the curves by a simple piecewise polynomial interpolation method

Assuming the code in Listing 1.4 is in a file namedsmooth.fun , it is compiled by
the command

$ fun flo fit lin plo spread smooth.fun
fun: writing ‘smooth.tex’

, The command line parameterspread is the binary file generated on the previous run.
Any binary file included on the command line during compilation is available within the
source as a predeclared identifier.

The smoothing effect is visible in Figure 1.4, showing how the resulting plot would
appear with smoothing and without. Whereas discernible facets in a three dimensional
rendering are a helpful visual cue, line segments in a two dimensional plot are a distraction
and should be removed.

A library providing a variety of interpolation methods is distributed with the compiler,
including sinusoidal, higher order polynomial, multidimensional, and arbitrary precision

25

ρ

0.00

0.01

0.02

0.03

0.04

estimate

75.00 95.00 115.00 135.00 155.00 175.00

ρ

0.00

0.01

0.02

0.03

0.04

estimate

75.00 95.00 115.00 135.00 155.00 175.00

Figure 1.4: plots of data as in Figure 1.3 showing the effectsof smoothing

26

versions. For this example, a simple cubic interpolation (chord fit 0) resampled at
300 points suffices.

1.2.3 Number crunching

For this example, we consider a classic problem in mathematical finance, the valuation of
contingent claims (a stuffy name for an interesting problemcomparable to finite element
analysis). The solution demonstrates some distinctive features of the language pertaining
to abstract data types, numerical methods, and GNU Scientific Library functions.

Theory

Two traders want to make a bet on a stock. One of them makes a commitment to pay an
amount determined by its future price and the other pays a feeup front. The fee is subject
to negotation, and the future payoff can be any stipulated function of the price at that time.

Avoidance of arbitrage One could imagine an enterprising trader structuring a portfolio of
bets with different payoffs in different circumstances such that he or she can’t lose. So
much the better for such a trader of course, but not so for the counterparties who have
therefore negotiated erroneous fees.

To avoid falling into this trap, a method of arriving at mutually consistent prices for an
ensemble of contracts is to derive them from a common source.A probability distribution
for the future stock price is postulated or inferred from themarket, and the value of any
contingent claim on it is given by its expected payoff with respect to the distribution. The
value is also discounted by the prevailing interest rate to the extent that its settlement is
postponed.

Early exercise If the claim is payable only on one specific future date, its present value
follows immediately from its discounted expectation, but acomplication arises when there
is a range of possible exercise dates.4 In this case, a time varying sequence of related
distributions is needed.

Binomial lattices A standard construction has a geometric progression of possible stock
prices at each of a discrete set of time steps ranging from thecontract’s inception to its
expiration. The sequences acquire more alternatives with the passage of time, and the
condition is arbitrarily imposed that the price can change only to one of two neighboring
prices in the course of a single time step, as shown in Figure 1.5.

The successor to any price represents either an increase by afactoru or a decrease by
a factord, with ud = 1. A probability given by a binomial distribution is assignedto each
price, a probabilityp is associated with an upward movement, andq with a downward
movement.

4A further complication that we don’t consider in this example is a payoff with unrestricted functional dependence on both present
and previous prices of the stock.

27

100.00

112.24

89.09

125.98

100.00

79.38

141.40

112.24

89.09

70.72

present future

price

Figure 1.5: when stock prices take a random walk

An astute argument and some high school algebra establish values for these parameters
based on a few freely chosen constants, namely∆t, the time elapsed during each step,r,
the interest rate,S the initial stock price, andσ, the so called volatility. The parameter
values are

u = eσ
√
∆t

d = e−σ
√
∆t

p =
er∆t − d

u− d
q = 1− p

With n time steps numbered from0 to n − 1, andk + 1 possible stock prices at step
numberk numbered from0 to k, the fair price of the contract (in this simplified world
view) is v00 from the recurrence that associates the following value ofvki with the contract
at timek in statei.

vki =

{
f(Sk

i) if k = n− 1
max

(
f(Sk

i), e
−r∆t

(
pvk+1

i+1 + qvk+1
i

))
otherwise

(1.1)

In this formula,f is the stipulated payoff function, andSk
i = Suidk−i is the stock price

at timek in statei. The intuition underlying this formula is that the value of the contract

28

at expiration is its payoff, and the value at any time prior toexpiration is the greater of its
immediate or its expected payoff.

Problem statement

The construction of Figure 1.5, known as a binomial lattice in financial jargon, can be
used to price different contingent claims on the same stock simply by altering the payoff
functionf accordingly, so it is natural to consider the following tasks.

Implement a reusable binomial lattice pricing library allowing arbitrary payoff functions,
and an application program for a specific family of functions.

The payoff functions in question are those of the form

f(s) = max(0, s−K)

for a constantK and a stock prices. The application should allow the user to specify the
particular choice of payoff function by giving the value ofK.

Data structures

A lattice can be seen as a rooted graph with nodes organized bylevels, such that edges
occur only between consecutive levels. Its connection topology is therefore more general
than a tree but less general than an unrestricted graph.

An unusual feature of the language is a built in type constructor for lattices with ar-
bitrary branching patterns and base types. Lattices in the language should be understood
as containers comparable to lists and sets. For this example, a binomial lattice of float-
ing point numbers is used. The lattice appears as one field in arecord whose other fields
are the model parameters mentioned above such as the time step durations and transition
probabilities.

As indicated above, some of the model parameters are freely chosen and the rest are
determined by them. It will be appropriate to design the record data structure in the same
way, in that it automatically initializes the remaining fields when the independent ones are
given. For this purpose, Listing 1.5 uses a record declaration of the form

〈record mnemonic〉 ::

〈field identifier〉 〈type expression〉 〈initializing function〉
...

〈field identifier〉 〈type expression〉 〈initializing function〉

If no values are specified even for the independent fields, therecord will initialize itself to
the small pedagogical example depicted in Figure 1.5.

By way of a demonstration, the code is Listing 1.5 is compiledby the command

$ fun flo lat crt.fun
fun: writing ‘crt.avm’

29

Listing 1.5 implementation of a binomial lattice for financial derivatives valuation

#import std
#import nat
#import flo
#import lat

#library+

crr ::

s %eZ ˜s||100.!
v %eZ ˜v||0.2!
t %eZ ˜t||1.!
n %n ˜n||4!
r %eZ ˜r||0.05!
dt %e ||˜dt ˜t&& divˆ/˜t float+ predecessor+ ˜n
up %e ||˜up ˜v&& exp+ timesˆ/˜v sqrt+ ˜dt
dn %eZ ˜v&& exp+ negative+ timesˆ/˜v sqrt+ ˜dt
p %eZ -&˜r,˜dn,divˆ(minusˆ\˜dn exp+ times+ ˜/r dt,minus+ ˜ /up dn)&-
q %eZ -&˜p,fleq\1.+ ˜p,minus/1.+ ˜p&-
l %eG

˜n&& ˜q&& ˜l|| gridˆ(
˜&lihBZPFrSPStx+ num * + ˆlrNCNCH\˜s ˆH/rep+˜n :ˆ\˜&+ ˜&h;+ :ˆˆ(

˜&h;+ //times+ ˜dn,
ˆlrNCT/˜&+ ˜&z;+ //times+ ˜up),

ˆDlS(
fleq\;eps++ abs * ++ minus * ++ div;+ \/- * + <.˜up,˜dn>,
˜&t+ iota+ ˜n))

amer = # price of an american option on lattice c with payoff f

("c","f"). ˜&H\˜l"c" lfold maxˆ|/"f" ||ninf! ˜&i&& -+
\/div exp times/˜r"c" ˜dt "c",
iprod/<˜q "c",˜p "c">+-

euro = # price of a european option on lattice c with payoff f

("c","f"). ˜&H\˜l"c" lfold ||-+"f",˜&l+- ˜&r; ˜&i&& -+
\/div exp times/˜r"c" ˜dt "c",
iprod/<˜q "c",˜p "c">+-

30

assuming it resides in a file namedcrt.fun . To see the concrete representation of the
default binomial lattice, we display one with no user definedfields as follows.

$ fun crt --main="crr&" --cast _crr
crr[

s: 1.000000e+02,
v: 2.000000e-01,
t: 1.000000e+00,
n: 4,
r: 5.000000e-02,
dt: 3.333333e-01,
up: 1.122401e+00,
dn: 8.909473e-01,
p: 5.437766e-01,
q: 4.562234e-01,
l: <

[0:0: 1.000000e+02ˆ: <1:0,1:1>],
[

1:1: 1.122401e+02ˆ: <2:1,2:2>,
1:0: 8.909473e+01ˆ: <2:0,2:1>],

[
2:2: 1.259784e+02ˆ: <2:2,2:3>,
2:1: 1.000000e+02ˆ: <2:1,2:2>,
2:0: 7.937870e+01ˆ: <2:0,2:1>],

[
2:3: 1.413982e+02ˆ: <>,
2:2: 1.122401e+02ˆ: <>,
2:1: 8.909473e+01ˆ: <>,
2:0: 7.072224e+01ˆ: <>]>]

In this command,_crr is the implicitly declared type expression for the record whose
mnemonic iscrr . The lattice is associated with the fieldl , and is displayed as a list
of levels starting from the root with each level enclosed in square brackets. Nodes are
uniquely identified within each level by an address of the form n : m, and the list of
addresses of each node’s descendents in the next level is shown at its right. The floating
point numbers are the same as those in Figure 1.5, shown here in exponential notation.

Algorithms

Two pricing functions are exported by the library, one corresponding to Equation 1.1, and
the other based on the simpler recurrence

vki =

{
f(Sk

i) if k = n− 1
e−r∆t

(
pvk+1

i+1 + qvk+1
i

)
otherwise

31

which applies to contracts that are exercisable only at expiration. The latter are known as
European as opposed to American options. Both of these functions take a pair of operands
(c, f), whose left sidec is record describing the lattice model and whose right sidef is a
payoff function.

A quick test of one of the pricing functions is afforded by thefollowing command.

$ fun flo crt --main="amer(crr&,max/0.+ minus\100.)" --ca st
1.104387e+01

$ The payoff function used in this case would be expressed asf(s) = max(0, s− 100) in
conventional notation, and the lattice model is the defaultexample already seen.

As shown in Listing 1.5, the programs computing these functions take a particularly
elegant form avoiding explicit use of subscripts or indices. Instead, they are expressed
in terms of thelfold combinator, which is part of a collection of functional combining
forms for operating on lattices defined in thelat library distributed with the compiler.
The lfold combinator is an adaptation of the standardfold combinator familiar to
functional programmers, and corresponds to what is called “backward induction” in the
mathematical finance literature.

The application program

Having made short work of the library, we’ll take the opportunity to under-promise and
over-deliver by making the application program compute notonly the contract prices but
also their partial derivatives with respect to the model parameters. These are often a matter
of interest to traders, as they represent the sensitivity ofa position to market variables.

The source code shown in Listing 1.6 can be used to generate the desired executable
program when stored in a file namedcall.fun .

$ fun flo crt cop call.fun --archive
fun: writing ‘call’

The --archive command line option to the compiler is recommended for larger pro-
grams and libraries, and causes the compiler to perform somedata compression. In this
case it reduces the executable file size by a factor of five, conferring a slight advantage in
speed and memory usage. Recall thatcrt is the name of the user written library contain-
ing the binomial lattice functions, whileflo andcop are standard libraries distributed
with the compiler.

As an executable program, it should be somewhat robust and self explanatory in the
handling of input, even if it is used only by its author. When invoked with missing param-
eters, it responds as follows.

$ call
usage: call [-parameter value] * [--greeks]

-s <initial stock price>
-t <time to expiration>
-v <volatility>

32

Listing 1.6 executable program to compute contract prices and partial derivatives

#import std
#import nat
#import flo
#import crt
#import cop

usage = # displayed on errors and in the executable shell scri pt

:/’usage: call [-parameter value] * [--greeks]’ ˜&t -[
-s <initial stock price>
-t <time to expiration>
-v <volatility>
-r <interest rate>
-k <strike price>]-

#optimize+

price = # takes a list of parameters to a call option price

<"s","t","v","r","k">. levin_limit amer * * - (
crr$[s: "s"!,t: "t"!,v: "v"!,r: "r"!,n: ˜&] * ˜&NiC|\ 8! * iota4,
max/0.+ minus\"k")

greeks = # takes the same input to a list of partial derivative s

ˆ|T(˜&,printf/’:%10.3f’) * + -+
//˜&p <’delta’,’theta’,’vega ’,’rho ’,’dc/dk’,’gamma’> ,
ˆlrNCT(

˜&h+ jacobian(1,5) ˜&iNC+ price,
("h","t"). (derivative derivative price\"t") "h")+-

#comment usage--<’’,’last modified: ’--__source_time_s tamp>
#executable (<’par’>,<>)

call = # interprets command line parameters and options

˜&iNC+ file$[contents: ˜&]+ -+
ˆCNNCT/-+printf/’price:%10.2f’,price+˜&r+- ˜&l&& gree ks+ ˜&r,
˜command.options; ˆ/(any ˜keyword[=’greeks’) -+

-&˜&itZBg,eql/16,all ˜&jZ\’0123456789.-’+ ˜&h&-?/%ep * usage!%,
˜parameters * + ˜&itZBFL+ gang * ˜ * ˜keyword== * ˜&iNCS ’stvrk’+-+-

33

Listing 1.7 executable shell script from Listing 1.6, showing usage andversion information

#!/bin/sh
usage: call [-parameter value] * [--greeks]
-s <initial stock price>
-t <time to expiration>
-v <volatility>
-r <interest rate>
-k <strike price>
#
last modified: Tue Jan 23 16:14:13 2007
#
self-extracting with granularity 194
#\
exec avram --par "$0" "$@"
sSr{EIoAJGhuMsttspˆwZekhsnopfozIfxHoOZ@iGjvwIyd?Www HoyYnPjo...
...txZEMtpZiKaMS]Mca@ZSC@PUp=O@<

-r <interest rate>
-k <strike price>

This message serves as a reminder of the correct way of invoking it, for example

$ call -s 100 -t 1 -v .2 -r .05 -k 100
price: 10.45

if only the price is required, or

$ call -s 100 -t 1 -v .2 -r .05 -k 100 --greeks
price: 10.45
delta: 0.637
theta: 6.412
vega : 37.503
rho : 53.252
dc/dk: -0.532
gamma: 1141.803

to compute both the price and the “Greeks”, or partial derivatives, so called because they
are customarily denoted by Greek letters.5

Several interesting features of the language are illustrated in this example.

Executable files are requested by the#executable compiler directive, and are written
as shell scripts that invoke the virtual machine emulator,avram , which is not normally
visible to the user. The executable files contain a header with some automatically generated
front matter and optional comments, as shown in Listing 1.7.

5Real users would expect a negative value ofΘ, because the value of the contract decays with time. However, the price here has
been differentiated with respect to the variablet representing time remaining to expiration, which varies inversely with calendar time.

34

Command line parsing and validation are chores we try to minimize. One way for an exe-
cutable program to be specified is by a function mapping a datastructure containing the
command line options (already parsed) and input files to a list of output files. The com-
mand processing in this example program is confined to the last three lines, which verify
that each of the five parameters is given exactly once as a decimal number. This segment
also detects the--greeks flag or any prefix thereof.

Series extrapolation is provided by thelevin_limit function, which uses the Levin-u
transform routines in the GNU Scientific Library to estimatethe limit of a convergent series
given the first few terms. The convergence of the binomial lattice method is improved in
this example by evaluating it for 8, 16, 32, and 64 time steps and extrapolating.

Numerical differentiation is also provided by the GNU Scientific Library, with the help of
a couple of wrapper functions. Thederivative function operates on any real valued
function of a real variable, and can be nested to obtain higher derivatives. Thejacobian
function, from thecop library distributed with the compiler, takes a pair(n,m) ∈ N× N
to a function that takes a functionf : Rm → Rn to the functionJ : Rm → Rn×m returning
the Jacobian matrix of the transformationf . The jacobian function is convenient for
tabulating all partial derivatives of a function of many variables, and adds value to the GSL,
whose differentiation routines apply only to single valuedfunctions of a single variable.6

1.2.4 Recursive structures

The example in this section demonstrates complex arithmetic, hierarchical data structures,
recursion, and tabular data presentation using analogue ACcircuit analysis as a vehicle.
These are a very simple class of circuits for which the following crash course should bring
anyone up to speed.

Theory

Wires in an electrical circuit carry current in a manner analogous to water through a pipe.
By convention, a current is denoted by the letterI, and depicted in a circuit diagram by an
arrow next to the wire through which it flows.

The rate of current flow is measured in units of amperes. A conservation principle
requires the total number of amperes of current flowing into any part of a circuit to equal
the number flowing out.

Series combinations This conservation principle allows us to infer that each component
of the circuit depicted in Figure 1.6 experiences the same rate of current flow through it,
because all are connected end to end. The circle represents adevice that propels a fixed

6It doesn’t take any deliberate contrivance to bump into an undecidable type checking problem. The “type” of thejacobian
function is (N × N) → ((Rm → Rn) → (Rm → Rn×m)) for the particular values ofn andm given by the argument to the
function, which needn’t be stated explicitly at compile time.

35

Iin
→

R1 ↓ I1

R2 ↓ I2

Rn ↓ In

←
Iout

Figure 1.6: resistors in series necessarily carry identical currents,Iin = Iout = Ik for all k

rate of current through itself (a current source), and the zigzagging schematic symbols
represent devices that oppose the flow of current through them (resistors).

Iin→

←
Iout

R1 ↓ I1 R2 ↓ I2 Rn ↓ In

Figure 1.7: rules of current division,Iin = Iout =
∑

Ik, such thatRkIk is the same for allk

Parallel combinations A more interesting situation is shown in Figure 1.7, where there are
multiple paths for the current to take. In such a case, some fraction of the total current
will flow simultaneously through each path. If the resistorsalong some paths are more
effective than others at opposing the flow of current, smaller fractions of the total will flow
through them. The effectiveness of a resistor is quantified by a real numberR, known as
its resistance, expressed in units of ohms (Ω). The current through each path is inversely

36

proportional to its total resistance.

Aggregate resistance It is a consequence of this rule of current division that the effective
resistance of a pair of resistors connected in parallel as inFigure 1.7 is the product of their
resistances divided by their sum (i.e.,R1R2/(R1 + R2), for individual resistancesR1 and
R2). Although not directly implied, it is also a fact that the effective resistance of a pair of
resistors connected in series as in Figure 1.6 is the sum of their individual resistances.

Normally in a circuit analysis problem the component valuesare known and the current
remains to be determined. The foregoing principles suffice to determine a unique solution
for a circuit such as the one shown in Figure 1.8, where the current source emits a current
of 10 amperes.

Reactive components For circuits containing only a single fixed current source and resistors
connected only in series and parallel combinations, it is easy to imagine a recursive algo-
rithm to determine the current in each branch. Before doing so, we can make matters a bit
more interesting by admitting two other kinds of components, an inductor and a capacitor,
as shown in Figure 1.9, and allowing the current source to vary with time.

For these components, it is necessary to distinguish between their transient and steady
state operation. An inductor will not allow the current through it to change discontin-
uously. Initially it will prohibit any current at all but gradually will come to behave as a
short circuit (i.e., a wire with no resistance). A capacitorbehaves in a complementary way,
allowing current to flow unimpeded at first but gradually mounting greater opposition until
the current direction is reversed.

Individual inductors and capacitors differ in the rate at which they approach their steady
state operation in a manner parameterized by a real numberL orC, known as their induc-
tance or capacitance, respectively. Without going into detail about the mathematics, suffice
it to say that analysis of RLC circuits with time varying sources is of a different order of
difficulty than purely resistive networks, requiring in general the solution of a system of
simultaneous differential equations.

Complex arithmetic Electrical engineers use an ingenious mathematical shortcut to solve
an important special case of RLC circuits algebraically by complex arithmetic without
differential equations. A sinusoidally varying current source as a function of timet with
constant amplitudeI0, frequencyω and phaseφ

I(t) = I0 cos(ωt+ φ)

is identified with a constant complex current

I0 cos(φ) + jI0 sin(φ)

where the symbolj represents
√
−1.

A generalization of resistance to a complex quantity known as impedance accommo-
dates reactive components as easily as resistors.

37

10 A
→

7.02Ω ↓ 2.85 A 2.79Ω ↓ 7.15 A

6.59Ω ↓ 1.63 A 1.28Ω ↓ 8.37 A

7.93Ω ↓ 3.89 A 9.62Ω ↓ 3.21 A

9.24Ω ↓ 2.72 A 5.74Ω ↓ 4.38 A

4.55Ω ↓ 2.90 A

4.46Ω ↓ 2.90 A

4.32Ω ↓ 2.90 A

5.97Ω ↓ 2.90 A

1.54Ω ↓ 3.24 A

8.88Ω ↓ 3.24 A

4.99Ω ↓ 3.50 A

4.65Ω ↓ 3.50 A

2.99Ω ↓ 3.26 A

7.38Ω ↓ 3.26 A

Figure 1.8: any given resistor network implies a unique current division

38

L C

Figure 1.9: An inductor, left, gradually allows current to flow more easily, and a capacitor, right, gradually
makes it more difficult

• A resistor with a resistanceR has an impedance ofR + 0j.

• An inductor with an inductanceL has an impedance ofjωL, whereω is the angular
frequency of the source.

• A capacitor with a capacitanceC has an impedance of− j

ωC
.

The rules of current division and aggregate impedance for series and parallel combina-
tions take the same form as those of resistance mentioned above, e.g.,Z1Z2/(Z1+Z2) for
individual impedancesZ1 andZ2, but are computed by the operations of complex arith-
metic. In this way, complex currents are obtained for any branch in a circuit, from which
the real, time varying current is easily recovered by extracting the amplitude and phase.

Problem statement

We now have everything we need to know in order to implement analgorithm to solve the
following problem.

Exhaustively analyze an AC circuit containing a current source and any series or parallel
combination of resistors, capacitors, and inductors.

It is assumed that all component values are known, and the source is sinusoidal with con-
stant frequency, phase, and amplitude. The analysis shouldbe given in the form of a
table listing the current and voltage drop across each component in phase and amplitude.
The voltage drop follows immediately as the complex productof the current with the
impedance.

Data structures

An appropriate data structure for an RLC circuit made from series and parallel combina-
tions is a tree. A versatile form of trees is supported by the language, wherein each node
may have arbitrarily many descendents. A tree may have all nodes of the same type, or the
terminal nodes can be of a distinct type from the non-terminal nodes.

In this application, each terminal node represents a component in the circuit, and each
non-terminal node is a letter, either‘s or ‘p for series or parallel combination, respec-
tively. The single back quote indicates a literal characterconstant in the language.

The components are represented by pairs with a string on the left and a floating point
number on the right. The string begins withR, L, or C followed by a unique numeri-
cal identifier, and the floating point number is its resistance, inductance, or capacitance,
respectively.

39

C0 C1 R2 L3 C4

C5

L6

C7

C8

R9 L10 C11

L12 L13 C14 R15

L16

R17

C18

L19

R20

C21

C22

L23

C24

R25

C26

R27 R28

L29 L30

C31 R32 C33 R34

R35

C36

L37

C38

C39

R40

R41 L42 L43 C44

R45 L46 L47 L48 L49

L50 L51 R52

Figure 1.10: an RLC circuit made from series and parallel combinations

The notation for trees used in the language is

〈root〉ˆ: < [〈subtree〉[, 〈subtree〉]*] >

where thê : operator joins the root to a list of subtrees, each of a similar form, in a comma
separated sequence enclosed by angle brackets.

A nice complicated test case for the application is shown in Listing 1.8, which repre-
sents the circuit shown in Figure 1.10. This particular example has been randomly gener-
ated, but could have been written by hand into a text file. In a real application, the circuit
description would probably come from some other program such as a schematic editor.

Following a similar procedure to a previous example, the test data are compiled into a
binary file as follows.

$ fun circ.fun --binary
fun: writing ‘circ’

40

Listing 1.8 concrete representation of the circuit in Figure 1.10
circ = ‘sˆ: <

‘pˆ: <
(’C0’,5.314278e+00)ˆ: <>,
(’C1’,5.198102e+00)ˆ: <>,
(’R2’,2.552675e+00)ˆ: <>,
(’L3’,3.908299e+00)ˆ: <>,
(’C4’,8.573411e+00)ˆ: <>>,

‘pˆ: <
‘sˆ: <(’C5’,6.398909e+00)ˆ: <>,(’L6’,1.991548e-01)ˆ: < >>,
‘sˆ: <(’C7’,4.471445e+00)ˆ: <>,(’C8’,4.122309e+00)ˆ: < >>>,

‘pˆ: <
‘sˆ: <

‘pˆ: <
(’R9’,4.076886e+00)ˆ: <>,
(’L10’,4.919520e+00)ˆ: <>,
(’C11’,8.950421e+00)ˆ: <>>,

‘pˆ: <
(’L12’,2.409632e+00)ˆ: <>,
(’L13’,2.348442e+00)ˆ: <>,
(’C14’,9.192674e+00)ˆ: <>,
(’R15’,3.864372e+00)ˆ: <>>>,

‘sˆ: <(’L16’,9.290080e+00)ˆ: <>,(’R17’,6.017938e+00)ˆ : <>>,
‘sˆ: <

(’C18’,5.737489e+00)ˆ: <>,
(’L19’,7.591762e+00)ˆ: <>,
(’R20’,8.251754e+00)ˆ: <>>,

‘sˆ: <(’C21’,2.025546e+00)ˆ: <>,(’C22’,4.457961e+00)ˆ : <>>,
‘sˆ: <(’L23’,8.891783e+00)ˆ: <>,(’C24’,7.943625e+00)ˆ : <>>>,

‘pˆ: <
‘sˆ: <

‘pˆ: <
‘sˆ: <(’R25’,7.977469e+00)ˆ: <>,(’C26’,1.069105e+00)ˆ : <>>,
‘sˆ: <

‘pˆ: <(’R27’,8.190201e+00)ˆ: <>,(’R28’,8.613024e+00)ˆ : <>>,
‘pˆ: <(’L29’,9.090409e+00)ˆ: <>,(’L30’,1.726259e+00)ˆ : <>>>>,

‘pˆ: <
(’C31’,2.183700e+00)ˆ: <>,
(’R32’,4.809035e+00)ˆ: <>,
(’C33’,1.741527e+00)ˆ: <>,
(’R34’,1.199544e+00)ˆ: <>>>,

‘sˆ: <
‘pˆ: <

‘sˆ: <(’R35’,6.127510e+00)ˆ: <>,(’C36’,7.496868e+00)ˆ : <>>,
‘sˆ: <(’L37’,4.631129e+00)ˆ: <>,(’C38’,1.287879e+00)ˆ : <>>,
‘sˆ: <(’C39’,2.842224e-01)ˆ: <>,(’R40’,7.653173e+00)ˆ : <>>,
‘sˆ: <

‘pˆ: <
(’R41’,6.034300e-01)ˆ: <>,
(’L42’,7.883596e-01)ˆ: <>,
(’L43’,2.381994e+00)ˆ: <>,
(’C44’,3.412634e+00)ˆ: <>>,

‘pˆ: <
(’R45’,9.246853e+00)ˆ: <>,
(’L46’,3.435816e+00)ˆ: <>,
(’L47’,8.543310e+00)ˆ: <>,
(’L48’,1.537862e+00)ˆ: <>,
(’L49’,3.412010e+00)ˆ: <>>>>,

‘pˆ: <
(’L50’,2.899790e+00)ˆ: <>,
(’L51’,7.088897e+00)ˆ: <>,
(’R52’,2.879279e+00)ˆ: <>>>>>

41

Listing 1.9 RLC circuit analysis library using complex arithmetic

#import std
#import nat
#import flo

#library+

impedance = # takes a circuit and returns a tree

%cjXsjXDMk+ %ecseXDXCR ˜&arvˆ?(
˜&ard2falrvPDPMV; ˆV\˜&v ˆ/˜&d ‘s?=d(

˜&vdrPS; c..add:-0,
˜&vdrPS; :-0 c..divˆ/c..mul c..add),

ˆ:0+ ˆ/˜&ardh case˜&ardlh\0! {
‘R: c..add/0+0j+ ˜&ardr,
‘L: c..mul/0+1j+ times+˜&alrdr2X,
‘C: c..mul/0-1j+ div/1.+ times+˜&alrdr2X})

current_division("i","w") = # takes a circuit to a list

%jWmMk+ impedance/"w"; ˜&/"i"; ˜&arvˆ?(
‘s?=ardl/˜&falrvPDPML ˆML/˜&f ˆp\˜&arv c..mulˆ * D/˜&al -+

c..vidˆ * D\˜& c..add:-0,
˜&arvdrPS; c..div/ * 1.+-,

ˆANC/˜&ardl ˆ/˜&al c..mul+ ˜&alrdr2X)

phaser = # returns magnitude and phase in degrees of a complex number

ˆ/..cabs times/180.+ div\pi+ ..carg

It is possible to verify that the circuit has been compiled correctly by displaying the binary
file contents as a tree type.

$ fun circ --main=circ --cast %cseXD
‘sˆ: <

‘pˆ: <
(’C0’,5.314278e+00)ˆ: <>,

...
(’R52’,2.879279e+00)ˆ: <>>>>>

The output is seen to match Listing 1.8.

Algorithms

Analysis of the circuit takes place in two passes, the first traversing the tree to determine
the aggregate impedance of each subtree, and the second to compute the current division.
A separate function for each is defined in Listing 1.9.

42

The impedance calculation uses a straightforward case statement for terminal nodes
corresponding to the bullet point list on page 39. Working from the bottom up, it then
performs a cumulative complex summation or parallel combination on these results. Cu-
mulative operations on lists are accomplished without explicit loops or recursion by the
reduction combinator, denoted:- .

The current division calculation proceeds from the top down, feeding the total input
current from above to all subtrees in the case of a series combination, or fractionally for
parallel combinations. The precise method used in the latter case is to allocate an input
current of

1/Zk
∑

1/Zn

Iin

to thek-th subtree, whereIin is the given input current, andZk is the impedance of thek-th
subtree calculated on the first pass.

Demonstration

To compile the code in Listing 1.9, we first invoke

$ fun flo rlc.fun --archive
fun: writing ‘rlc.avm’

The impedance function can be tested with an arbitrarily chosen angular frequency of
1 radian per second and the previously prepared test data file, circ .

$ fun rlc circ --main="impedance(1.,circ)" --cast %cjXsjX D
(‘s,1.143e+00+5.550e-01j)ˆ: <

...
(’R52’,2.879e+00+0.000e+00j)ˆ: <>>>>>

Here it can be seen that complex numbers are a primitive type defined in the language,
with the type mnemonicj . The type expression%cjXsjXD describes trees whose non-
terminal nodes are pairs with characters on the left and complex numbers on the right, and
whose terminal nodes are pairs with strings on the left and complex numbers on the right.
Although complex numbers are displayed by default with onlyfour digits of precision, the
full IEEE double precision format is used in calculations, and other ways of displaying
them are possible.

To test the current division function, we choose an input current of1+0j and an angular
frequency of1 radian per second.

$ fun rlc circ --m="current_division(1+0j,1.) circ" -c %jW m
<

’C0’: (
2.821e-01+5.869e-03j,
1.104e-03-5.308e-02j),

...

43

’R52’: (
3.036e-01+2.086e-01j,
8.741e-01+6.007e-01j)>

The result shows the current and voltage drop associated with each component in the
circuit, as a pair of complex numbers. The result is given in the form of a list rather than a
tree.

Anonymous recursion

The usual way of expressing a recursively defined function inmost languages is by writ-
ing a specification in which the function is given a name and calls itself. Factorials and
Fibonacci functions are the standard examples, which are unnecessary to reproduce here.
The compiler is equipped to solve systems of recurrences over functions or other seman-
tic domains in this way, but where functions are concerned, some notational economy is
preferable. A noteworthy point of programming style illustrated by the code in Listing 1.9
is the use of anonymous recursion.

A proficient user of the language will find it convenient to express recursive functions
in terms of a small selection of relevant combinators such asthe recursive conditional
denoted̂ ? , as shown in Listing 1.9.

Although a list reversal function is available already as a primitive operation, we can
express one using this combinator and test it at the same timeas follows.

$ fun --main="˜&aˆ?(˜&fatPRahPNCT,˜&a) ’abc’" --cast %s
’cba’

Without digressing at this stage for a more thorough explanation, an expanded view of the
same program obtained by decompilation gives some indication of the underlying structure
of the algorithm.

$ fun --m="˜&aˆ?(˜&fatPRahPNCT,˜&a)" --decompile
main = refer conditional(

field(0,&),
compose(

cat,
couple(

recur((&,0),(0,(0,&))),
couple(field(0,(&,0)),constant 0))),

field(0,&))

On the virtual machine code level, a function of the formrefer f applied to an ar-
gumentx is evaluated asf(f,x) , so that the function is able to access its own machine
code as the left side of its operand, and in effect call itselfif necessary. Although uncon-
ventional, this arrangement is well supported by other language features, and turns out to
be the most natural and straightforward approach.

44

Virtual machine library functions

The complex arithmetic functions such asc..add andc..div are an example of the
general syntax for accessing external libraries linked to the virtual machine, which is

〈library-name〉.. 〈function-name〉
Any library function linked into the virtual machine can be invoked in this way. Both
the library name and the function name may be recognizably truncated or omitted if no
ambiguity results.

The selection of available library functions is site specific, because it depends on how
the virtual machine is configured and on other free software that is distributed separately.
An easy way to ascertain the configuration on a given host is toinvoke the command

$ fun --help library

library functions
------- ---------

...
which might display an output similar to Listing 1.10 on a well equipped platform.

Documentation about virtual machine library functions, including their semantics and
calling conventions, is maintained with the virtual machine distribution,avram , and con-
tained in a reference manual provided in html, info, and postscript formats.

Local additions, modifications or enhancements to virtual machine libraries can be
made by a competent C programmer by following well documented procedures, and will
be immediately accessible within the language with no modification or rebuilding of the
compiler required.

Tabular data presentation

To complete our brief, we need a listing of the amplitude and phase of the voltage and cur-
rent for each component in tabular form. These data are trivial to extract from a complex
number by the hitherto unused functionphaser defined in Listing 1.9.

$ fun rlc --m="phaser 1+1.7320508j" --c %eW
(2.000000e+00,6.000000e+01)

The result is a pair of real numbers with the amplitude on the left and the phase in degrees
on the right.

Typesetting the table in a manner suitable for publication or presentation eventually
will require writing some unpleasant LATEX code.7 It would be better for it to be done
automatically while the work is ongoing than manually the night before a deadline. To
this end, the compiler ships with a library for generating LATEX tables from a less tedious
form of specification.

7I’m a big fan of LATEX because of the quality of the results, but there’s no denying that it takes work to get it right.

45

Listing 1.10 virtual machine libraries displayed by the command$ fun --help library

library functions
------- ---------
bes I Isc J K Ksc Y isc j ksc lnKnu y zJ0 zJ1 zJnu
complex add bus cabs cacosh carg casinh catanh ccos ccosh cex p cimag clog conj

cpow creal create csin csinh csqrt ctan ctanh div mul sub vid
fftw b_bw_dft b_dht b_fw_dft u_bw_dft u_dht u_fw_dft
glpk interior simplex
gsldif backward central forward t_backward t_central t_fo rward
gslevu accel utrunc
gslint qagp qagp_tol qagx qagx_tol qng qng_tol
kinsol cd_bicgs cd_dense cd_gmres cd_tfqmr cj_bicgs cj_de nse cj_gmres cj_tfqmr

ud_bicgs ud_dense ud_gmres ud_tfqmr uj_bicgs uj_dense uj_ gmres uj_tfqmr
lapack dgeevx dgelsd dgesdd dgesvx dggglm dgglse dpptrf dsp ev dsyevr zgeevx

zgelsd zgesdd zgesvx zggglm zgglse zheevr zhpev zpptrf
lpsolve stdform
math acos acosh add asin asinh asprintf atan atan2 atanh bus c brt cos cosh

div exp expm1 fabs hypot isinfinite islessequal isnan isnor mal
isubnormal iszero log log1p mul pow remainder sin sinh sqrt s trtod sub
tan tanh vid

minpack hybrd hybrj lmder lmdif lmstr
mpfr abs acos acosh add asin asinh atan atan2 atanh bus cbrt ce il

const_catalan const_log2 cos cosh dbl2mp div div_2ui eint e q equal_p
erf erfc exp exp10 exp2 expm1 floor frac gamma greater_p grea terequal_p
grow hypot inf inf_p integer_p less_p lessequal_p lessgrea ter_p lngamma
log log10 log1p log2 max min mp2dbl mp2str mul mul_2ui nan nan _p nat2mp
neg nextabove nextbelow ninf number_p pi pow pow_ui prec roo t round
shrink sin sin_cos sinh sqr sqrt str2mp sub tan tanh trunc une qual_abs
urandomb vid zero_p

mtwist bern u_cont u_disc u_enum u_path w_disc w_enum
rmath bessel_i bessel_j bessel_k bessel_y beta dchisq dexp digamma dlnorm

dnchisq dnorm dpois dt dunif gammafn lbeta lgammafn pchisq p entagamma
pexp plnorm pnchisq pnorm ppois pt punif qchisq qexp qlnorm q nchisq
qnorm qpois qt qunif rchisq rexp rlnorm rnchisq rnorm rpois r t runif
tetragamma trigamma

umf di_a_col di_a_trp di_t_col di_t_trp zi_a_col zi_a_trp zi_c_col zi_c_trp
zi_t_col zi_t_trp

46

Listing 1.11 demonstration of circuit analysis and tabular data presentation

#import std
#import nat
#import flo
#import rlc
#import tbl

(# quick throwaway program to make a table of voltages and cur rents
through all components of an RLC circuit read from a binary fi le
named circ at compile time #)

#binary+

freqs = <0.1,1.>
data = ˜&hnSPmSSK7p (gang current_division * 1+0j- * freqs) circ
title = ’componentwise analysis at two frequencies’
content = format/freqs data

#binary-

format = # takes frequencies and data to headings and columns

ˆ|(
:/<’’>ˆ:0+ * -+

\/˜&V ˆ:(˜&iNCNVS <’amplitude’,’phase’>) * ˜&iNCS <
’current (mA)’,
’voltage drop (mV)’>,

˜&iNC+ ’$\omega = ’--+ --’$ rad/s’+ printf/’%0.1f’+-,
:ˆ/˜&nS ˜&mS; ˜&K7+ * =* --+ phaser;$ ˆ|lrNCC\˜& times/1.e3)

#output dot’tex’ label’can’+ elongation title

can = table2 content

47

The tbl library is geared toward generating tables with hierarchical headings and
columns of numerical or alphabetic data. As Listing 1.11 implies, most of the LATEX code
generation is done by thetable function, which takes a natural number as an argument
specifying the number of decimal places (in this case 2), andreturns a function taking
a data structure describing the table contents. A couple of other functions deal with the
practicalities of thelongtable format, needed for tables that are too long to fit on a
page.

The application in Listing 1.11 is based on the assumption that generating the table will
be a one off operation for a particular circuit, rather than justifying the development of a
reusable executable as in a previous example. Although not strictly necessary, some of
the intermediate data are saved to binary files during compilation for ease of exposition.
Compiling the application therefore has the following effect.

$ fun flo tbl rlc circ fcan.fun
fun: writing ‘freqs’
fun: writing ‘data’
fun: writing ‘title’
fun: writing ‘content’
fun: writing ‘can.tex’

The main points to note are thatdata is computed by performing current division over
the list of frequencies specified infreqs , and transformed to a list of assignments of
strings to lists of pairs of complex numbers, as a quick inspection shows.

$ fun data --m=data --c %jWLm
<

’C0’: <
(

-5.997e-01+3.614e-01j,
6.800e-01+1.128e+00j),

(
2.821e-01+5.869e-03j,
1.104e-03-5.308e-02j)>,

...

’R52’: <
(

1.086e-02+7.109e-02j,
3.125e-02+2.047e-01j),

(
3.036e-01+2.086e-01j,
8.741e-01+6.007e-01j)>>

The content , in the standard form required by thetable function, contains a pair
whose left side is a list of trees of lists of strings, and whose right side is a list of either
lists of strings or lists of floating point numbers.

48

$ fun content --m=content --c %sLTLsLeLULX
(

<
<’’>ˆ: <>,
<’$\omega = 0.1$ rad/s’>ˆ: <

ˆ: (
<’current (mA)’>,
<<’amplitude’>ˆ: <>,<’phase’>ˆ: <>>),

ˆ: (
<’voltage drop (mV)’>,
<<’amplitude’>ˆ: <>,<’phase’>ˆ: <>>)>,

<’$\omega = 1.0$ rad/s’>ˆ: <
ˆ: (

<’current (mA)’>,
<<’amplitude’>ˆ: <>,<’phase’>ˆ: <>>),

ˆ: (
<’voltage drop (mV)’>,
<<’amplitude’>ˆ: <>,<’phase’>ˆ: <>>)>>,

<
<

’C0’,

...

3.449765e+01,
3.449765e+01>>)

Although the trees representing the table headings could have been written out manually, a
proficient user will prefer the style shown in Listing 1.11 where possible because it is both
shorter and more general, requiring no modification if the list of frequencies is extended
or changed in a subsequent run.

The resulting table is shown below.

Table 1.1: componentwise analysis at two frequencies

ω = 0.1 rad/s ω = 1.0 rad/s

current (mA) voltage drop (mV) current (mA) voltage drop (mV)

amplitude phase amplitude phase amplitude phase amplitudephase

C0 700.18 148.93 1317.54 58.93 282.16 1.19 53.10 -88.81
C1 684.87 148.93 1317.54 58.93 276.00 1.19 53.10 -88.81
R2 516.14 58.93 1317.54 58.93 20.80 -88.81 53.10 -88.81
L3 3371.13 -31.07 1317.54 58.93 13.59 -178.81 53.10 -88.81
C4 1129.58 148.93 1317.54 58.93 455.21 1.19 53.10 -88.81
C5 751.36 0.00 1174.20 -90.00 1101.28 0.00 172.10 -90.00
L6 751.36 0.00 14.96 90.00 1101.28 0.00 219.33 90.00

49

Table 1.1: componentwise analysis at two frequencies (continued)

ω = 0.1 rad/s ω = 1.0 rad/s

current (mA) voltage drop (mV) current (mA) voltage drop (mV)

amplitude phase amplitude phase amplitude phase amplitudephase

C7 248.64 0.00 556.07 -90.00 101.28 -180.00 22.65 90.00
C8 248.64 0.00 603.16 -90.00 101.28 -180.00 24.57 90.00
R9 111.87 -77.02 456.08 -77.02 22.10 -87.52 90.11 -87.52

L10 927.09 -167.02 456.08 -77.02 18.32 -177.52 90.11 -87.52
C11 408.21 12.98 456.08 -77.02 806.56 2.48 90.11 -87.52
L12 293.97 -156.84 70.84 -66.84 39.16 -177.35 94.37 -87.35
L13 301.63 -156.84 70.84 -66.84 40.18 -177.35 94.37 -87.35
C14 65.12 23.16 70.84 -66.84 867.52 2.65 94.37 -87.35
R15 18.33 -66.84 70.84 -66.84 24.42 -87.35 94.37 -87.35
L16 86.37 -84.44 80.24 5.56 16.67 -144.50 154.84 -54.50
R17 86.37 -84.44 519.79 -84.44 16.67 -144.50 100.30 -144.50
C18 63.29 -68.86 110.31 -158.86 16.63 -129.39 2.90 140.61
L19 63.29 -68.86 48.05 21.14 16.63 -129.39 126.23 -39.39
R20 63.29 -68.86 522.25 -68.86 16.63 -129.39 137.20 -129.39
C21 73.25 14.34 361.63 -75.66 256.94 2.56 126.85 -87.44
C22 73.25 14.34 164.31 -75.66 256.94 2.56 57.64 -87.44
L23 1422.67 14.34 1265.00 104.34 21.05 -177.44 187.13 -87.44
C24 1422.67 14.34 1790.95 -75.66 21.05 -177.44 2.65 92.56
R25 22.28 132.96 177.73 132.96 167.17 44.75 1333.58 44.75
C26 22.28 132.96 208.39 42.96 167.17 44.75 156.36 -45.25
R27 33.42 81.44 273.73 81.44 154.95 19.00 1269.07 19.00
R28 31.78 81.44 273.73 81.44 147.34 19.00 1269.07 19.00
L29 10.41 81.44 9.46 171.44 48.24 19.00 438.56 109.00
L30 54.80 81.44 9.46 171.44 254.05 19.00 438.56 109.00
C31 15.88 163.23 72.74 73.23 246.62 42.97 112.94 -47.03
R32 15.13 73.23 72.74 73.23 23.48 -47.03 112.94 -47.03
C33 12.67 163.23 72.74 73.23 196.68 42.97 112.94 -47.03
R34 60.64 73.23 72.74 73.23 94.15 -47.03 112.94 -47.03
R35 22.11 93.52 135.49 93.52 48.54 30.31 297.44 30.31
C36 22.11 93.52 29.49 3.52 48.54 30.31 6.48 -59.69
L37 18.99 171.24 8.79 -98.76 77.18 -60.94 357.44 29.06
C38 18.99 171.24 147.46 81.24 77.18 -60.94 59.93 -150.94
C39 3.85 158.97 135.50 68.97 35.32 53.75 124.27 -36.25
R40 3.85 158.97 29.47 158.97 35.32 53.75 270.32 53.75
R41 103.15 78.34 62.24 78.34 370.47 -68.29 223.55 -68.29
L42 789.54 -11.66 62.24 78.34 283.57 -158.29 223.55 -68.29
L43 261.31 -11.66 62.24 78.34 93.85 -158.29 223.55 -68.29
C44 21.24 168.34 62.24 78.34 762.91 21.71 223.55 -68.29
R45 8.28 83.60 76.56 83.60 42.65 63.27 394.35 63.27
L46 222.84 -6.40 76.56 83.60 114.78 -26.73 394.35 63.27
L47 89.62 -6.40 76.56 83.60 46.16 -26.73 394.35 63.27
L48 497.87 -6.40 76.56 83.60 256.43 -26.73 394.35 63.27
L49 224.40 -6.40 76.56 83.60 115.58 -26.73 394.35 63.27
L50 714.06 -8.68 207.06 81.32 365.74 -55.50 1060.58 34.50

50

Table 1.1: componentwise analysis at two frequencies (continued)

ω = 0.1 rad/s ω = 1.0 rad/s

current (mA) voltage drop (mV) current (mA) voltage drop (mV)

amplitude phase amplitude phase amplitude phase amplitudephase

L51 292.09 -8.68 207.06 81.32 149.61 -55.50 1060.58 34.50
R52 71.91 81.32 207.06 81.32 368.35 34.50 1060.58 34.50

1.3 Remarks

Not every capability of the language has been illustrated inthis chapter, but at this point
most readers should have a pretty good idea about whether they want to know more. In any
case, grateful acknowledgement is due to all those who have graciously read this far with
an open mind. The assumption henceforth is that readers who are still reading have made
a commitment to learn the language, so that less space needs to be devoted to motivation.

1.3.1 Installation

The compiler is distributed in a.tar archive or in an unofficial Debian.deb package,
available from

http://www.basis.uklinux.net/ursala

In order for it to work, it depends on theavram virtual machine emulator, available from

http://www.basis.uklinux.net/avram

Please refer to theavram documentation for installation instructions.
Some optional external libraries usable byavram are recommended but not required,

notably thempfr library for arbitrary precision arithmetic. Arbitrary precision floating
point numbers are normally a primitive type in the language,but are disabled without this
library.8

Nomenclature

Since its earliest prototypes, the name of the compiler has beenfun , and this name is
retained because of its brevity and the ease typing it on a command line. However, the
transformation from personal tool kit to a community project necessitates a more recog-
nizable and searchable name in the interest of visibility. The name of Ursala has been
chosen for the language as of this release, which is meant as aquasi-abbreviation for “uni-
versal applicative language”. This manual uses the word Ursala to refer to the language in
the abstract (e.g., “a program written in Ursala”) andfun in typewriter font to refer to the
compiler.

8Arbitrary precision natural and rational numbers and fixed precision floating point numbers are available regardless.

51

Root installations

The compiler may be installed either system-wide or for an individual user. For the former
case, the system administrator (i.e., theroot user) needs to place the executable and
library files under apporpriate standard directories. On a Debian or Ubuntu system, this
action can be performed automatically by executing

$ dpkg -i ursala-base_0.1.0-1_all.deb
$ dpkg -i ursala-source_0.1.0-1_all.deb

as root . For a Unix or GNU/Linux system that is not Debian compatible, the system
administrator should unpack the.tar archive and copy the files as shown.

$ tar -zxf ursala-0.1.0.tar.gz
$ cp ursala-0.1.0/bin/ * /usr/local/bin
$ mkdir /usr/local/lib/avm
$ chmod ugo+rx /usr/local/lib/avm
$ cp ursala-0.1.0/src/ * .avm /usr/local/lib/avm
$ cp ursala-0.1.0/lib/ * .avm /usr/local/lib/avm

Use of these standard directories is advantageous because it will allow the virtual machine
to locate the library files automatically without requiringthe user to specify their full paths.

Non-root installations

If the compiler is installed only for an individual user, thelibraries and executables should
be unpacked as above, but can be moved to whatever directories the user prefers and
can access. The virtual machine will not automatically detect libraries in non-standard
directories, but on a GNU/Linux system it can be made to do so by way of theAVMINPUTS
environment variable. For example, if the user wishes to store a collection of personal
library modules under$HOME/avm, the command

$ export AVMINPUTS=".:$HOME/avm"

either executed interactively or in abash initialization script will enable it. The syntax
for equivalent commands may differ with other shells.

Porting

There is no provision for installation on other operating systems (for example Microsoft
Windows), but volunteer efforts in that connection are welcome. Other solutions (short of
free software advocacy in general) such as emulation or use of the Cygnus tools are also
an option but are beyond the scope of this document.

Virtual machine code applications are entirely portable toany platform on which the
virtual machine is installed, subject only to the requirement that any optional virtual ma-
chine modules used by the application are also installed on the target platform. Even this
modest requirement can be flexible if the developer makes useof run-time detection fea-
tures and replacement functions.

52

1.3.2 Organization of this manual

Anyone wishing to use Ursala effectively should read Part IIon language elements and Part
III on standard libraries, whereas only those wishing to modify or enhance the compiler
itself should read Part IV on compiler internals. Because the language is much more ex-
tensible than most, the latter group should also read the rest of the manual first to establish
that the enhancements they require are not more easily obtained by less heroic means. Part
III assumes a working knowledge of Part II, and Part IV assumes a guru-level knowledge
of Parts II and III.

The chapters in Part II are meant to be read sequentially on a first reading, with each
covering a particular topic about the language. Although one may argue for a more intu-
itive order of presentation, this need must be balanced against that of maintainability of
the document itself, in anticipation of possible contributions by other authors over the life
of the project. If any chapter in Part II becomes particularly rough going on a first reading,
the reader is invited to jump to the concluding remarks of that chapter for a summary and
proceed to the next one.

A convention is followed whereby minimal amounts material may be introduced out of
turn where necessary for continuity if they are useful for anexplanation of a topic at hand,
but are nevertheless fully documented in their appropriatechapter even if some repetition
occurs.

Whereas the main text can be read sequentially, certain codefragments designated as
example programs may depend on material not yet introduced at the point where they are
listed. These can be skipped on a first reading without loss ofcontinuity. It is considered
more important to demonstrate optimal use of all relevant language features at all times
than to insist on continuity in the examples.

1.3.3 License

The compiler and this documentation are Copyright 2007-2010 by Dennis Furey. This
document is freely distributed under the terms of the GNU Free Documentation License,
version 1.2, with no front cover texts, no back cover texts, and no invariant sections. A
copy of this license is included in Appendix B.

The compiler and supporting modules are distributed according to Version 3 of the
General Public License as published by the Free Software Foundation. Anyone is allowed
to copy, modify, and redistribute the software or works derived from it under compat-
ible terms, whether commercially or otherwise, but not to turn it into a closed source
product or to encumber it with Digital Restrictions Management directed against the end
user. Please refer to the GPL text for full details. If you think you have an ethical jus-
tification for distributing it under different terms (e.g.,confidentiality of medical records,
defiance of oppressive regimes,etcetera), contact the author or the current maintainer at
ursala-support@basis.uklinux.net .

Use of the compiler incurs no obligation in itself to distribute anything. Moreover,
applications compiled by the compiler are not necessarily derivative works and theoreti-
cally could be distributed under a non-free license. However, compiled applications that

53

are distributed under a non-free license must avoid dependence on any functions found in
the .avm supporting modules distributed with the compiler, such as the standard library
std.avm , because an effect of compilation would be to copy the library code into them.

End users of applications developed with the compiler will need a virtual machine
to execute them. Whether the applications are free or not, there is no legal impediment
to usingavram for this purpose, provided it is distributed according to the terms of its
license, the GPL, and provided the license for the application permits disassembly, without
which it can’t be executed. No individual is able to authorize alternative distribution terms
for avram because it depends on contributions by many copyright holders.

54

Part II

Language Elements

55

So we need machines and they need us. Is that your point,
councillor?

Neo inThe Matrix Reloaded

2
Pointer expressions

Much of the expressive power of the language derives from a concise formalism to encode
combinations of frequently used operations. These come under the general name of point-
ers or pointer expressions, although this term does not adequately convey the versatility
of this mechanism, which has no counterpart in other modern languages. This chapter
explains everything there is to know about pointer expressions.

2.1 Context

Syntactically a pointer expression is a case sensitive string of letters or digits appearing
as a suffix of an operator to qualify its meaning in some way. The concepts of opera-
tors, operands, and operator suffixes are developed more fully in Chapters 5 and 6, but in
order to discuss pointer expressions, two particularly relevant operators are necessary to
introduce in advance.

• The ampersand operator,&, with no suffix evaluates to the identity pointer, and with
a suffix evaluates to the pointer that the suffix describes.

• The field operator,̃ , is a prefix operator taking a pointer as an operand, and evaluates
to the function induced by it.

A distinction is made between a pointer and the function induced by it (e.g., the identity
pointer versus the identity function), because it is possible and often useful to manipulate
or transform pointers directly in ways that are not applicable to functions. This distinction
is also reflected in the underlying virtual machine code representation.

56

Listing 2.1 the left deconstructor function the hard way

#library+

f("x","y") = "x"

2.2 Deconstructors

The simplest kinds of functions induced by pointers are known variously as projections,
deconstructions, or generalized identity functions, but in this manual the term deconstruc-
tors is preferred.

2.2.1 Specification of a deconstructor

A deconstructor is a function that takes some type of aggregate data structure as an argu-
ment, and returns some component of its argument as a result.

To illustrate this concept, we can consider the problem of implementing a program to
compute the following function.

f(x, y) = x

That is to say, the function should take a pair of operands, and return the left side.
One way of implementing it in Ursala would be with dummy variables, as shown in

Listing 2.1. To see that this implementation is perfectly correct, we compile it as shown,

$ fun dum.fun
fun: writing ‘dum.avm’

and now try it out on a few examples.

$ fun dum --main="f(’foo’,’bar’)" --cast
’foo’
$ fun dum --main="f(123,456)" --cast
123
$ fun dum --main="f()" --cast
fun:command-line: invalid deconstruction

Conveniently, the function is naturally polymorphic, and the --cast option is smart
enough to guess the result type if it’s something simple. Thefunction inherently raises
an exception if its argument isn’t a pair of anything, but luckily the compiler does a rea-
sonable job of exception handling.

2.2.2 Deconstructor semantics

Expressing a deconstructor function in this way amounts to writing an equation for the
compiler to solve, and it is instructive to exhibit the solution directly.

57

$ fun dum --main=f --decompile
main = field(&,0)

This result shows the virtual machine code for the left deconstructor function, which con-
sists of thefield combinator, a common feature of all deconstructor functions corre-
sponding to thẽ operator in the language, and the expression(&,0) , which represents
a pointer to the left.

The notation used to display the pointer in the decompiled code is actually a syntacti-
cally sugared form of a type of ordered binary trees with empty tuples for leaves. The zero
represents the empty tuple and the ampersand represents a pair of empty tuples, which
can be made explicit with an appropriate cast. (More about type casts is explained in
Chapter 3.)

$ fun --main="(&,0)" --cast %hhZW
(((),()),())

Pointer expressions therefore store no information other than that which is embodied in
their shape. Their rôle is simply to specify the displacement of a subtree with respect
to the root of an ordered binary tree of any type. The pointer referring to the right of
a pair would be(0,&) , the pointer to the right of the left of a pair of pairs would be
((0,&),0) , and so on.

2.2.3 Deconstructor syntax

A primary design goal of this language to be as concise as possible. Rather than using
nested tuples, equations, or verbose mnemonics, the left and right deconstructor functions
can be expressed directly as˜&l and˜&r , respectively, using built in pointer expressions.
These equivalences can be verified as shown.

$ fun --main="&l" --cast %t
(&,0)
$ fun --main="&r" --cast %t
(0,&)
$ fun --m="˜&l" --decompile
main = field(&,0)
$ fun --m="˜&r" --decompile
main = field(0,&)
$ fun --m="˜&l (’foo’,’bar’)" --c
’foo’

Nested deconstructors

Further benefits of this syntax accrue in more complicated deconstructions. To get to the
left of the right of a pair of pairs, we writẽ&lr , to get to the right of the right or the left
of the left, we writẽ &rr or ˜&ll , respectively, and so on to arbitrary depths.

58

$ fun --m="˜&ll ((’a’,’b’),(’c’,’d’))" --c
’a’
$ fun --m="˜&lr ((’a’,’b’),(’c’,’d’))" --c
’b’
$ fun --m="˜&rl ((’a’,’b’),(’c’,’d’))" --c
’c’
$ fun --m="˜&rr ((’a’,’b’),(’c’,’d’))" --c
’d’

Compound deconstructors

Deconstruction functions can also be made to retrieve more than one field from an argu-
ment, by using a tuple of pointers.

$ fun --m="˜(&lr,&rl) ((’a’,’b’),(’c’,’d’))" --c
(’b’,’c’)
$ fun --m="˜(&rl,&lr) ((’a’,’b’),(’c’,’d’))" --c
(’c’,’b’)

Note that the order of the pointers in the tuple determines the order in which the fields are
returned.

When a tuple of deconstructors is used, the result type is considered a tuple. To express
the notion of a compound deconstructor returning a list, a colon can be used.

$ fun --m="˜&r:&l (<1,2,3>,0)" --c
<0,1,2,3>
$ fun --m="˜&h:&tt <0,1,2,3>" --c
<0,2,3>

The pointer on the left side of the colon accounts for the headof the result, and the one on
the right accounts for the tail.

The colon has other uses in the language. In pointer expressions, it must be without
any adjacent white space to ensure correct disambiguation.

Nested compound deconstructors

A form of relative addressing takes place when a compound deconstructor is nested.

$ fun --m="˜(0,(&r,&l)) ((’a’,’b’),(’c’,’d’))" --c
(’d’,’c’)

In this example, the&l and&r deconstructors refer not to the whole argument but to the
part on the right, due to their offset within the pointer where they occur.

A better notation for compound deconstructors is introduced shortly, using construc-
tors. However, the notation shown here is applicable in certain situations where the alter-
native isn’t, namely whenever pointer expressions are designated by user defined identi-
fiers.

59

deconstructors

constructor primary secondary

type class operation mnemonic operation mnemonic operation mnemonic

pairs cross X left l right r
lists cons C head h tail t
sets - - element e subset u

assignments assign A name n meaning m
trees vertex V root d subtrees v
jobs join J function f argument a

Table 2.1: pointer expressions for constructors and deconstructors

Miscellaneous deconstructors

A way to get the same field out of both sides of a pair of pairs is to use theb deconstructor
as follows.

$ fun --m="˜&bl ((’a’,’b’),(’c’,’d’))" --c
(’a’,’c’)
$ fun --m="˜&br ((’a’,’b’),(’c’,’d’))" --c
(’b’,’d’)

The identity deconstructor,i , refers to the whole argument, as does an empty pointer
expression.

$ fun --m="˜&i ’me’" --c
’me’
$ fun --m="˜& ’myself’" --c
’myself’

See Section 2.3.2 for motivation.

2.2.4 Other types of deconstructors

Pairs aren’t the only aggregate data type in Ursala. There are also lists, sets, assignments,
trees, and jobs. Each has its own operator syntax and its own deconstructors corresponding
to &l and&r , as shown in Table 2.1. The deconstructors are the main concern at present.
Here is an example of each.

$ fun --main="˜&h <’a’,’b’>" --cast
’a’
$ fun --main="˜&t <’a’,’b’>" --cast
<’b’>
$ fun --main="˜&e {’a’,’b’}" --cast
’a’
$ fun --main="˜&u {’a’,’b’}" --cast %S

60

{’b’}
$ fun --main="˜&n ’a’: ’b’" --cast
’a’
$ fun --main="˜&m ’a’: ’b’" --cast
’b’
$ fun --main="˜&d ’a’ˆ:<’b’ˆ: <>>" --cast
’a’
$ fun --main="˜&vh ’a’ˆ:<’b’ˆ: <>>" --cast %T
’b’ˆ: <>
$ fun --main="˜&f ˜&J(’a’,’b’)" --cast
’a’
$ fun --main="˜&a ˜&J(’a’,’b’)" --cast
’b’

Note that the subtrees of a tree, referenced by˜&v , are a list of trees, the head of the list
of subtrees, obtained bỹ&vh , is a tree, but̃&vhd would refer to the root node in the
first subtree. This expression mixes tree deconstructors with a list deconstructor, which is
perfectly valid. Any types of deconstructors can be mixed inthe same expression, with the
obvious interpretation.

The concept of different classes of aggregate types is an artifact of the language rather
than the virtual machine. On the virtual machine level, all aggregate data types are rep-
resented as pairs, all primary deconstructors listed in Table 2.1 have the representation
(&,0) , and all secondary deconstructors have the representation(0,&) . Use of the ap-
propriate deconstructor for a given type is not enforced. For example,̃ &r <x,y,z>
could be written in place of̃&t <x,y,z> , and both would evaluate to<y,z> . Need-
less to say, the latter is preferred because well typed code is easier to maintain unless
there is a compelling reason for writing it otherwise, but the language design stops short
of insisting on it to the point of overruling the programmer.

2.3 Constructors

The next simplest form of pointer expressions are the constructors, as shown in Table 2.1,
namelyX, C, V, A, andJ . Each constructor complements a pair of deconstructors, and
serves the purpose of putting two fields together into an aggregate type.

2.3.1 Constructors by themselves

One way for these constructors to be used is in functions suchas˜&X , which take a pair
of arguments and return the aggregate as a result. Each side of the following expressions

61

is equivalent to the other.

˜&X(x,y) ≡ (x,y)

˜&C(x,<y>) ≡ <x,y>

˜&V(x,y) ≡ xˆ:y

˜&A(x,y) ≡ x: y

• There is no operator notation in the language for the job constructor,J .

• The usage of̃&X in this way is always superfluous, because its argument is already
a pair, so it serves as the identity function of pairs.

Another way for these constructors to be used is with an emptyargument,() , in which
case they designate the empty instance of the relevant type.For example,̃&C() ≡ <>.
A notion of empty tuples, trees, assignments, and jobs is implied, but there is no particular
notation for the latter three.

2.3.2 Constructors in expressions

The real reason for these constructors to exist is to be used in pointer expressions, which
make it easy for data to be taken apart and put together in a different way. A pointer
expression containing a constructor has a left subexpression, followed by a right subex-
pression, followed by the constructor, with no interveningspace. The subexpressions can
be deconstructors or nested expressions with constructors.

For example, the pointer expression shown below interchanges the sides of a pair.

%$
$ fun --main="˜&rlX (1.,2.)" --cast
(2.000000e+00,1.000000e+00)

This one repeats the first item of a list, using the hitherto unmotivated identity deconstruc-
tor, i .

%$
$ fun --main="˜&hiC <’foo’,’bar’>" --cast
<’foo’,’foo’,’bar’>

This one takes the head of a list of pairs with its left and right sides interchanged.

$ fun --main="˜&hrlX <(1,2),(3,4),(5,6)>" --cast
(2,1)

2.3.3 Disambiguation issues

In more complicated cases, a minor difficulty arises. If we consider the problem of a
pointer expression to delete the second item of a list, we might think to write&httC , with
the intent that the left subexpression ish and the right one istt . However, this idea won’t
work.

62

$ fun --main="˜&httC <0,1,2,3>" --cast
fun:command-line: invalid deconstruction

The problem is that theC constructor applies only to the two subexpressions imme-
diately preceding it,tt , and theh is interpreted as the offset for the rest. The result is
equivalent to the nested compound deconstruction(&t:&t,0) , which attempts to de-
construct the first item of the list (in this case0), and additionally attempts to create a
badly typed list whose head is the same as its tail. The exception is due to the first issue.

It would be possible to fall back on the usage&h:&tt demonstrated on page 59, but
this problem justifies a more comprehensive solution without extra punctuation. TheP
constructor can be used in this connection to group two subexpressions into an indivisible
unit. The meaning ofttP is the same as that oftt , but the former is treated as a single
subexpression in any context.

Revisiting the example with the correct pointer expressionusage, we have

$ fun --m="˜&httPC <’a’,’b’,’c’,’d’,’e’>" --c
<’a’,’c’,’d’,’e’>

These constructors can be arbitrarily nested.

$ fun --m="˜&htttPPC <’a’,’b’,’c’,’d’,’e’>" --c
<’a’,’d’,’e’>

Because repetitions are frequent, a natural number expressed in decimal can be substituted
in any pointer expression for that number of consecutive occurrences of theP constructor.

$ fun --m="˜&httt2C <’a’,’b’,’c’,’d’,’e’>" --c
<’a’,’d’,’e’>

2.3.4 Miscellaneous constructors

Two further pointer constructors,G and I are also defined. Each of these requires two
subexpressions, similarly to the constructors discussed above.

Glomming

The simplest way to give a semantics for theGconstructor is as follows. For any function
of the form ˜& uvX that returns a result of the form(a,(b,c)) when applied to an
argumentx, the functioñ & uvGreturns the result((a,b),(a,c)) when applied to the
samex. That is, a copy of the left is paired up with each side of the right.

One consequence of this semantics is that˜&lrG can be written as a shorter form of
˜&lrlPXlrrPXX . If a pointer expression begins withlrG , it can be shortened further
by omitting the initiallr because they are inferred.

63

expression equivalent effect on((a, b), (c, d))

&bbI &llPrlPXlrPrrPXX ((a, c), (b, d))
&brlXI &lrPrrPXllPrlPXX ((b, d), (a, c))
&rlXbI &rlPllPXrrPlrPXX ((c, a), (d, b))
&rlXrlXI &rrPlrPXrlPllPXX ((d, b), (c, a))

Table 2.2: usingI for rotations and reflections of a pair of pairs

Pairwise relative addressing

The I constructor has four practical uses shown in Table 2.2, as well as any generaliza-
tions of those obtained by usinglrX in place ofb and/or any single valued deconstructor
in place ofr or l . Other generalizations can be used experimentally but their effect is
unspecified and subject to change in future revisions.

2.4 Pseudo-pointers

The pointer expression syntax is such a convenient way of specifying constructors and
deconstructors that it has been extended to more general functions. Pointer expressions
describing more general functions are called pseudo-pointers in this manual. The virtual
machine code for a pseudo-pointer is not necessarily of the form field f . For example,

$ fun --main="˜&L" --decompile
main = reduce(cat,0)

However, pseudo-pointers can be mixed with pointers in the same expression, as if they
were ordinary constructors or deconstructors. For example,

$ fun --m="˜&hL" --d
main = compose(reduce(cat,0),field(&,0))

For the most part, it is not necessary to be aware of the underlying virtual machine code
representation, unless the application is concerned with program transformation. Most
operators in Ursala that allow pointer expressions as suffixes also allow pseudo-pointers.
The exception is the& operator, which is meaningful only if its suffix is really a pointer.

$ fun --main="&L" --cast %t
fun:command-line: misused pseudo-pointer

As a matter of convenience, there is an exception to the exception, which is the case
of a function of the form̃ & p. Recall that thẽ operator maps a pointer operand to the
function induced by it. The semantics of this expression wherep is a pseudo-pointer is the
function specified byp, even though&p would not be meaningful by itself.

64

meaning example

L list flattening ˜&L <<1>,<2,3>,<4>> ≡ <1,2,3,4>
N empty constant ˜&N x ≡ 0
s list to set conversion ˜&s <’c’,’b’,’b’,’a’> ≡ {’a’,’b’,’c’}
x list reversal ˜&x <3,6,1> ≡ <1,6,3>
y lead items of a list ˜&y <’a’,’b’,’c’,’d’> ≡ <’a’,’b’,’c’>
z last item of a list ˜&z <’a’,’b’,’c’,’d’> ≡ <’d’>

Table 2.3: pseudo-pointers represent more general functions than deconstructors

2.4.1 Nullary pseudo-pointers

Some pseudo-pointers may require subexpressions to precede them in a pointer expression,
similarly to constructors such asX andC, while others are analogous to primitive operands
like t and r in the algebra of pointer expressions. Examples of the latter are shown in
Table 2.3.

Some of these, such as the lead and last items of a list, are obvious complements to
operations expressible by pointers, and are defined as pseudo-pointers only because they
are inexpressible by the virtual machine’sfield combinator. Others may seem unrelated
to the kinds of transformations lending themselves to pointer expressions, but in fact were
chosen as pseudo-pointers precisely because they occur frequently in the same context.

List flattening

TheL pseudo-pointer describes the function that converts a listof lists into one long list
by forming the cumulative concatenation of the items. This function is also useful on
character strings, which are represented as lists of characters.

Empty constant

The N can be used in a pointer wherever it is convenient to have a constant empty value
stored in the result. One example would be a usage like˜&NrX which takes a pair of
operands(x,y) and returns(0,y) , with any value ofx replaced by0. A more frequent
usage is in the expression˜&iNC , which forms the cons of the argument with the empty
list, thereby returning a unit list<x> for any argumentx .

List to set conversion

Sets are represented in the language as lexically ordered lists with no duplicates. Thẽ&s
function takes any list as an argument and returns the set of its items, by sorting them and
removing duplicates.

65

List reversal

The reversal of a list begins with the last item, followed by the second to last, and so
on back to the first. A fast, constant space implementation oflist reversal at the virtual
machine level is accessible by the˜&x function. List reversal is often needed in practical
algorithms.

Lead items of a list

The ˜&y function takes a list as an argument and returns the list obtained by deleting the
last item. The length of the result is one less than the lengthof the original. An exception
is thrown if this function is applied to an empty list.

Last item of a list

The ˜&z function takes a list as an argument and returns the last item. This function is
implemented by a constant number of virtual machine operations but actually takes a time
proportional to the length of the list. An exception is raised in the case of an empty list as
an argument.

A small example of rolling a list to the right are as follows.

$ fun --m="˜&zyC ’abcd’" --c
’dabc’

One way of rolling to the left would be by reversal before and after rolling to the right.

$ fun --m="˜&xzyCx ’abcd’" --c
’bcda’

Although each ofx , y , andz requires a list reversal when used by itself, the compiler
automatically performs global optimizations on pseudo-pointer expressions that some-
times remove unnecessary operations.

$ fun --main="˜&xzyCx" --decompile
main = compose(

reverse,
couple(field(&,0),compose(reverse,field(0,&))))

Note that the virtual machine’sreverse function appears only twice rather than three or
four times in the compiled code.

Example program

A small example demonstrating a couple of these operations in context is shown in List-
ing 2.2. This example uses some language features not yet introduced, and may either
be skipped on a first reading of this manual or read with partial comprehension by the
following explanation.

66

Listing 2.2 some pseudo-pointers and a pointer in a practical setting

#import std

#comment -[This program reads a text file from standard inpu t and
writes it to standard output with all tab characters replace d by the
string ’<tab>’.]-

#executable &

showtabs = * ˜&L+ * (˜&h skip/9 characters)?=/’<tab>’! ˜&iNC

Listing 2.3 executable file from Listing 2.2

#!/bin/sh
This program reads a text file from standard input and
writes it to standard output with all tab characters replac ed by the
string ’<tab>’.
#\
exec avram "$0" "$@"
uIzMOt[QV]uGmzlSgcr>=d\nT\

The application is meant to display text files containing tabcharacters in such a way
that the tabs are explicit, as opposed to being displayed as spaces. It does so by substituting
each tab character with the string<tab> .

The algorithm applies a function to each character in the file. The function maps the
tab character to the’<tab>’ character string, but maps any other character to the string
containing only that character, using˜&iNC .

When this function is applied to every character in a string,the result is a list of char-
acter strings, which is flattened into a character string by˜&L . This operation is applied to
every character string in the file.

One other pointer expression in this example is&h, which is used to define a compile-
time constant. The tab character is the ninth character (numbered from zero) in the list
of characters defined in the standard library, which is computed as the head of the list of
characters obtained by skipping the first nine. This computation is performed at compile
time and does not require any search of the character table atrun time.

To compile the program, we run the command

$ fun showtabs.fun
fun: writing ‘showtabs’

This operation generates a free standing executable, as shown in Listing 2.3
A peek at the virtual machine code is easy to arrange for enquiring minds (possibly

to the detriment of the obfuscation research community). The executable code stored in
binary format can be accessed like any other data file during asubsequent compilation.

$ fun showtabs --m=showtabs --decompile

67

combinator usage interpretation

reduce(f , k) <> k
reduce(f , k) < a, b, c, d> f (f (a, b), f (c, d))
map(f) < a . . . z> <f (a) . . . f (z)>
conditional(p, f , g) x if p(x) thenf (x) elseg(x)
compose(f , g) x f (g(x))
constant(k) x k
compare(x, y) if x = y thentrue elsefalse
cat(< x0 . . . xn>,< y0 . . . ym>) < x0 . . . ym>
couple(f , g) x (f (x), g(x))

Table 2.4: informal and incomplete virtual machine quick reference

main = map compose(
reduce(cat,0),
map conditional(

compose(
compare,
couple(constant <0,&,0,0,0>,field &)),

constant ’<tab>’,
couple(field &,constant 0)))

The strange looking constant is the concrete representation of the tab character. An intu-
itive listing of some other combinators in this code is shownin Table 2.4, but are more
formally documented in theavram reference manual.

The following small test file will be the input.

$ cat /etc/crypttab
<target name> <source device> <key file>
cswap /dev/hda3 /dev/random

Most of the spaces shown above are due to tabs. We can now use the compiled program to
display the tabs explicitly.

$ showtabs < /etc/crypttab
<target name><tab><source device><tab><tab><key file>
cswap<tab>/dev/hda3<tab>/dev/random

The input file, incidentally, is not valid as a real crypttab.

2.4.2 Unary pseudo-pointers

The versatility of pointer expressions is further advancedby a selection of pseudo-pointers
representing functional combining forms, shown in Table 2.5. Unlike ordinary pointer
constructors, these require only a single subexpression, but the identity pointer,i , is in-
ferred as a subexpression if nothing precedes them in the expression. The semantics of

68

meaning example

F filter combinator ˜&tFL <<1,2>,<3>,<4,5>> ≡ <1,2,4,5>
S map combinator ˜&rlXS <(0,1),(2,3)> ≡ <(1,0),(3,2)>
Z negation ˜&iZS <true,false,true> ≡ <false,true,false>
g list conjunction ˜&lg <(1,’a’),(0,’b’)> ≡ 0
k list disjunction ˜&rk <(’x’,’y’),(’z’,’’)> ≡ true
o tree folding ˜&dvLPCo ‘aˆ:<‘bˆ:0,‘cˆ:0> ≡ ’abc’

Table 2.5: unary pseudo-pointers provide functional combinators within pointer expressions

most of these pseudo-pointers should be nothing new to functional programmers, but are
nevertheless explained in this section.

Logical operations

Some of these pseudo-pointers involve logical operations (i.e., operations pertaining to
whether something is true or false). The standard library defines constantstrue and
false , which are represented respectively as((),()) and() , and can also be written
as& and0.

Most standard functions returning a logical value will return one of the above, but any
value of any type can also be identified with a logical value. Empty lists, empty tuples,
empty sets, empty strings, empty instances of trees, jobs, or assignments, and the natural
number zero are all logically equivalent tofalse in this language. Any non-empty value
of any type including functions, characters, real numbers,and type expressions is logically
equivalent totrue .

This convention simplifies the development of user defined predicates by removing the
need for explicit conversion to logical values. For example, the predicate to test for non-
emptiness of a list is simply the identity function,˜& . This function obviously will return
the whole list, but when it’s used as a predicate, returning the whole list is the same as
returningtrue if the list is non-empty, andfalse otherwise.

Filter combinator

The F pseudo-pointer requires a pointer or function computing a predicate as a subex-
pression, in the sense described above. The result is a function mapping lists to lists, that
works by applying the predicate to every item of the input list and retaining only those
items in the output for which the predicate returns a non-empty value.

For example, the functioñ&iF or simply ˜&F removes the empty items from a list.
The function shown in Table 2.5 takes a list of lists and removes the items containing only
a single item (and hence empty tails). It also flattens the result usingL.

69

Map combinator

The map pseudo-pointer, denotedS, requires a subexpression operating on the items of a
list, and specifies a function that operates on a whole list byapplying it to each item and
making a list of the results. Maps in functional languages are as commonplace as loops in
imperative languages.

Negation

Negation is expressed by theZ pseudo-pointer, and has the effect of inverting the logical
value returned by the function or pointer in its subexpression. That is, false values are
changed to true and true values are changed to false.

List conjunction

The g pseudo-pointer expresses list conjunction, which is the operation of applying a
predicate to every item of a list and returning a true value ifand only if every result is true
(with truth understood in the sense described above).

A single false result refutes the predicate and causes the algorithm to terminate without
visiting the rest of the list. There is a slight advantage in execution time if it occurs close
to the beginning of the list.

List disjunction

A complementary operation to the above, list disjunction, denotedk , involves applying a
predicate to every item of a list and returning a true result if any of the individual results is
true. The list traversal halts when the first true result is obtained.

Relationships among these logical operations follow well known algebraic laws, which
the compiler uses to perform code optimization on pointer expressions.

Tree folding

This operation is somewhat more involved than the others. The tree folding pseudo-
pointer, denotedo, requires a subexpression representing a function that will be used to
obtain a result by traversing a tree from the bottom up.

The function described by the subexpression is expected to take a tree as an argument,
whose root is the node of the input tree currently being visited, and whose subtrees are
the list of results computed previously when the subtrees ofthe current node were visited.
This list will be empty in the case of terminal nodes. The result returned by the function
can be of any type.

The function is not required to cope with the case of an empty tree. If the whole
argument is an empty tree, then the result is0 regardless of the function. If the argument is
not empty but some subtrees of it are, those will appear as zero values in the list of subtrees
passed to the function when their parent node is visited.

70

The simple example of̃&dvLPCo shown in Table 2.5 may help to make the matter
more concrete. This function will take a tree of anything andmake a list of the nodes in
the order they would be visited by a preorder traversal.

• The subexpression contains the function˜&dvLPC .

• This function forms a list as the cons of the results of the twofunctions˜&d and
˜&vLP .

• The˜&d function accesses the root datum of the subtree currently being visited.

• The ˜&vL function takes the list of results previously computed for the subtrees,
˜&v , which will be a list of lists, and flattens them into one list with L.

• With the root on the left and the resulting list from the subtrees on the right, the result
for whole tree is obtained by the cons operation,C.

The example therefore shows that a tree of characters is mapped to a character string.

Correct parsing

Some attention to detail is required to use these pseudo-pointers correctly. Because the
subexpression of a unary pseudo-pointer is always required(except in the case of an im-
plied identity deconstructor at the beginning of an expression), there is no need to use the
P constructor to make them an indivisible unit as described inSection 2.3.3. For example,
writing hFP instead ofhF is unnecessary. In fact, it is an error, and worse yet, it might not
be flagged during compilation if another subexpression precedes it, which theP will then
include.

On the other hand, it may well be necessary to group the subexpression of a unary
pseudo-pointer usingP. For example, the expressionhhS is not equivalent tohhPS.

Writing complicated pointer expressions can be error proneeven for an experienced
user of Ursala. Learning to read the decompiled listings canbe a helpful troubleshooting
technique.

2.4.3 Ternary pseudo-pointers

There are two ternary pseudo-pointers, denoted byq and Q. Each of them requires three
subexpressions to precede it in the pointer expression. Thefirst subexpression represents
a predicate, the second represents a function to be applied if the predicate is true, and the
third represents a function to be applied if the predicate isfalse.

Semantics

The conditional combinator in the virtual machine directly supports this operation
for both pseudo-pointers, as shown in Table 2.4. The lower caseq additionally wraps the
resulting virtual machine code in therefer combinator, which has the property

∀f. ∀x. (refer f)(x) = f(˜&J (f, x))

71

That is to say, thef in a function of the formrefer f accesses the original argument to
the outer functionrefer f by ˜&a , and accesses a copy of itself by˜&f . Recall from
Table 2.1 that̃&f and ˜&a are the deconstructors associated with the job constructor
˜&J .

Non-self-referential conditionals

An example of theQpseudo-pointer is given by the function˜&lNrZQ , defining a binary
predicate that returns a true value if and only if neither of its operands is true.

$ fun --m="˜&lNrZQS <(0,0),(0,1),(1,0),(1,1)>" --c %bL
<true,false,false,false>

The function is shown here mapped over the list of all possible combinations so as to
exhibit its truth table. Conditional combinators are used in two places, one for theQand
one for theZ.

$ fun --main="˜&lNrZQ" --decompile
main = conditional(

field(&,0),
constant 0,
conditional(field(0,&),constant 0,constant &))

Recursion

It is impossible to give a good example of theq pseudo-pointer without introducing a
binary pseudo-pointerR. This pseudo-pointer requires two subexpressions to precede it in
the pointer expression where it occurs, unless it is at the beginning of the expression, in
which case the subexpressionslr are inferred.

The R pseudo-pointer occurring in a pointer expression of the form ˜& faR has the
following property.

∀f. ∀a. ∀x. ˜& faR (x) = (˜& f x) (˜&J (˜& f x, ˜& a x))

This property holds for any pointer expressionsf anda, not necessarily identical to the
deconstructorsf anda.

The purpose of theR pseudo-pointer is to perform a “recursive call” to a function that
is given as some part of the argument, by applying it to some other part of the argument.
In operational terms, the first subexpressionf should manipulatex to produce the virtual
machine code for a function to be called, and the second subexpressiona should construct
or retrieve some component ofx to serve as the argument in the recursive call.

When the recursive call is performed, the function obtainedby f is applied not just to
the argument obtained bya, but to the job containing both the function and the argument.
In this way, the function has access to its own machine code and can make further recursive
calls if necessary. This mechanism is inherent in theRpseudo-pointer.

72

Self-referential conditionals

As an example of theq pseudo-pointer, we can implement the following function that
performs a truncating zip operation. The truncating zip of apair of lists forms the list of
pairs obtained by pairing up the corresponding items from the lists. If one list has fewer
items than the other, the trailing items on the longer list are ignored. That is, for a pair of
lists

(〈x0, x1 . . . xn〉, 〈y0, y1 . . . ym〉)
the result of the truncating zip is the list of pairs

〈(x0, y0), (x1, y1) . . . (xk, yk)〉
wherek = min(n,m).

The specification for this function is̃&alrNQPabh2fabt2RCNq , which is first
demonstrated and then explained further.

$ fun --m="˜&alrNQPabh2fabt2RCNq (’ab’,’cde’)" --c
<(‘a,‘c),(‘b,‘d)>

Recall that character strings enclosed in forward quotes are represented as lists of charac-
ters, and that individual character constants are expressed using a back quote.

The virtual machine code for the function is as follows.

$ fun --m="˜&alrNQPabh2fabt2RCNq" --decompile
main = refer conditional(

conditional(field(0,(&,0)),field(0,(0,&)),constant 0),
couple(

field(0,(((&,0),0),(0,(&,0)))),
recur((&,0),(0,(((0,&),0),(0,(0,&)))))),

constant 0)

Therecur combinator in the virtual code directly corresponds to theRpseudo-pointer for
the important special case of subexpressions that are pointers rather than pseudo-pointers.

• The three main subexpressions arealrNQP , abh2fabt2RC , andN.

• The predicatealrNQP tests whether both sides of the argument are non-empty.

• The third subexpressionN is applied when the predicate doesn’t hold (i.e., when at
least one side of the argument is empty), and returns an emptylist.

• The middle subexpression,abh2fabt2RC , is applied when both sides of the argu-
ment are non-empty.

– TheCpseudo-pointer makes this subexpression return a list whose head is com-
puted byabh2 and whose tail is computedfabt2R

– The pair of heads of the argument is accessed byabh2 .

– A recursive call is performed byfabt2R , with the function and the pair of tails.

73

meaning example

B conjunction ˜&ihBF <0,1,2,3> ≡ <1,3>
D left distribution ˜&zyD <0,1,2> ≡ <(2,0),(2,1)>
E comparison ˜&blrE ((0,1),(1,1)) ≡ (false,true)
H function application ˜&lrH (˜&x,’abc’) ≡ ’cba’
M mapped recursion ˜&aaNdCPfavPMVNq 1ˆ:<2ˆ:0,3ˆ:0> ≡ 2ˆ:<4ˆ:0,6ˆ:0>
O composition ˜&blrEPlrGO (1,(1,2)) ≡ (true,false)
R recursion ˜&aafatPRCNq ’ab’ ≡ <’ab’,’b’>
T concatenation ˜&rlT (’abc’,’def’) ≡ ’defabc’
U union of sets ˜&rlU ({’a’,’b’},{’b’,’c’}) ≡ {’a’,’b’,’c’}
W pairwise recursion ˜&afarlXPWaq ((0,&),(&,&)) ≡ ((&,&),(&,0))
Y disjunction ˜&lrYk <(0,0),(0,1),(0,0)> ≡ true
c intersection of sets ˜&lrc ({’a’,’b’},{’b’,’c’}) ≡ {’b’}
j difference of sets ˜&hthPj <{’a’,’b’},{’b’,’c’}> ≡ {’a’}
p zip function ˜&lrp (<1,2>,<3,4>) ≡ <(1,3),(2,4)>
w membership ˜&nmw ‘b: ’abc’ ≡ true

Table 2.6: binary pseudo-pointers add greater utility to pointer expressions

2.4.4 Binary pseudo-pointers

An assortment of pseudo-pointers taking two subexpressions provides a diversity of useful
operations. The two subexpressions should immediately precede the binary pseudo-pointer
in a pointer expression, but may be omitted if they are the deconstructorslr and are at the
beginning of the expression (e.g.,˜&p may be written for̃&lrp).

The alphabetical list of binary pseudo-pointers is shown inTable 2.6, but they are
grouped by related functionality in this section for expository purposes. The areas are list
operations, recursion, set operations, logical operations, and general purpose functional
combinators.

List operations

To start with the easy ones, there are three frequently used list operations provided by
binary pseudo-pointers.

T – concatenation Both subexpressions are expected to return lists when evaluated, and the
result fromT is the list obtained by concatenating the first with the second.

The concatenation of two lists〈x0 . . . xn〉 and〈y0 . . . ym〉 is defined as the list

〈x0 . . . xn, y0 . . . ym〉
containing the items of both, with the order and multiplicity preserved, and with the items
of the left preceding those of the right. More formally, it satisfies these equations.

˜&T(<>, y) = y

˜&T(˜&C(h, t), y) = ˜&C(h,˜&T(t, y))

74

Note that concatenation is not commutative, so˜&rlT shown in Table 2.6 differs from
˜&T , which is short for̃ &lrT .

D – left distribution The second subexpression of theD pseudo-pointer is expected to re-
turn a list, and each item of it is paired up with a copy of the result returned by the first
subexpression. Each pair has the first subexpression’s result on the left and the list item
on the right. The complete result is a list of pairs in order ofthe list returned by the right
subexpression.

More formally, theD pseudo-pointer is that which satisfies these equations, where the
subexpressionslr are implicit.

˜&D(x,<>) = <>

˜&D(x,˜&C(h, t)) = ˜&C((x, h),˜&D(x, t))

p – zip function Both subexpressions are expected to return lists of the samelength, and
the result of thep pseudo-pointer is the list of pairs made by pairing up the corresponding
items. A specification in a similar style to those above wouldbe as follows.

˜&p(<>,<>) = <>

˜&p(˜&C(x, t),˜&C(y, u)) = ˜&C((x, y),˜&p(t, u))

This function contrasts with the truncating zip function used in a previous example
(page 73) by being undefined if the lists are of unequal lengths.

$ fun --m="˜&p(<1,2,3>,<1,2,3,4>)" --c
fun:command-line: invalid transpose

Recursion

Each of the following three pseudo-pointers uses the first subexpression to retrieve the
code for a function to be invoked, which must be already inherent in the argument, and
the second subexpression to retrieve the data to which it is applied. They differ in calling
conventions for the function.

R – recursion The simplest form of recursion pseudo-pointer,R, is introduced on page 72
in connection with the recursive conditional pseudo-pointerq, but briefly repeated here for
completeness.

To evaluate a pointer expression of the form˜& faR with an argumentx, the function
˜& f x retrieved by the first subexpression is applied to the job˜&J(˜& f x,˜& a x) .
Both the function and the data are passed to the function so that further invocations of
itself are possible.

A simple example of tail recursion as in Table 2.6 is the following.

$ fun --m="˜&aafatPRCNq ’abcde’" --c
<’abcde’,’bcde’,’cde’,’de’,’e’>

75

The recursive call,fatPR applies the function to the tail of the argument, while the en-
closing subexpressionafatPRC forms the list with the whole argument at the head and
the result of the recursive call in the tail. The alternativesubexpressionN returns an empty
list in the base case.

M – mapped recursion This variation on the recursion pseudo-pointer may be more conve-
nient for trees and other data structures where a function isapplied recursively to each of
a list of operands. The first subexpression retrieves the function, as above, but the second
subexpression retrieves a list of operands rather than justone operand. The mapping of the
function over the list is implicit.

To be precise, a pointer expression of the form˜& faMapplied to an argumentx will
return a list of the form

〈(˜& f x) (˜&J (˜& f x, a0)) . . . (˜& f x) (˜&J (˜& f x, an))〉

where˜& a x = 〈a0 . . . an〉.
Normally a recursively defined function is written with the assumption that thẽ&f

field of its argument is a copy of itself, which this semanticsaccommodates without the
programmer distributing it explicitly over the list. Otherwise, it would be necessary to
write ˜& faDlrRSP to achieve the same effect as˜& faM, with the difficulty escalating in
cases of nested recursion or other complications.

The example in Table 2.6 uses this pseudo-pointer to traverse a tree of natural numbers
from the top down, returning a tree of the same shape with double the number at each
node. It relies on the fact that natural numbers are represented as lists of bits with the
least significant bit first, so any non-zero natural number can be doubled by the function
˜&NiC , which inserts another zero bit at the head.

In the expressionaaNdCPfavPMVNq, the recursive callfavPM has the function ad-
dressed byf and the list of subtrees addressed byavP as subexpressions to theMpseudo-
pointer. The double of the root is computed byaNdCP, and the resulting tree is formed by
theV constructor.

W – pairwise recursion This pseudo-pointer is similar to the above except that it recursively
applies a function to each side of a pair of operands rather than to each item of a list. That
is, a pointer expression of the form̃& faWapplied to an argumentx will return a pair of
the form

((˜& f x) (˜&J (˜& f x, al)), (˜& f x) (˜&J (˜& f x, ar)))

where˜& a x = (al, ar).

Set operations

As mentioned previously, sets are represented as ordered lists with duplicates removed.
Three pseudo-pointers directly manipulate sets in this form. The subexpressions associated
with these pseudo-pointers are each expected to return a set.

76

U – union of sets This pseudo-pointer returns the union of a pair of sets, which contains
every element that is a member of either or both sets. The result may be incorrect if either
operand does not properly represent a set as an ordered list without duplicates. However,
any list can be put into this form by thes pseudo-pointer, as described on page 65.

c – intersection of sets This pseudo-pointer returns the set of elements that are in members
of both sets. It will also work on unordered lists and lists containing duplicates.

j – difference of sets This pseudo-pointer returns the set of elements that are members of
the set obtained from the first subexpression and not membersof those obtained from the
second. It will also work on unordered lists and lists containing duplicates.

Logical operations

There are four binary logical operations implemented by pseudo-pointers. Logical values
are understood in the sense described on page 69. That is, anything empty is false and
anything non-empty is true.

B – conjunction This pseudo-pointer performs a non-strict conjunction, which is to say
that it returns a true value if and only if both of its subexpressions returns a true value, but
it doesn’t evaluate the second subexpression if the first oneis false.

In the case of a false value,0 is returned, but in the alternative, the value of the second
subexpression is returned, as the virtual machine code shows.

$ fun --m="˜&B" --d
main = conditional(field(&,0),field(0,&),constant 0)

An application can take advantage of this semantics, for example, by using̃&ihB to re-
turn the head of a list if the list is non-empty, and a value of zero otherwise. The function
˜&ihB will also test whether a natural number is odd without causing an invalid decon-
struction when applied to zero.

Y – disjunction This pseudo-pointer performs a non-strict disjunction in amanner anal-
ogous to the previous one. That is, it returns a true value if either of its subexpressions
returns a true value, but doesn’t evaluate the second one if the first one is true.

If the first subexpression is true, its value is returned. Otherwise, the value of the second
subexpression is returned.

E – comparison This pseudo-pointer compares the results returned by its two subexpres-
sions, both of which are always evaluated, and returns a value of& (true) if they are equal
or zero otherwise. Unlike the preceding pseudo-pointers, it does not necessarily return the
value of a subexpression.

77

Equality in this context is taken to mean that the two resultshave the same virtual
machine code representation. It is possible for two values of different types to be equal if
their representations coincide. It is also possible for twosemantically equivalent instances
of the same abstract data type to be unequal if their representations differ. Functions can
also be compared, and only their concrete representations are considered.

The criteria for equality do not include being stored in the same memory location on
the host, this concept being foreign to the virtual code semantics, so any two structurally
equivalent copies of each other are equal. However, comparison is supported by a virtual
machine instruction whose implementation transparently detects pointer equality (in the
conventional sense of the words) and manages shared data structures so that comparison
is a fast operation on average.

It may be a useful exercise for the reader to confirm that the following code could be
used to implement comparison in a pointer expression if it were not built in.

$ fun --m="˜&alParPfabbIPWlrBPNQarZPq" --decompile
main = refer conditional(

field(0,(&,0)),
conditional(

field(0,(0,&)),
conditional(

recur((&,0),(0,(((&,0),0),(0,(&,0))))),
recur((&,0),(0,(((0,&),0),(0,(0,&))))),
constant 0),

constant 0),
conditional(field(0,(0,&)),constant 0,constant &))

Everything about this example is explained in one previous section or another. Remember-
ing where they are is part of the exercise. Note that the compiler has optimized the code
by exploiting the non-strict semantics of theB pseudo-pointer to avoid an unnecessary
recursive call, thereby allowing the algorithm to terminate as soon as the first discrepancy
between the operands is detected.

w – membership This pseudo-pointer tests whether the result returned by its first subex-
pression is a member of the list or set returned by its second.A true value (&) is returned
if it is a member, and a false value (0) is returned otherwise.

Membership is based on equality as discussed above. The function ˜&w is semanti-
cally equivalent tõ&DlrEk but faster because it is translated to a single virtual machine
instruction.

Functional combinators

These two pseudo-pointers correspond to general operations on functions, composition
and application.

78

H – function application The left subexpression is expected to return the function, and the
right subexpression is expected to return an argument for the function. The result is ob-
tained by applying the function to the argument. There are norestrictions on types.

This pseudo-pointer is similar to theR pseudo-pointer, but more suitable for functions
that are not recursively defined and therefore don’t need to call themselves. The difference
betweenH andR is that the latter applies the function to a job containing the function
itself along with the argument, whereasH applies it just to the argument. AlthoughH
seems a simpler operation, its virtual machine code is more complicated because it is less
frequently used and not directly supported.

O – composition Functional composition is the operation of using the outputfrom one
function as the input to another. The composition pseudo-pointer takes two subexpressions
representing functions or pointers and feeds the output from the second one into the first
one. That is to say, an expression of the form˜& fgOapplied to an argumentx is equivalent
to ˜& f (˜& g (x)).

The pseudo-pointer for composition rarely needs to be used explicitly because the
pointer expressionfgO is usually equivalent togfP, or just gf where there is no am-
biguity. Note that the order is reversed. However, there is one case where they are not
equivalent, which is ifg is not a pseudo-pointer and not equivalent to an identity pointer
such as̃&lrV or ˜&J . For example,̃&rlXlP x is not equivalent tõ&l ˜&rlX x and
hence not tõ&lrlXO x

$ fun --m="˜&rlXlP ((’a’,’b’),(’c’,’d’))" --c
(’c’,’a’)
$ fun --m="˜&l ˜&rlX ((’a’,’b’),(’c’,’d’))" --c
(’c’,’d’)
$ fun --m="˜&lrlXO ((’a’,’b’),(’c’,’d’))" --c
(’c’,’d’)

The difference is that̃&rlXlP refers to the pair of left sides of a reversed pair of pairs,
whereas̃&l ˜&rlX refers to the left side of a reversed pair, hence the right side. On the
other hand, the equivalence holds in the case of˜&hzXlP , becausez is a pseudo-pointer.

$ fun --m="˜&hzXl <(’a’,’b’),(’c’,’d’)>" --c
(’a’,’b’)
$ fun --m="˜&lhzXO <(’a’,’b’),(’c’,’d’)>" --c
(’a’,’b’)
$ fun --m="˜&l ˜&hzX <(’a’,’b’),(’c’,’d’)>" --c
(’a’,’b’)

This function could be expressed simply by˜&h .
In informal terms, the effect of juxtaposition (or the implicit Pconstructor) where point-

ers are concerned is to construct the pointer obtained by attaching a copy of the right
subexpression to each leaf of the left. Where pseudo-pointers are concerned it is reversed
composition. A formal semantics for this operation is best left to compiler developers. A

79

real user of the language is advised to acquire an intuition based on the informal descrip-
tion and to display the decompiled virtual code when in doubt.

To summarize, although this distinction in the meaning of juxtaposition between point-
ers and pseudo-pointers is usually appropriate in practice, the O pseudo-pointer can be
used in effect to override it when it isn’t, because it represents composition in either case.

2.5 Escapes

There are many more operations that might be worth encoding by pointer expressions than
there are letters of the alphabet, even with case sensitivity, and it is useful for compiler
developers to have an open ended way of defining more of them. The solution is to express
all further pointers and pseudo-pointers by numerical escape codes preceded by the letter
K in the pointer expression. Because the remaining operations are less frequently required,
this format is not too burdensome for normal use.

Recall from Section 2.3.3 that numerical values are also meaningful in pointer expres-
sions as abbreviations for sequences of consecutiveP constructors. To avoid ambiguity
when such a sequence immediately follows an escape code in a pointer, the letterP must
be used explicitly in such cases. However, a usage such asK7P2 is acceptable as an
abbreviation forK7PPP. That is, only the firstP following the escape code needs to be
explicit.

A list of escape codes is shown in Table 2.7. The remainder of this section explains
each of them. Because new escape codes are easy for any compiler developer or aspiring
compiler developer to add to the language, there is a chance that this list is incomplete
for a locally modified version of the compiler. A fully up to date site specific list can be
obtained by the command

$ fun --help pointers

but this output is intended more as a quick reminder than as complete documentation. If
undocumented modifications have been made, the likely suspects are resident hackers and
gurus. If the output from this command shows that existing operations are missing or
numbered differently, then the compiler has been ineptly modified or deliberately forked.

Although these operations are classified by their arity in Table 2.7 and in this section,
it is worth pointing out that the arity is more a matter of convention than logical necessity.
For example, the transpose operation,K7, which reorders the items in a list of lists, is
defined as a unary rather than a nullary pseudo-pointer. The subexpressionf in a pointer
expression of the formfK7 represents a function with which this operation is composed,
as one would expect, but the unary arity means that it is unnecessary and incorrect to write
fK7P to group them together when used in a larger context, unlike the situation for nullary
pointers (cf. Section 2.3.3 and further remarks on page 71).This convention usually saves
a keystroke because the transpose is rarely used in isolation, but if it were, then like other
unary pseudo-pointers it could be written without a subexpression as̃&K7 , which would
be interpreted as̃&iK7 , with the identity deconstructori inferred.

80

arity code meaning

nullary 8 random draw from a list
22 address enumeration
27 alternate list items including the head
28 alternate list items excluding the head
30 first half of a list
31 second half of a list

unary 1 all-same predicate
2 partition by comparison
6 tree evaluation by&drPvHo
7 transpose
9 triangle combinator

11 generalized intersection combinator
13 generalized difference combinator
15 distributing bipartition combinator
17 distributing filter combinator
20 bipartition combinator
21 reduction with empty default
23 address map
24 partial reification
33 triangle squared

binary 0 cartesian product
3 substring predicate
4 prefix predicate
5 suffix predicate

10 generalized intersection by comparison
12 generalized difference by comparison
14 distributing bipartition by comparison
18 subset predicate
19 proper subset predicate
25 unzipped partial reification
26 total reification
29 merge of lists
32 map to alternate list items
34 depth first tree leaf tagging
35 preorder tree trunk tagging
36 preorder tree tagging
37 postorder tree trunk tagging
38 postorder tree tagging
39 inorder tree trunk tagging
40 inorder tree tagging
41 level order tree leaf tagging
42 level order tree trunk tagging
43 level order tree tagging

Table 2.7: pseudo-pointers expressed by escape codes of theform Kn

81

2.5.1 Nullary escapes

There is currently two nullary escapes, as explained below.

8 – random list deconstructor

K8 can be used like a deconstructor to retrieve a randomly chosen item of a list or element
of a set. The argument must be non-empty or an exception is raised.

Functional programmers will consider this operation an “impure” feature of the lan-
guage, because the output is not determined by the input. That is, the result will be differ-
ent for every run.

$ fun --m="˜&K8S <’abc’,’def’,’ghi’>" --c
’aei’
$ fun --m="˜&K8S <’abc’,’def’,’ghi’>" --c
’cfh’

They will justifiably take issue with the availability of such an operation because it inval-
idates certain code optimizing transformations. For example, it is not generally valid to
factor out two identical programs applying to the same argument if their output is random.

$ fun --m="˜&K8K8X ’abcdefghijklmnopqrstuvwxyz’" --c
(‘r,‘f)
$ fun --m="˜&K8iiX ’abcdefghijklmnopqrstuvwxyz’" --c
(‘q,‘q)

The first example above performs two random draws from list, but the second performs
just one and makes two copies of it.

Despite this issue, the operation is provided in Ursala as one of an assortment of random
data generating tactics varying in sophistication. Randomized testing is an indispensable
debugging technique, and the code optimization facilitiesof the compiler are able to rec-
ognize randomizing programs and preserve their semantics.

The intent of this operation is that all draws from the list are equally probable. Draws
from a uniform distribution are simulated by the virtual machine’s implementation of the
Mersenne Twister algorithm. For non-specialists, the bottom line is that the quality of
randomness is more than adequate for serious simulation work or test data generation, but
not for cryptological purposes.

22 – address enumeration

TheK22 pseudo-pointer can be used as a function that takes any listx as an argument and
returns a listy of the same length asx, wherein each item is value of the form(a,0) .
The left sidea is either&, (a′,0) or (0, a′) , for ana′ of a similar form. Furthermore,
each member ofy is nested to the same depth, which is the minimum depth required for
mutually distinct items of this form, and the items ofy are in reverse lexicographic order.
Here is an example.

82

$ fun --main="˜&K22 ’abcdef’" --cast %tL
<

((((&,0),0),0),0),
((((0,&),0),0),0),
(((0,(&,0)),0),0),
(((0,(0,&)),0),0),
((0,((&,0),0)),0),
((0,((0,&),0)),0)>

This function is useful for converting between lists and a-trees, which are a container
type explained in Chapter 3. The following example demonstrates this use of it, but should
be disregarded on a first reading because it depends on language features documented in
subsequent chapters.1

$ fun --m="ˆ|H(:=ˆ|/˜& !,˜&)=>0 ˜&K22ip ’abcdef’" --c %cN
[

4:0: ‘a,
4:1: ‘b,
4:2: ‘c,
4:3: ‘d,
4:4: ‘e,
4:5: ‘f]

27 – alternate list items including the head

TheK27 pseudo-pointer extracts alternating items from a list starting with the head. It is
equivalent to the pointer expressionaitBPahPfatt2RCaq .

$ fun --m="˜&K27 ’0123456789’" --c
’02468’

28 – alternate list items excluding the head

The K28 pseudo-pointer extracts alternating items from a list starting with the one after
the head.

$ fun --m="˜&K27 ’0123456789’" --c
’13579’

30 – first half of a list

TheK30 pseudo-pointer takes the first⌊n/2⌋ items from a list of lengthn.

$ fun --m="˜&K30S <’123456789’,’abcd’>" --s
1234
ab

1Thebash commandset +H may be needed to get this example to work.

83

The algorithms implementing this operation and the following one do not rely on any
integer of floating point arithmetic.

31 – second half of a list

TheK31 pseudo-pointer takes the final⌈n/2⌉ items from a list of lengthn.

$ fun --m="˜&K31S <’123456789’,’abcd’>" --s
56789
cd

Note that if a list is of odd length, the latter part obtained by K31 will be longer than the
first part obtained byK30. An easy way of taking the latter⌊n/2⌋ items instead would be
to usexK30x . Whether the length of a listx is even or odd, the identitỹ&K30K31T x ≡
x holds.

2.5.2 Unary escapes

In this section, the unary escapes shown in Table 2.7 are explained and demonstrated.

1 – all-same predicate

An escape code of1 takes a subexpression computing any function or deconstructor at all,
applies it to each member of an input list or set, and returns atrue value (&) if and only if
the result is identical in all cases. For an empty argument, the result is always true. If the
result of the function in the subexpression differs betweenany two members, a value of0
is returned.

A simple example shows the use of this pseudo-pointer to check whether every string
in a list contains the same characters, disregarding their order or multiplicity, by using the
s pseudo-pointer introduced on page 65.

$ fun --m="˜&sK1 <’abc’,’cbba’,’cacb’>" --c
&
$ fun --m="˜&sK1 <’abc’,’cbba’,’cacc’>" --c
0

In the latter example, the third string lacks the letterb, and therefore differs from the
others.

2 – partition by comparison

TheK2 pseudo-pointer requires a subexpression representing a function applicable to the
items of a list, and specifies a function that partitions an input list into sublists whose
members share a common value with respect to the function.

This simple example shows how a list of words can be grouped into sublists by their
first letter.

84

Listing 2.4 This is a job for̃ &K6 .

#import std
#import nat

#comment -[
toy example of a self-describing algebraic expression repr esented by a
tree of type %sfOZXT]-

nterm =

(’+’,sum=>0)ˆ: <
(’ * ’,product=>1)ˆ: <(’3’,3!)ˆ: <>,(’4’,4!)ˆ: <>>,
(’-’,difference+˜&hthPX)ˆ: <(’9’,9!)ˆ: <>,(’2’,2!)ˆ: < >>>

$ fun --m="˜&hK2x <’ax’,’ay’,’bz’,’cu’,’cv’>" --c
<<’ax’,’ay’>,<’bz’>,<’cu’,’cv’>>

If the order of the lists in the result is of no concern, thex (reversal) operation at the end
of ˜&hK2x can be omitted to save time. In this example, it enforces the condition that
the lists in the result are ordered by the first occurrence of any of their members in the
input. This ordering would maintain the correct representation if the input were a set and
the output were a set of sets.

The function represented by the subexpression may be applied multiple times to the
same item of the input list in the course of this operation. Ifthe computation of the function
is very time consuming and result is not too large, it may be more efficient to compute
and store the result in advance for each item, and remove it afterwards. Although the
compiler does not automatically perform this optimization, it can be obtained similarly to
the example shown below.

$ fun --m="˜&hiXSlK2rSSx <’ax’,’ay’,’bz’,’cu’,’cv’>" -- c
<<’ax’,’ay’>,<’bz’>,<’cu’,’cv’>>

The function (in this case onlyh) has its result paired with the each input item byhiXS ,
and the partitioning is performed with respect to the left side of each pair (which conse-
quently stores the function result) bylK8 . Then the right side of each item of each item
of the result (containing the original input data) is extracted byrSS .

6 – tree evaluation

A convenient method for representing algebraic expressions over any semantic domain is
to use a tree of pairs in which the left side of each pair contains a symbolic name for an
operator in the algebra and the right side is its semantic function. The semantic function
takes the list of values of the subtrees to the value of the whole tree. This representation
is convenient because it allows expressions of arbitrary types to be evaluated by a simple,
polymorphic tree traversal algorithm, and also allows the trees to be manipulated easily. It
has applications not just for compilers but any kind of symbolic computation.

85

The value in terms of the embedded semantics for an algebraicexpression using this
self-describing representation could be obtained by˜&drPvHo , but is achieved more con-
cisely by˜&iK6 or just˜&K6 . The symbolic names are ignored by this function, but are
probably needed for whatever other reason these data structures are being used.

A simple example is shown in Listing 2.4, although it dependson some language fea-
tures not previously introduced. It is compiled by the command

$ fun kdemo.fun --binary
fun: writing ‘nterm’

and the results can be inspected as shown.

$ fun nterm --m=nterm --c %sfOXT
(’+’,188%fOi&)ˆ: <

ˆ: (
(’ * ’,243%fOi&),
<(’3’,6%fOi&)ˆ: <>,(’4’,6%fOi&)ˆ: <>>),

ˆ: (
(’-’,515%fOi&),
<(’9’,8%fOi&)ˆ: <>,(’2’,5%fOi&)ˆ: <>>)>

This data structure represents the expression(3 × 4) + (9 − 2) over natural numbers, and
can be evaluated as follows.

$ fun nterm --m="˜&K6 nterm" --c %n
19

The expressions in the right sides of the tree nodes in Listing 2.4 are functions operating
on lists of natural numbers or constant functions returningnatural numbers, and the cor-
responding expressions in the output above are the same functions displayed in “opaque”
format, which shows only their size in quits.2

7 – transpose

The K7 pseudo-pointer takes a subexpression representing a function returning a list of
lists and constructs the composition of that function with the transpose operation. The
transpose operation takes an input list of lists to an outputlist of lists whose rows are the
columns of the input. For example,

$ fun --m="˜&iK7 <’abcd’,’efgh’,’ijkl’,’mnop’>" --c
<’aeim’,’bfjn’,’cgko’,’dhlp’>

• All lists in the input are required to have the same number of items, or else an excep-
tion is raised.

• This operation is useful in numerical applications for transposing a matrix.

• This is a fast operation due to direct support by the virtual machine.
2quaternary digits, each equal in information content to twobits

86

9 – triangle combinator

Escape number 9 is the triangle combinator, which takes a function as a subexpression and
operates on a list by iterating the functionn times on then-th item of the list, starting with
zero. This small example shows the triangle combinator usedon a function that repeats
the first and last characters in a string.

$ fun --m="˜&hizNCTCK9 <’(a)’,’(b)’,’(c)’,’(d)’>" --c
<’(a)’,’((b))’,’(((c)))’,’((((d))))’>

11 – generalized intersection combinator

A pointer expression of the formfK11 represents generalized intersection with respect
to the predicatef . Ordinarily the intersection between a pair of lists or setsis the set of
members of the left that are equal to some member of the right.The generalization is to
allow other predicates than equality.

The subexpression toK11 is a pseudo-pointer computing a relational predicate. The
result is a function that takes a pair of sets or lists, and returns the maximal subset of the
left one in which every member is related to at least one member of the right one by the
predicate.

Generalized intersection is not necessarily commutative because the predicate needn’t
be commutative. It doesn’t even require both lists to be of the same type. By convention,
the result that is returned will always be a subset or a sublist of the left operand.

This example shows generalized intersection by the membership predicate with thew
pseudo-pointer.

$ fun --m="˜&wK11 (’abcde’,<’cz’,’xd’,’ye’,’wf’,’ug’>) " --c
’cde’

The effect is to return only those letters in the string’abcde’ that are members of some
string in the other operand.

13 – generalized difference combinator

The generalized difference pseudo-pointer,K13, is analogous to generalized intersection,
above, in that it subtracts the contents of one list from another based on relations other
than equality.

The subexpression toK13 is a pseudo-pointer computing a relational predicate. The
result is a function that takes a pair of sets or lists, The function returns a subset of the left
one with every member deleted that is related to at least one member of the right one by
the predicate, and the rest retained.

A similar example is relevant to generalized difference, where the relational operator is
w for membership.

$ fun --m="˜&wK13 (’abcde’,<’cz’,’xd’,’ye’,’wf’,’ug’>) " --c
’ab’

87

The letters‘c , ‘d , and ‘e , have been deleted because they are members of the strings
’cz’ , ’xd’ , and’ye’ , respectively.

15 – distributing bipartition combinator

Escape number 15 is used for partitioning a list or set into two subsets according to some
data-dependent criterion.

• The subexpression of the pseudo-pointer represents a function computing a binary
relational predicate. Call itp.

• The result is a function taking a pair as an argument, whose left side is a possible left
operand top, and whose right side is a list of right operands. Denote the argument by
(x, 〈y0 . . . yn〉).
• The computation proceeds by forming the list of pairs of the left side with each mem-

ber of the right side,〈(x, y0) . . . (x, yn)〉.
• The relational predicatep is applied to each pair(x, yk).

• Separate lists are made of the pairs(x, yi) for which p(x, yi) is true and the pairs
(x, yj) for whichp(x, yj) is false.

• The result is a pair of lists(〈yi . . . 〉, 〈yj . . . 〉), with the list of right sides of the true
pairs the left and the false pairs on the right.

An illustrative example may complement this description. In this example, the rela-
tional predicate is intersection, expressed by thec pseudo-pointer, and the function bipar-
titions a list of strings based on whether they have any letters in common with a given
string.

$ fun --m="˜&cK15 (’abc’,<’ox’,’be’,’ny’,’at’>)" --c
(<’be’,’at’>,<’ox’,’ny’>)

The strings on the left in the result have non-empty intersections with’abc’ , making the
predicate true, and those on the right have empty intersections.

A more complicated way of solving the same problem withoutK15 would be by the
pointer expressionrlrDlrcFrS2XrlrjX . TheK15 pseudo-pointer is nevertheless use-
ful because it is shorter and easier to get right on the first try.

17 – distributing filter combinator

This pseudo-pointer behaves identically to the distributing bipartition pseudo-pointer, ex-
plained above, except that only the left side of the result isreturned (i.e., the list of values
satisfying the predicate).

Any pointer expression of the formfK17 is equivalent tofK15lP , but more efficient
because the false pairs are not recorded.

The following example illustrates this point.

88

$ fun --m="˜&cK17 (’abc’,<’ox’,’be’,’ny’,’at’>)" --c
<’be’,’at’>

If only the alternatives are required, they are easily obtained by negating the predicate.

$ fun --m="˜&cZK17 (’abc’,<’ox’,’be’,’ny’,’at’>)" --c
<’ox’,’ny’>

This example uses the pseudo-pointer for negation, explained on page 70.

20 – bipartition combinator

This pseudo-pointer is a simpler variation on the distributing bipartion pseudo-pointer de-
scribed on page 88. The subexpressionf appearing in the contextfK20 in a pointer ex-
pression can indicate any function computing a unary predicate. The effect is to construct
a function taking a list〈x0 . . . xn〉 and returning a pair of lists(〈xi . . . 〉, 〈xj . . . 〉). Each
of thex’s in the result is drawn from the argument〈x0 . . . xn〉, but eachxi in the left side
satisfies the predicatef , and eachxj in the right side falsifies it. Here is a simple example
of theK20 pseudo-pointer being used to bipartition a list of natural numbers according to
oddness.

$ fun --main="˜&hK20 <1,2,3,4,5>" --cast %nLW
(<1,3,5>,<2,4>)

This same effect could be achieved by the filtering pseudo-pointerF explained on page 69
and the negation pseudo-pointerZ explained on page 70.

$ fun --m="˜&hFhZFX <1,2,3,4,5>" --c %nLW
(<1,3,5>,<2,4>)

Although semantically equivalent, the latter form is less efficient because it requires two
passes through the list and evaluates the predicate twice for each item. It also contains two
copies of the code for the same predicate.

21 – reduction with empty default

This pseudo-pointer is useful for mapping a binary operation over a list. The list is par-
titioned into pairs of consecutive items, the operation is applied to each pair, and a list is
made of the results. This procedure is repeated until the list is reduced to a single item,
and that item is returned as the result. If the list is initally empty, then an empty value is
returned. To be precise, a pointer expression of the form˜& uK21 for a binary pointer op-
eratoru is equivalent tõ &iatPfaaitBPahthP uPfatt2RCaqPRahPqB , but more
efficient.

This example shows how the union pseudo-pointer (page 77) can be used to form the
union of a list of sets of natural numbers.

89

$ fun --m="˜&UK21 <{1,2},{3,4},{5},{6,3,1}>" --c %nS
{4,2,6,1,5,3}

This example shows a way of concatenating a list of strings.

$ fun --m="˜&TK21 <’foo’,’bar’,’baz’>" --c %s
’foobarbaz’

A simpler method of concatenation is by the˜&L pseudo-pointer (page 65).

23 – address map

The subexpressionf in a pointer expression of the form̃& fK23 is required to construct a
list of (key,value) pairs wherein each key is an address of the form described in connection
with the address enumeration pseudo-pointer on page 82, andfurther explained in Chap-
ter 3. All keys must be the same size. The result is a very fast function mapping keys to
values. Here is an example using the concrete syntax for address type constants.

$ fun --m="˜&pK23(<5:0,5:1,5:2,5:3,5:4>,’abcde’) 5:1" - -c
‘b

24 – partial reification

This pseudo-pointer is similar to the address map pseudo-pointer explained above but
doesn’t require the keys to be addresses. Here is an example.

$ fun --m="(map ˜&pK24(’abcde’,’vwxyz’)) ’bad’" --c
’wvy’

33 – triangle squared

The K33 pseudo-pointer operates on a list of lengthn by first making a list ofn copies
of it, and then applying its operandi times to thei item, numbering from zero. An ex-
pressionfK33 is equivalent toiiDlS fK9, but is implemented using only linearly many
applications of the operandf .

$ fun --m="˜&K33 ’0123456789’" --s
0123456789
0123456789
0123456789
0123456789
0123456789
0123456789
0123456789
0123456789
0123456789
0123456789

90

Using K33 with an explicit or implied identity function is equivalentto using iiDlS .
Using it with they pseudo-pointer (lead of a list) has this effect.

$ fun --m="˜&yK33 ’0123456789’" --s
0123456789
012345678
01234567
0123456
012345
01234
0123
012
01
0

2.5.3 Binary escapes

This section explains and demonstrates the binary escape codes listed in Table 2.7. Each of
these requires two subexpressions to precede it in the pointer expression where it is used,
unless it is at the beginning of the expression, in which casethe deconstructorslr can be
inferred.

0 – cartesian product

For theK0 pseudo-pointer, both subexpressions are expected to represent functions re-
turning lists or sets, and the result returned by the whole expression is the list of all pairs
obtained by taking the left side from the left set and the right side from the right set.
Repetitions in the input may cause repetitions in the output.

The following is an example of the cartesian product pseudo-pointer.

$ fun --m="˜&lyPrtPK0 (’abc’,<0,1,2,3>)" --c %cnXL
<(‘a,1),(‘a,2),(‘a,3),(‘b,1),(‘b,2),(‘b,3)>

The left subexpressionlyP by itself would return’ab’ from this argument, and the right
subexpressionrt would return<1,2,3> . The result is therefore the list of pairs whose
left side is one of‘a or ‘b , and whose right side is one of1, 2, or 3.

3 – substring predicate

This pseudo-pointer detects whether the result returned bythe first subexpression is a
substring of the result returned by the second, and returns atrue value (&) if it is. The
operation is polymorphic, so the subexpressions may returneither character strings, or
lists of any other type.

For a string to be a substring of some other string, it is necessary for the latter to contain
all of the characters of the former consecutively and in the same order somewhere within

91

it. Hence,’cd’ is a substring of’bcde’ , but not of’c d’ , ’dc’ or ’c’ . The empty
string is a substring of anything.

The following example illustrates this operation with the help of the distributing filter
pseudo-pointer explained in the previous section.

$ fun --m="˜&K3K17 (’cd’,<’c d’,’dc’,’bcd’,’cde’>)" --c
<’bcd’,’cde’>

4 – prefix predicate

The prefix pseudo-pointer,K4, is a special case of the substring pseudo-pointer explained
above, which requires not only the result returned by the first subexpression to be a sub-
string of the result returned by the second, but that it should appear at the beginning, as
illustrated by these examples.

$ fun --m="˜&K4 (’abc’,’abcd’)" --c %b
true
$ fun --m="˜&K4 (’abc’,’ab’)" --c %b
false
$ fun --m="˜&K4 (’abc’,’xabc’)" --c %b
false

5 – suffix predicate

TheK5 pseudo-pointer is a further variation on the substring pseudo-pointer comparable
to the prefix, above, except that the substring must appear atthe end.

$ fun --m="˜&K5 (’abc’,’abcd’)" --c %b
false
$ fun --m="˜&K5 (’abc’,’xabc’)" --c %b
true
$ fun --m="˜&K5 (’abc’,’ab’)" --c %b
false

10 – generalized intersection by comparison

The K10 pseudo-pointer provides an alternative means of specifying generalized inter-
section to the form discussed on page 87 for the frequently occurring special case of a
predicate that compares the results of two separate functions of each side. Any pointer ex-
pression of the forml fPr gPEK11can be expressed alternatively asfgK10, thus saving
several keystrokes and allowing fewer opportunities for error.

The argument is expected to be a pair of lists. The first subexpression operates on items
of the left list, and the second subexpression operates on items of the right list. The result
returned byK10 will be a subset of the left list in which the result of the firstsubexpression
for every member is equal to the result of the second subexpression for some member of
the right list.

92

This simple example shows generalized intersection for thecase of a pair of lists of
pairs of natural numbers. The criterion is that the left sideof a member of the left list has
to be equal to the right side of some member of the right list.

$ fun --m="˜&lrK10 (<(1,2),(3,4)>,<(5,1),(6,7)>)" --c
<(1,2)>

That leaves only(1,2) , because the left side,1, is equal to the right side of(5,1) .

12 – generalized difference by comparison

This pseudo-pointer is a binary form of generalized difference, wherefgK12 is equivalent
to the unary forml fPr gPEK13discussed on page 87. The predicate compares the results
of the two subexpressionsf andg applied respectively to the left and the right side of a
pair. Because the comparison and relative addressing are implicit, there is no need to write
l fPr gPEwhen the binary form is used.

A similar example to the above is relevant.

$ fun --m="˜&lrK12 (<(1,2),(3,4)>,<(5,1),(6,7)>)" --c
<(3,4)>

In this example,l plays the rôle off andr plays the rôle ofg. The pair(1,2) is deleted
because its left side is the same as the right side of one of thepairs in the other list, namely
(5,1) .

14 – distributing bipartition by comparison

The binary form of distributing bipartition, expressed byK14, performs a similar function
to the unary formK15 explained on page 88. Instead of a single subexpression represent-
ing a relational predicate, it requires two subexpressions, each operating on one side of
a pair of operands, whose results are compared. Hence, a pointer expression of the form
fgK14 is equivalent tol fPr gPEK15.

An example of this operation is the following, which compares the right side of the left
operand to the left side of the each right operand to decide where they belong in the result.

$ fun --m="˜&rlK14 ((0,1),<(1,2),(3,1),(1,4)>)" --c
(<(1,2),(1,4)>,<(3,1)>)

The items in left side of result have1 on the left, which matches the1 on the right of
(0,1) .

16 – distributing filter by comparison

The K16 pseudo-pointer is similar toK14, except that only the list items for which the
comparison is true are returned. That is,fgK16 is equivalent tofgK14lP but more
efficient.

$ fun --m="˜&rlK16 ((0,1),<(1,2),(3,1),(1,4)>)" --c
<(1,2),(1,4)>

93

18 – subset predicate

The K18 pseudo-pointer computes the subset relation on the resultsof the two pointers
or pseudo-pointers that appear as its subexpressions. The relation holds whenever every
member of the left result is a member of the right, regardlessof their ordering or multi-
plicity. If the relation holds, a value of true (&) is returned, and otherwise a0 value is
returned. These examples show the simple case of a test for the left side of a pair of sets
being a subset of the right.

$ fun --main="˜&lrK18 ({’b’,’d’},{’a’,’b’,’c’,’d’})" -- c
&
$ fun --main="˜&lrK18 ({’b’,’d’},{’a’,’b’,’c’})" --c
0

19 – proper subset predicate

The proper subset pseudo-pointer,K19 tests a similar condition to the subset pseudo-
pointer explained above, except that in order for it to hold,it requires in addition that there
be at least one member of the right result that is not a member of the left (hence making
the left a “proper” subset of the right). These examples demonstrate the distinction.

$ fun --main="˜&lrK19 ({’b’,’d’},{’a’,’b’,’c’,’d’})" -- c
&
$ fun --main="˜&lrK19 ({’b’,’d’},{’b’,’d’})" --c
0
$ fun --main="˜&lrK18 ({’b’,’d’},{’b’,’d’})" --c
&

25 – unzipped partial reification

This pseudo-pointer is similar to the partial reification pseudo-pointer explained on page
90, except that each of the subexpressionsfg in an expressioñ& fgK25 is required to
construct a list of the same length, withf constructing the list of keys andg constructing
the list of values. The result is a fast function mapping keysto values. Here is an example.

$ fun --m="(map ˜&lrK25(’abcde’,’vwxyz’)) ’cede’" --c
’xzyz’

26 – total reification

For this pseudo-pointer, the subexpressionf in the expressionfgK26 is required to con-
struct a list of(key,value) pairs, and the subexpressiong expresses a function literally. The
result is a fast function mapping keys to values, but also able to map any non-keyx to
˜& g x. Here is an example in whichg is the identiy function.

$ fun --m="(map ˜&piK26(’abcde’,’vwxyz’)) ’bean’" --c
’wzvn’

94

The input‘n is not one of the keys‘a through‘e , so it is mapped to itself in the result.
Another choice forg might beN, which would cause any unrecognized input to be taken
to an empty result.

29 – merge of lists

TheK29 pseudo-pointer takes the lists constructed by each of its two operands and merges
them by alternately selecting an item from each. It is not required that the lists have equal
length.

$ fun --m="˜&K29 (’abcde’,’vwxyz’)" --c
’avbwcxdyez’
$ fun --m="˜&rlK29 (’abcde’,’vwxyz’)" --c
’vawbxcydze’

The expressionK27K28K29 is equivalent to the identity function, because the two subex-
pressions extract alternating items from the argument, which are then merged.

32 – map to alternate list items

A function of the form˜& fgK32 with pointer subexpressionsf andg operates on a list
by applying˜& f and˜& g alternately to successive items and making a list of the results.
That is, a list〈x0, x1, x2, x3 . . . 〉 is mapped to〈˜& f x0,˜& g x1,˜& f x2,˜& g x3 . . . 〉. This
example shows alternately reversing (x) and taking tails (t) of items in a list of strings.

$ fun --m="˜&xtK32 <’abc’,’def’,’ghi’,’jkl’>" --s
cba
ef
ihg
kl

34 - 43 – tree tagging

The escape codes from 34 through 43 support the simple and often needed operation of
uniquely labeling or numbering the nodes in a tree, which crops up occasionally in certain
applications and would be otherwise embarrassingly difficult to express in this language.3

These pseudo-pointers are meant to appear in a pointer expression such as̃& fgKnn,
whose left subexpressionf would extract a list from the argument, and whose right subex-
pressiong would extract a tree. The result associated with the combination is a tree having
the same shape as the one extracted byg, but with nodes constructed as pairs featuring
items from the given list on the left and corresponding nodesfrom the given tree on the
right. In this sense, these operations are similar to that ofzipping a pair of lists together to
obtain a list of pairs (as described on page 75), with a tree playing the rôle of the right list.

3The interested reader is referred topsp.fun in the compiler source distribution for their implementations, or to the output of any
command of the formfun --m="˜&K nn" --decompile using one of the codes in this range.

95

Listing 2.5 anm-ary tree of natural numbers in〈root〉 ˆ:< 〈subtree〉 . . .> format, with0 for the empty tree

#binary+

l = ’abcdefghijklmnopqrstuvw’

t =

204ˆ: <
242ˆ: <

134ˆ: <>,
0,
184ˆ: <

289ˆ: <
753ˆ: <>,
561ˆ: <>,
325ˆ: <>,
852ˆ: <>,
341ˆ: <>>,

364ˆ: <>>,
263ˆ: <>>,

352ˆ: <
154ˆ: <

622ˆ: <
711ˆ: <>,
201ˆ: <>,
153ˆ: <>,
336ˆ: <>,
826ˆ: <>>,

565ˆ: <>>,
439ˆ: <>,
304ˆ: <>>>

96

The tree tagging pseudo-pointers operate on trees and listsof any type, but the lexically
ordered list of lower case letters and the tree of natural numbers shown in Listing 2.5 are
used as a running example. As indicated in previous examples, this notation for trees
shows the root on the left of eachˆ: operator, and a comma separated list of subtrees
enclosed by angle brackets on the right. Leaf nodes have an empty list of subtrees, written
<>, and empty subtrees, if any, are represented as null values that can be written as0.

By way of motivation, imagine that a graphical depiction of the tree in Listing 2.5 is to
be rendered by a tool such as Graphviz,4 which requires an input specification of a graph
consisting of set of vertices and a set of edges. Given a binary file t obtained by compiling
the code in Listing 2.5, a simple way of extracting the vertices would be like this,

$ fun t --m="˜&dvLPCo t" --c
<

204,
242,
134,
184,
289,
753,
561,
325,
852,
341,
364,
263,
352,
154,
622,
711,
201,
153,
336,
826,
565,
439,
304>

and the edges like this.5

$ fun t --m="˜&ddviFlS2DviFrSL3TXor t" --c
<

(204,242),
(204,352),

4http://www.graphviz.org
5decompilation may be instructive

97

(242,134),
(242,184),
(242,263),
(184,289),
(184,364),
(289,753),
(289,561),
(289,325),
(289,852),
(289,341),
(352,154),
(352,439),
(352,304),
(154,622),
(154,565),
(622,711),
(622,201),
(622,153),
(622,336),
(622,826)>

However, this approach depends on the assumption of each node in the tree storing a
unique value, which might not hold in practice. To address this issue, a unique tag could
easily be associated with each node in the list of nodes like this,

$ fun t l --m="˜&p(l,˜&dvLPCo t)" --c
<

(‘a,204),
(‘b,242),
(‘c,134),
(‘d,184),
(‘e,289),
(‘f,753),
(‘g,561),
(‘h,325),
(‘i,852),
(‘j,341),
(‘k,364),
(‘l,263),
(‘m,352),
(‘n,154),
(‘o,622),
(‘p,711),
(‘q,201),
(‘r,153),

98

(‘s,336),
(‘t,826),
(‘u,565),
(‘v,439),
(‘w,304)>

but doing so brings us no closer to expressing the list of edges unambiguously, which is
where tree tagging pseudo-pointers come in. If we try the following,

$ fun t l --m="˜&K36(l,t)" --c %cnXT
(‘a,204)ˆ: <

(‘b,242)ˆ: <
(‘c,134)ˆ: <>,
˜&V(),
(‘d,184)ˆ: <

(‘e,289)ˆ: <
(‘f,753)ˆ: <>,
(‘g,561)ˆ: <>,
(‘h,325)ˆ: <>,
(‘i,852)ˆ: <>,
(‘j,341)ˆ: <>>,

(‘k,364)ˆ: <>>,
(‘l,263)ˆ: <>>,

(‘m,352)ˆ: <
(‘n,154)ˆ: <

(‘o,622)ˆ: <
(‘p,711)ˆ: <>,
(‘q,201)ˆ: <>,
(‘r,153)ˆ: <>,
(‘s,336)ˆ: <>,
(‘t,826)ˆ: <>>,

(‘u,565)ˆ: <>>,
(‘v,439)ˆ: <>,
(‘w,304)ˆ: <>>>

we get tags attached in place on the tree before doing anything else. We could then discard
the original node values while preserving the tree structure and guaranteeing uniqueness,

$ fun t l --m="˜&K36dlPvVo(l,t)" --c %cT
‘aˆ: <

‘bˆ: <
‘cˆ: <>,
˜&V(),
‘dˆ: <

ˆ: (

99

‘e,
<‘fˆ: <>,‘gˆ: <>,‘hˆ: <>,‘iˆ: <>,‘jˆ: <>>),

‘kˆ: <>>,
‘lˆ: <>>,

‘mˆ: <
‘nˆ: <

ˆ: (
‘o,
<‘pˆ: <>,‘qˆ: <>,‘rˆ: <>,‘sˆ: <>,‘tˆ: <>>),

‘uˆ: <>>,
‘vˆ: <>,
‘wˆ: <>>>

and proceed as before to extract the adjacency relation.

$ fun t l --m="˜&K36dlPvVoddviFlS2DviFrSL3TXor(l,t)" --c
<

(‘a,‘b),
(‘a,‘m),
(‘b,‘c),
(‘b,‘d),
(‘b,‘l),
(‘d,‘e),
(‘d,‘k),
(‘e,‘f),
(‘e,‘g),
(‘e,‘h),
(‘e,‘i),
(‘e,‘j),
(‘m,‘n),
(‘m,‘v),
(‘m,‘w),
(‘n,‘o),
(‘n,‘u),
(‘o,‘p),
(‘o,‘q),
(‘o,‘r),
(‘o,‘s),
(‘o,‘t)>

The other pseudo-pointer escape codes in the range 34 through 43 differ in the order of
traversal or by excluding terminal or non-terminal nodes, as summarized in Table 2.8. The
ten alternatives arise as follows.

• A traversal can be either depth first or breadth first.

100

depth first

breadth first preorder postorder inorder

leaves 41 34 34 34
trunks 42 35 37 39
both 43 36 38 40

Table 2.8: summary of tree tagging pseudo-pointer escape codes

– breadth first traversals tag nodes in level order starting from the root

– depth first traversals apply a contiguous sequence of tags toeach subtree

• If it’s depth first, it can be either preorder, postorder, or inorder.

– preorder tags the root first, then the subtrees

– postorder tags the subtrees first, then the root

– inorder tags the first subtrree first, then the root, and then the remaining subtrees

• Whatever method of traversal is used, it can apply to the whole tree, just the leaves,
or just the non-terminal nodes, but depth first traversals applying only to the leaves
are independent of the order.

Empty subtrees are almost always ignored, with the one exception being the case of
an inorder traversal where the first subtree is empty. Although the empty subtree is not
tagged, its presence will cause the root to be tagged ahead ofthe remaining subtrees, as
these examples show.

$ fun --m="˜&K40(’xy’,’a’ˆ:<’b’ˆ:<>>)" --c %csXT
(‘y,’a’)ˆ: <(‘x,’b’)ˆ: <>>
$ fun --m="˜&K40(’xy’,’a’ˆ:<0,’b’ˆ:<>>)" --c %csXT
(‘x,’a’)ˆ: <˜&V(),(‘y,’b’)ˆ: <>>

An example of each of each case from Table 2.8 is shown in Tables 2.9 through 2.11.
In cases where the number of relevant nodes int is less than the length of the listl , the
list has been truncated. Truncation is not automatic, and must be done explicitly before the
tagging operation is attempted, or a diagnostic message of “bad tag ” will be reported.
However, it is a simple matter to make a list of the leaves or the non-terminal nodes in
a tree using the expressions˜&vLPiYo and˜&vdvLPCBo , respectively, which can be
used to truncate the list of tags by something like this

˜&llSPrK34(zipt(l,˜&vLPiYo t),t)

wherezipt is the standard library function for truncating zip.

101

whole tree (K36) just leaves (K34) just trunks (K35)

(‘a,204)ˆ: <
(‘b,242)ˆ: <

(‘c,134)ˆ: <>,
0,
(‘d,184)ˆ: <

(‘e,289)ˆ: <
(‘f,753)ˆ: <>,
(‘g,561)ˆ: <>,
(‘h,325)ˆ: <>,
(‘i,852)ˆ: <>,
(‘j,341)ˆ: <>>,

(‘k,364)ˆ: <>>,
(‘l,263)ˆ: <>>,

(‘m,352)ˆ: <
(‘n,154)ˆ: <

(‘o,622)ˆ: <
(‘p,711)ˆ: <>,
(‘q,201)ˆ: <>,
(‘r,153)ˆ: <>,
(‘s,336)ˆ: <>,
(‘t,826)ˆ: <>>,

(‘u,565)ˆ: <>>,
(‘v,439)ˆ: <>,
(‘w,304)ˆ: <>>>

204ˆ: <
242ˆ: <

(‘a,134)ˆ: <>,
0,
184ˆ: <

289ˆ: <
(‘b,753)ˆ: <>,
(‘c,561)ˆ: <>,
(‘d,325)ˆ: <>,
(‘e,852)ˆ: <>,
(‘f,341)ˆ: <>>,

(‘g,364)ˆ: <>>,
(‘h,263)ˆ: <>>,

352ˆ: <
154ˆ: <

622ˆ: <
(‘i,711)ˆ: <>,
(‘j,201)ˆ: <>,
(‘k,153)ˆ: <>,
(‘l,336)ˆ: <>,
(‘m,826)ˆ: <>>,

(‘n,565)ˆ: <>>,
(‘o,439)ˆ: <>,
(‘p,304)ˆ: <>>>

(‘a,204)ˆ: <
(‘b,242)ˆ: <

134ˆ: <>,
0,
(‘c,184)ˆ: <

(‘d,289)ˆ: <
753ˆ: <>,
561ˆ: <>,
325ˆ: <>,
852ˆ: <>,
341ˆ: <>>,

364ˆ: <>>,
263ˆ: <>>,

(‘e,352)ˆ: <
(‘f,154)ˆ: <

(‘g,622)ˆ: <
711ˆ: <>,
201ˆ: <>,
153ˆ: <>,
336ˆ: <>,
826ˆ: <>>,

565ˆ: <>>,
439ˆ: <>,
304ˆ: <>>>

Table 2.9: three ways of pre-order tagging the tree in Listing 2.5 with letters of the alphabet

102

whole tree (K43) just leaves (K41) just trunks (K42)

(‘a,204)ˆ: <
(‘b,242)ˆ: <

(‘d,134)ˆ: <>,
0,
(‘e,184)ˆ: <

(‘j,289)ˆ: <
(‘n,753)ˆ: <>,
(‘o,561)ˆ: <>,
(‘p,325)ˆ: <>,
(‘q,852)ˆ: <>,
(‘r,341)ˆ: <>>,

(‘k,364)ˆ: <>>,
(‘f,263)ˆ: <>>,

(‘c,352)ˆ: <
(‘g,154)ˆ: <

(‘l,622)ˆ: <
(‘s,711)ˆ: <>,
(‘t,201)ˆ: <>,
(‘u,153)ˆ: <>,
(‘v,336)ˆ: <>,
(‘w,826)ˆ: <>>,

(‘m,565)ˆ: <>>,
(‘h,439)ˆ: <>,
(‘i,304)ˆ: <>>>>

204ˆ: <
242ˆ: <

(‘a,134)ˆ: <>,
0,
184ˆ: <

289ˆ: <
(‘g,753)ˆ: <>,
(‘h,561)ˆ: <>,
(‘i,325)ˆ: <>,
(‘j,852)ˆ: <>,
(‘k,341)ˆ: <>>,

(‘e,364)ˆ: <>>,
(‘b,263)ˆ: <>>,

352ˆ: <
154ˆ: <

622ˆ: <
(‘l,711)ˆ: <>,
(‘m,201)ˆ: <>,
(‘n,153)ˆ: <>,
(‘o,336)ˆ: <>,
(‘p,826)ˆ: <>>,

(‘f,565)ˆ: <>>,
(‘c,439)ˆ: <>,
(‘d,304)ˆ: <>>>

(‘a,204)ˆ: <
(‘b,242)ˆ: <

134ˆ: <>,
0,
(‘d,184)ˆ: <

(‘f,289)ˆ: <
753ˆ: <>,
561ˆ: <>,
325ˆ: <>,
852ˆ: <>,
341ˆ: <>>,

364ˆ: <>>,
263ˆ: <>>,

(‘c,352)ˆ: <
(‘e,154)ˆ: <

(‘g,622)ˆ: <
711ˆ: <>,
201ˆ: <>,
153ˆ: <>,
336ˆ: <>,
826ˆ: <>>,

565ˆ: <>>,
439ˆ: <>,
304ˆ: <>>>

Table 2.10: three ways of level-order tagging the tree in Listing 2.5 with letters of the alphabet

103

coverage

order whole tree (K38/K40) just trunks (K37/K39)

postorder

(‘w,204)ˆ: <
(‘k,242)ˆ: <

(‘a,134)ˆ: <>,
0,
(‘i,184)ˆ: <

(‘g,289)ˆ: <
(‘b,753)ˆ: <>,
(‘c,561)ˆ: <>,
(‘d,325)ˆ: <>,
(‘e,852)ˆ: <>,
(‘f,341)ˆ: <>>,

(‘h,364)ˆ: <>>,
(‘j,263)ˆ: <>>,

(‘v,352)ˆ: <
(‘s,154)ˆ: <

(‘q,622)ˆ: <
(‘l,711)ˆ: <>,
(‘m,201)ˆ: <>,
(‘n,153)ˆ: <>,
(‘o,336)ˆ: <>,
(‘p,826)ˆ: <>>,

(‘r,565)ˆ: <>>,
(‘t,439)ˆ: <>,
(‘u,304)ˆ: <>>>

(‘g,204)ˆ: <
(‘c,242)ˆ: <

134ˆ: <>,
0,
(‘b,184)ˆ: <

(‘a,289)ˆ: <
753ˆ: <>,
561ˆ: <>,
325ˆ: <>,
852ˆ: <>,
341ˆ: <>>,

364ˆ: <>>,
263ˆ: <>>,

(‘f,352)ˆ: <
(‘e,154)ˆ: <

(‘d,622)ˆ: <
711ˆ: <>,
201ˆ: <>,
153ˆ: <>,
336ˆ: <>,
826ˆ: <>>,

565ˆ: <>>,
439ˆ: <>,
304ˆ: <>>>

inorder

(‘l,204)ˆ: <
(‘b,242)ˆ: <

(‘a,134)ˆ: <>,
0,
(‘i,184)ˆ: <

(‘d,289)ˆ: <
(‘c,753)ˆ: <>,
(‘e,561)ˆ: <>,
(‘f,325)ˆ: <>,
(‘g,852)ˆ: <>,
(‘h,341)ˆ: <>>,

(‘j,364)ˆ: <>>,
(‘k,263)ˆ: <>>,

(‘u,352)ˆ: <
(‘s,154)ˆ: <

(‘n,622)ˆ: <
(‘m,711)ˆ: <>,
(‘o,201)ˆ: <>,
(‘p,153)ˆ: <>,
(‘q,336)ˆ: <>,
(‘r,826)ˆ: <>>,

(‘t,565)ˆ: <>>,
(‘v,439)ˆ: <>,
(‘w,304)ˆ: <>>>

(‘d,204)ˆ: <
(‘a,242)ˆ: <

134ˆ: <>,
0,
(‘c,184)ˆ: <

(‘b,289)ˆ: <
753ˆ: <>,
561ˆ: <>,
325ˆ: <>,
852ˆ: <>,
341ˆ: <>>,

364ˆ: <>>,
263ˆ: <>>,

(‘g,352)ˆ: <
(‘f,154)ˆ: <

(‘e,622)ˆ: <
711ˆ: <>,
201ˆ: <>,
153ˆ: <>,
336ˆ: <>,
826ˆ: <>>,

565ˆ: <>>,
439ˆ: <>,
304ˆ: <>>>

Table 2.11: four other ways of depth first tagging the tree in Listing 2.5 with letters of the alphabet

104

2.6 Remarks

Having read this chapter, some readers may be reconsideringtheir decision to learn the
language, perhaps even suspecting it of being an elaborate practical joke in the same vein
asbrainf *** or other esoteric languages. However, nothing could be further from the
truth, and there is good reason to persevere.

If the material in this chapter seems too difficult to remember, a ready reminder is
always available by the command

$ fun --help pointers

If you have more serious reservations, your documentation engineer can only recom-
mend imagining the view from the top of the learning curve, where you are lord or lady
of all you survey. The relentless toil over glue code for every minor text or data transfor-
mation is a fading memory. The idea of poring over a thick manual of API specifications
full of functions with names likegetNextListElement and half a dozen parameters
seems ludicrous to you. No longer subject to such distractions, your decrees issue effort-
lessly from your fingers as pseudo-pointer expressions at the speed of thought. They either
work on the first try or are easily corrected by a quick inspection of the decompiled code.
In view of what you’re able to accomplish, it is as if decades of leisure time have been
added to your lifespan.

105

Cool down, big guy. I already told you, you’re not my type.

Curdy’s last line inStreets of Fire

3
Type specifications

The emphasis on type expressions to the tune of a whole chapter may be surprising for an
untyped language. In fact, they are no less important than ina strongly typed language,
but they are used differently.

• One use already seen in many previous examples is to cast binary data to an appro-
priate printing format.

• Another important use is for debugging. The nearest possible equivalent to setting a
breakpoint and examining the program state is accomplishedby a strategically posi-
tioned type expression.

• Another use is for random test data generation during development, whereby valid
instances of arbitrarily complex data structures can be created to exercise the code
and detect errors.

• At the developer’s option, type expressions can even specify run-time validation of
assertions in production code.

• Type expressions in record declarations can be used to implydefault values or initial-
ization functions for the fields without explicitly coding them.

• Certain pattern matching or classification predicates are elegantly expressed in terms
of type expressions using tagged unions.

• Type expressions are first class objects that can be stored ormanipulated like other
data, thereby affording the means for self-describing datastructures.

Type expressions also serve the traditional purpose of a formal source level documen-
tation that does not contribute directly to code generation. By being especially concise in
this language, they are superbly effective in this capacitybecause they can be sprinkled

106

liberally and unobtrusively through the code. This benefit often comes freely as a byprod-
uct of their other uses, when they are rephrased as comments after the initial development
phase.

The things they don’t do are legislation and policy making. Users are very welcome
to write badly typed code if they so desire, or to ignore the type system completely. Why
does the compiler let them? Aside from the obvious answer that it isn’t their nanny, the
alternative is to restrict the language to trivial applications with decidable type checking
problems, which would drastically curtail its utility.1

3.1 Primitive types

Although they are not computationally universal, type expressions are a language in them-
selves. They have a simple grammar involving nullary, unary, and binary operators using
a postfix notation, similarly to pointer expressions described in the previous chapter. Type
expressions also provide mechanisms for self-referentialstructures and for combining lit-
eral and symbolic names, all of which require explanation. It is therefore best to postpone
the more challenging concepts while dispensing with the easy ones.

Primitive types are the nullary operators in the language oftype expressions, and they
are the subject of this section. They can be understood independently of the rest of the
chapter. As in other languages, primitive types are the basic building blocks of other data
structures, and have well defined concrete representationsand syntactic conventions. Un-
like some other languages, this one includes primitive types whose representations are not
necessarily fixed sizes, such as arbitrary precision numbers. Functions are also a primitive
type, and are not distinguished by the types of their input oroutput.

The type expression for a primitive type is of the form%t, wheret is a single letter,
usually lower case. A list of primitive types is shown in Table 3.1. The table also indicates
that for some primitive types, a parsing function can be automatically generated, and shows
an example instance of the type in the concrete syntax recognized by the compiler and by
the parsing function, if any.

3.1.1 Parsing functions

Before moving on to the discussion of specific primitive types, we can take note of the
usage of parsing functions. For any of the primitive type expressions%a, %c, %e, %E, %n,
%q, %s, %x, %v, or %z, there is a corresponding parsing function that can be expressed as
%ap, %cp, etcetera, by appending a lower casep to the expression. The parsing function
takes a list of character strings to an instance of the type.

An example of a parsing function is the following, which transforms a list of character
strings containing a decimal number to the standard IEEE floating point representation.

$ fun --main="%ep <’123.456’>" --cast %e
1.234560e+02

1Don’t take my word for it. Read the opening soliloquy in any textbook on programming languages and weep.

107

type parser example

a address yes 15:4924
b boolean true
c character yes ‘c
e standard floating point yes 4.257736e+00
E mpfr floating point yes -2.625948E+00
f function compose(reverse,transpose)
g general data (5,<’N’>)
j complex floating point 5.089e-01+9.522e+00j
n natural number yes 21091921548812
o opaque 140%oi&
q rational yes -1488159707841741/21667
s character string yes ’2.I$yTgKs4sqC’
t transparent (((0,(((&,0),0),(&,&))),0),0)
v binary converted decimal yes -21091921548812_
x raw data yes -{zxyr{tYGG\sFx<<W{DQVD=B<}-
y self-describing (-{iUn<}-,-1530566520784/19)
z integer yes -21091921548812

Table 3.1: primitive types

• Parsing functions are useful for operating on contents of text files and command line
parameters.

• They pertain only to this set of primitive types, not to type expressions in general.

• When thep is appended to a type expression, it is no longer a type expression, but a
function, and can be used in any context where a function is appropriate.

3.1.2 Specifics

The remainder of this section discusses each primitive typefrom Table 3.1 in greater detail.

a – Address

The address type is intended as a systematic notation for deconstructing pointers, as dis-
cussed in the previous chapter. Recall that a deconstructoris a function that extracts a
particular field from an instance of an aggregate type such asa tuple or a list.

Addresses are denoted by a pair of literal decimal constantsseparated by a colon, with
no intervening white space. For an address of the formn : m, the numberm may range
from zero to2n − 1 inclusive.

The numbering convention used for addresses is best motivated by an illustration. In
Figure 3.1, a balanced binary tree has a depth ofn and leaves numbered from 0 to2n − 1.
A tree of this form would be the most appropriate container for a set of data requiring fast
(logarithmic time) non-sequential access.

108

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 3.1: a balanced binary tree of depthn with leaves numbered from 0 to2n − 1

Figure 3.2: descending twice to the right and twice to the left, the address 4:12 points to the twelfth leaf in a
tree of depth 4 (cf. Figure 3.1)

The diagram shown in Figure 3.2 depicts the specific address4:12 . This figure is also
a tree, albeit with only one branch descending from each node. There is nevertheless a
distinction between whether a branch descends to the left orto the right. The distinction
can be seen more clearly by casting the address to a differenttype.

$ fun --main="4:12" --cast %t
(0,(0,((&,0),0)))

Here we see a leaf node inside of four nested pairs, located onthe right sides of the outer
two and the left sides of the inner two.

These observations are true of address type instances in general.

• An addressn : m corresponds to a tree with at most one descendent from each node.

• The total number of edges in the tree isn.

• Counting a left branch as 0 and a right branch as 1, the sequence of branches from
the root downward expressesm in binary, with the most significant bit first.

• Following the same path from the root of a fully populated balanced binary tree of
depthn would lead to them-th leaf, numbered from 0 at the left.

Note thatn : m is metasyntax. In the languagen andm must be literal decimal constants.

109

b – Boolean

The boolean type has two instances, represented as((),()) and() for true and false,
respectively. These can also be written as& and0.

When a value is cast as a boolean type for printing, it will be printed either astrue or
false . Strictly speaking these are identifiers rather than literal constants, and will require
the standard librarystd.avm or cor.avm to be imported in order to be recognized
during compilation. However, these libraries are importedautomatically by default.

c – Character

The character type has 256 instances represented as arbitrarily chosen nested tuples of()
on the virtual machine level. The representation is designed to allow lexical comparison
of characters by the same algorithm as string comparison, and to ensure that no character
representation coincides with that of any numeric type, boolean, or character string.

For printable characters, literal character constants canbe expressed by the character
preceded by a back quote, as in‘a , ‘b and‘c . For unprintable characters such as controls
and tabs, an expression like˜&h skip/9 characters can be used for the character
whose ISO code is 9. The constantcharacters is the list of all 256 characters in lexical
order, and is declared in the standard librarystd.avm .

When a value is cast as a character type for printing, the backquote form will be used
if the character is printable, but otherwise an expression like 127%cOi& is generated.
The initial decimal number is the ISO code of the character, and the rest of the expression
follows the convention used for display of opaque types explained later in this chapter. This
latter form can also be used as alternative to the expressioninvolving thecharacters
constant described above.

e – Standard floating point

Double precision floating point numbers in the standard IEEErepresentation are instances
of thee primitive type.

A full complement of operations on floating point numbers is provided by external
libraries optionally linked with the virtual machine, and documented in theavram refer-
ence manual.

$ fun --main="math..sqrt 3." --cast %e
1.732051e+00

As noted elsewhere in this manual, the ellipses operator invokes virtual machine library
functions by name.

When data are cast to floating point numbers for printing, as above, an exponential
notation with seven digits displayed is used by default. Display in user specified formats
following C language conventions is also possible through the use of library functions.

$ fun --m="math..asprintf(’%0.2f’,1.23456)" --c
’1.23’

110

When strings are parsed to floating point numbers with the%ep parsing function, it
is done by the host machine’s C library functionstrtod , so any C language floating
point format is acceptable. However, floating point numbersappearing in program source
text must be in decimal, and either a decimal point or an exponent is obligatory to avoid
ambiguity with natural numbers. If exponential notation isused, thee must be lower case
to distinguish the number from thempfr type, explained below. There are no implicit
conversions between floating point and natural numbers.

Bit level manipulation of floating point numbers is possiblefor users who are familiar
with the IEEE standard, but it is not conveniently supportedin the language. A floating
point number may be cast losslessly to a list of eight character representations, where each
character’s ISO code is the corresponding byte in the binaryrepresentation.

$ fun --m="math..sqrt 3." --c %cL
<

170%cOi&,
‘L,
‘X,
232%cOi&,
‘z,
182%cOi&,
251%cOi&,
‘?>

E – mpfr floating point

On platforms where the virtual machine has been built with support for thempfr library,
a type of arbitrary precision floating point numbers is available in the language, along with
an extensive collection of relevant numerical functions, including transcendental functions
and fundamental constants. These numbers are not binary compatible with standard float-
ing point numbers, but explicit conversions between them are supported. Thempfr library
functions documented in theavram reference manual can be invoked directly using the
ellipses operator.

$ fun --m="mp..exp 2.3E0" --c %E
9.974182E+00

For a number to be specified in this format in a program source text, it should be writ-
ten in exponential notation with an upper caseE to ensure correct disambiguation. That is,
1.0E0 denotes a number inmpfr format, but1.0e0 and1.0 denote numbers in stan-
dard floating point format. If a number is explicitly parsed by thempfr parsing function
%Ep, then this convention does not apply.

Calculations with numbers inmpfr format do not guarantee exact answers, but in non-
pathological cases, the roundoff error can be made arbitrarily small by a suitable choice of
precision (up to the available memory on the host). By default, 160 bits of precision are
used, which is roughly equivalent to the number of digits shown below.

111

$ fun --m="˜&iNC ..mp2str 3.14E0" --s
3.1400E +00

There are several ways of controlling the precision.

• If a literal mpfr constant is expressed in a program source text or in the argument to
the%Epparsing function with more than the number of digits corresponding to 160
bit precision, the commensurate precision is inferred.

• Functions returning fundamental constants, such asmpfr..pi , or random numbers,
such asmpfr..urandomb , take a natural number as an argument and return a
number with that precision.

• The mpfr..grow function takes a pair of operands(x, n) to a copy ofx padded
with n additional zero bits, for anmpfr numberx and a natural numbern.

• Thempfr..shrink function returns a truncated copy.

When the precision of a number is established, all subsequent calculations depending
on it will automatically use at least the precision of that number. If two numbers in the
same calculation have different precisions, the greater precision is used. Of course, a chain
is only as strong as its weakest link, so not all bits in the answer are theoretically justified
in such a case.

Low level manipulation ofmpfr numbers is for hackers only. As a starting point, try
casting one to the type%nbnXXbnXcLXX.

f – Function

Functions are a primitive type in the language, and all functions are the same type. That
doesn’t mean all functions have the same input and output types, but only that this in-
formation is not part of a function’s type. This convention allows more flexible use of
functions as components of other data structures, such as lists, trees and records, than is
possible with more constrained type disciplines. For example, if the language insisted that
all functions in a list should have the same input and output types, it would be practically
useless for modelling a pipeline or process network as a listof functions.

A value cast to a function type for printing will be expressedin terms of a small set of
mnemonics defined in thecor.fun library distributed with the compiler (Listing 3.1),
whose meanings are documented in theavram reference manual. This form very closely
follows the underlying virtual machine code representation. Strictly speaking, an under-
standing of the virtual machine code semantics is not a prerequisite for use of the language.
However, it may be helpful for users wishing to verify their understanding of advanced lan-
guage features by seeing them expressed in terms of more basic ones for small test cases.

The default output format for functions is actually a subsetof the language, and in
principle could be pasted into a file and compiled, assuming either thecor or std library
is imported. However, functions expressed in this format will be too large and complicated
to be of any use as an aid to intuition in non-trivial cases. A useful technique to avoid

112

Listing 3.1 all programs expressible in the language can be reduced to some combination of these operations

#comment -[
This module provides mnemonics for the combinators and buil t in
functions used by the virtual machine. E.g., compose(f,g) = ((f,g),0)
which the virtual machine interprets as the composition of f and g.

Copyright (C) 2007-2010 Dennis Furey]-

#library+

constants

false = 0
true = &

first order functions

cat = (&,&)
weight = (&,(&,(0,&)))
member = (&,(&,0))
compare = &
reverse = (&,(0,&))
version = (&,(&,(0,(&,0))))
transpose = (&,(&,&))
distribute = ((&,0),0)

second order functions

fan = ((((0,&),0),0),(((((&,0),0),(0,&)),0),((0,&),0)))
map = ((((0,&),0),0),(((((&,0),0),(0,&)),0),(&,0)))
sort = ((((0,&),0),0),(((((0,&),0),(&,0)),0),((0,&),0)))
race = (((&,&),((((0,(&,(&,0))),0),0),(0,&))),0)
guard = (((((&,0),0),(0,(&,0))),0),(0,(0,&)))
recur = (((((((&,0),0),(0,&)),0),(&,0)),0),(&,0))
field = (((&,0),0),(0,&))
refer = (((((((0,&),0),(&,0)),0),(&,0)),0),(&,0))
have = ((((0,&),0),0),(&,((0,(((&,0),0),(0,&))),&)))
assign = (((((0,&),0),(&,0)),0),(&,0))
reduce = ((((0,&),0),0),(((0,&),0),(&,0)))
mapcur = (((&,&),((((0,(&,(&,0))),0),0),(((0,&),0),(& ,0)))),0)
filter = (((&,&),((((0,(&,&)),0),0),(((0,&),0),(&,0)))),0)
couple = (((((0,(&,0)),0),(&,0)),0),(0,(0,&)))
compose = (((0,&),0),(&,0))
iterate = (((&,&),((((0,(&,&)),0),0),(0,&))),0)
library = ((((0,&),0),0),(((0,&),0),((0,&),0)))
interact = ((((0,&),0),0),((((0,(&,0)),0),0),(((((&,0),0),(0,&)),0),(&,0))))
transfer = (((&,&),((((0,(&,(0,&))),0),0),(0,&))),0)
constant = (((((&,0),0),(0,&)),0),(&,0))
conditional = (0,(((&,0),(0,(&,0))),(0,(0,&))))
note = (((&,&),((((0,(&,(&,(0,&)))),0),0),(0,&))),0)
profile = (((&,&),((((0,(&,(&,&))),0),0),(((0,&),0),(&,0)))),0)

113

being overwhelmed with output when displaying data structures containing functions as
components is to use the “opaque” type operator,O, explained later in this chapter.

For hackers only: Functions are first class objects in Ursala and can be manipulated mean-
ingfully by anyone taking sufficient interest to learn the virtual machine semantics. A
technique that may be helpful in this regard is to transform them to a tree representation of
type %sfOZXT by way of the disassembly function%fI , perform any desired transfor-
mations, and then reassemble them by˜&K6 or ˜&drPvHo .

Casual attempts at program transformation are unlikely to improve on the compiler’s
code optimization facilities, or to add any significant capabilities to the language.2

g – General data

This type includes everything, but when data are cast to thistype for printing, an attempt
is made to print them as strings, characters, natural numbers, booleans, or floating point
numbers in lists or tuples up to ten levels deep. If this attempt fails, they are printed as raw
data, similarly to thex type.

• This is the type that is assumed when the--cast command line option is used
without a parameter.

• If this type is used for a field in a record, it provides a limited form of polymorphism.

• The type inference algorithm used during printing is worst case exponential, and
should be used with caution for anything larger than about 500 quits.3 The worst
case arises when the data don’t conform to the above mentioned types.

j – Complex floating point

Complex numbers are represented in a compatible format withthe C language ISO stan-
dard and with various libraries, such asfftw andlapack . That is, they are two contigu-
ously stored IEEE double precision floating point numbers, with the real part first.

When data are cast to complex numbers for printing, the format is always exponen-
tial notation with four digits displayed for each of the realpart and the imaginary part.
However, complex numbers in a program source text may be anything conforming to the
syntax〈re〉[+|-]〈im〉[i |j] without embedded spaces. The real and imaginary parts must
be C style decimal floating point numbers in fixed or exponential notation, and decimal
points are optional. Thei or j must be lower case and must be the last character.

Standard operations on complex numbers are provided by thecomplex library as part
of the virtual machine, such as complex division.

$ fun --m="c..div(3-4i,1+2j)" --c %j
-1.000e+00-2.000e+00j

2How’s that for throwing down the gauntlet?
3quaternary digits; 1 quit= 2 bits

114

Although there are usually no automatic type conversions inthe language, standard
floating point numbers are automatically promoted to complex numbers if they are used as
an argument to any of the functions in thecomplex library, as this example shows.

$ fun --m="c..div(1.,0+1j)" --c %j
0.000e+00-1.000e+00j

A complex number can be cast to a list of characters, which will always be of length 16.
The first eight characters in the list are the representationof the real part and the second
eight are the representation of the imaginary part, as explained in connection with standard
floating point types. There should not be any need for low level manipulations of complex
numbers under normal circumstances.

$ fun --m="2.721-7.489j" --c %cL
<

248%cOi&,
‘S,
227%cOi&,
165%cOi&,
155%cOi&,
196%cOi&,
5%cOi&,
‘@,
219%cOi&,
249%cOi&,
‘˜,
‘j,
188%cOi&,
244%cOi&,
29%cOi&,
192%cOi&>

n – Natural number

Natural numbers are encoded in binary as lists of booleans with the least significant bit
first. The representation of the number0 is the empty list, that of1 is the list<&>, that
of two is <0,&> , and so on with<&,&> , <0,0,&> , and<&,0,&> ad infinitum. The
number of bits is limited only by the available memory on the host. There is no provision
for a sign bit, because these numbers are strictly non-negative. The most significant bit is
always&, so the representation of any number is unique. An example ofthe representation
can be seen easily as follows.

$ fun --m=1252919 --c %n
1252919
$ fun --m=1252919 --c %tL
<&,&,&,0,&,&,0,0,0,&,&,&,&,0,0,0,&,&,0,0,&>

115

Listing 3.2 hexadecimal printing of naturals by bit twiddling

#import std
#import nat

#library+

hex = ||’0’! --(˜&y 16); block4; * yx -$digits--’abcdef’ pad0 iota16

Some applications may take advantage of this representation to perform bit level op-
erations. For example, the function˜&iNiCB doubles any natural number, the function
˜&itB performs truncating division by two, and the function˜&ihB tests whether a num-
ber is odd. The check for non-emptiness can be omitted to savetime if it is known that the
number is non-zero.

$ fun --m="˜&NiC 1252919" --c %tL
<0,&,&,&,0,&,&,0,0,0,&,&,&,&,0,0,0,&,&,0,0,&>
$ fun --m="˜&NiC 1252919" --c %n
2505838

It is also possible to treat natural numbers as an abstract type by using only the functions
defined in thenat library to operate on them.

$ fun --m="double 1252919" --c %n
2505838

Natural numbers expressed in decimal in a source text are converted to this representa-
tion by the compiler. Anything cast as a natural number is printed in decimal. However, it
is always possible to print them in other ways, such as hexadecimal as shown in Listing 3.2.
Some language features used in this listing will require further reading.

o – Opaque

This type includes everything, and is used mainly as the typeof an untyped field in a record
or other data structure. When a value is displayed as an opaque type, no information about
it is revealed except its size measured in quarternary digits (quits).4

$ fun --m="’allworkandnoplaymakesjackadullboy’" --c %o
320%oi&

The number in the prefix of the expression is the size, and the rest of it is the notation used
to indicate an opaque type instance.

This notation can also be used in a source text to represent arbitrary random data of the
given size, which will be evaluated differently for every compilation.

4Due to some overhead inherent in the use of a list representation, a natural number requires one quit for each0 bit and two quits
for each& bit.

116

$ fun --m="16%oi&" --c %o
16%oi&
$ fun --m="16%oi&" --c %t
((((&,0),0),(0,((&,0),0))),((0,(0,&)),(&,&)))
$ fun --m="16%oi&" --c %t
(0,(0,(0,(((0,&),(&,&)),(((&,0),0),(0,&))))))

This usage is intended mainly for generating test data. Obviously, if data cast as opaque
are displayed and copied into a source text to be recompiled,there can be no expectation
of recovering the original data unless the size is zero or one.

q – Rational

Exact rational arithmetic involving arbitrary precision rational numbers is possible using
theq type and associated functions in therat library distributed with the compiler.

Rational numbers are represented as a pairs of integers, with one for the numerator and
one for the denominator. Only the numerator may be negative.This example shows a
rational number case as a natural (%q) type, and as pair of integers (%zW).

$ fun --main="-1/2" --cast %q
-1/2
$ fun --main="-1/2" --cast %zW
(-1,2)

As the above example shows, standard fractional notation isused for both input and output.
There may be no embedded spaces, and the numerator and denominator must be literal
constants (not symbolic names). The compiler will automatically convert rational numbers
to simplest terms to ensure a unique representation.

$ fun --m="3/9" --c %q
1/3

The algorithm used for simplifying fractions does not employ any sophisticated factoriza-
tion techniques and will be time consuming for large numbers.

Although rational numbers may be helpful for theoretical work because the results are
exact, they are unsuitable for most practical numerical applications because the amount of
memory needed to represent a number roughly doubles with each addition or multiplica-
tion. The arbitrary precision floating point type (E) implemented by thempfr library is a
more appropriate choice where high precision is needed.

s – Character string

Used in many previous examples but not formally introduced,the character string type is
appropriate for textual data, and is expressed by the text enclosed in single quotes.

Character strings are (almost) semantically equivalent tolists of characters, represented
as described in connection with thec type.

117

$ fun --m="’abc’" --c %s
’abc’
$ fun --m="’abc’" --c %cL
<‘a,‘b,‘c>

The only difference between character strings and lists of characters (aside from cosmetic
differences in the printed format) is that strings may contain only printable characters,
which are those whose ISO codes range from 32 to 126 inclusive.

Literal quotes The convention for including a literal quote within a stringis to use two
consecutive quotes.

$ fun --m="’I’’m a string’" --c
’I’’m a string’

As shown above, this convention is followed in the output of aquoted string as well,
although the extra quote is not really stored in the string. Abit of extra effort shows the
raw data.

$ fun --main="<’I’’m a string’>" --show
I’m a string

As one might gather, the--show command line option dumps the value of the main
expression to standard output, provided that is a list of character strings.

Dash bracket notation On a related note, an easier way of expressing a list of character
strings is by the dash bracket notation.

$ fun --m="-[I’m a list of strings]-" --show
I’m a list of strings

An advantage of this notation is that it allows literal quotes, and in a source text (as opposed
to the command line) it may span multiple lines (as shown with#comment directives in
previous source listings).

A further advantage of the dash bracket notation is that it can be nested in matched
pairs like parentheses.

$ fun --m="-[I’m -[<’nested’>]- in it]-" --show
I’m nested in it

Although it’s of no benefit in this small example, the advantage of nested dash brackets in
general is that the expression inside the inner pair is not required to be a literal constant.
It can be any expression that evaluates to a list of characterstrings. That includes those
containing symbolic names, more dash brackets, and arbitrary amounts of white space.

It is also possible to have multiple instances of nested dashbrackets inside a single
enclosing pair, as shown below.

$ fun --m="-[I’m -[<’nested’>]- in-[<’to’>]- it]-" --s
I’m nested into it

Note that the white space inside the second nested pair is notsignificant.

118

t – Transparent

The transparent type includes everything, and is useful only when the precise virtual ma-
chine representation of the data is of interest.

If data are cast to a transparent type for printing, they willbe displayed as nested pairs
of 0 and&. For example, if someone really wanted to know how a character string is
represented, the answer could be obtained as shown.

$ fun --m="’hal’" --c %t
((&,((0,&),(0,&))),((&,(&,&)),((&,((0,(0,(0,&))),0)),0)))

More practical uses are for displaying pointers or virtual machine code when debugging
takes a particularly ugly turn. However, this output formatquickly grows unmanageable
with data of any significant size.

v – Binary converted decimal

This type provides an alternative representation for integers as a(sign,magnitude) pair,
where the magnitude is a list of natural numbers (type%n) each in the range 0 through 9,
specifying the decimal digits of the number being represented, with the least significant
digit at the head. The sign is a boolean value, equal to0 for zero and positive numbers and
& for negatives.

BCD numbers are written with a trailing underscore to distinguish them from naturals
(%n) and integers (%z). For example, these are BCD numbers

-28093_ 9289_ -2939_ -46132_ -7691_

unlike these, which are integers and naturals.

-14313 54188 61862 -196885 84531

The type identifier%vhas no mnemonic significance.
Similarly to the integer and natural types, the size of BCD numbers is limited only by

the available host memory. However, for calculations involving numbers in the hundreds
of digits or more, there may be a moderate performance advantage in using the BCD repre-
sentation, especially if the results are to be displayed in decimal. Mathematical operations
on numbers are provided by thebcd library distributed with the compiler.

x – Raw data

This type is similar to the transparent type in that it includes everything, but the display
format is meant to be more concise than human readable, by packing three quits into each
character.

$ fun --m="’dave’" --c %x
-{{cucl<Sb]><}-

119

The format of the text between the leading-{ and trailing}- is the same one used by the
virtual machine for binary files, and is documented in theavram reference manual. This
fact could be exploited to paste the data from a binary file into a source text and compile
it.5

The use for this type is also in debugging, when the value of some data structure dis-
played in the course of a run or a crash dump needs to be captured losslessly for further
analysis but its exact representation is either unknown or not relevant.

y – Self-describing

An instance of the self-describing type consists of a pair whose left side is a compressed
binary representation of a type expression and whose right side is an instance of the type
specified by the expression. Data in this format can be cast as%ywithout reference to the
base type and displayed correctly, because the necessary information about their type is
implicit. The compressed type expression is displayed in raw format along with the data
so as to be machine readable.

Self describing types are a more sophisticated alternativeto general types%g, because
they may include records or other complex data structures and be printed accordingly.
They are useful for binary files in situations when it might otherwise be difficult to re-
member the types of their contents. They may also afford a rudimentary form of support
for a (not recommended) programming style in which data are type-tagged and functions
are predicated on the types of their arguments (an idea dating from the sixties and later
revived by the object oriented community). This approach would require the developer to
become familiar with the compiler internals.

The right way to construct an instance of a self-describing type is to use a type expres-
sion withY appended, for example,%jY for a self describing complex number. Seman-
tically, the expression ending inY is a function rather than a type expression. It is meant
to be applied to an argument of the base type, (e.g., a complexnumber) and it will return
a copy of the argument with the compressed type expression attached to it. This result
thereafter can be treated as a self-describing type instance.

$ fun --m="%jY 2-5j" --c %y
(-{iUF<}-,2.000e+00-5.000e+00j)

For reasons of efficiency, functions of the form%tY perform no check that their ar-
guments are actually a valid instance of the type%t, so it is possible to construct a self-
describing type instance that doesn’t describe itself and will cause an error when it is cast
as self describing.6

$ fun --main="%cY 0" --c %xgX
(-{iUˆ\}-,0)
$ fun --main="%cY 0" --c %y
fun: invalid text format (code 3)

5surely a winning strategy for obfuscated code competitions
6Don’t do this unless you’re an academic who’s hard pressed for an example to warn people about the dangers of non-type-safe

languages.

120

The above error occurs because0 is not a valid character instance.
For a correctly constructed self describing type instance,the original data can always

be recovered using the ordinary pair deconstructor function, ˜&r .

$ fun --m="˜&r (-{iUF<}-,2.000e+00-5.000e+00j)" --c %j
2.000e+00-5.000e+00j

z – Integer

The integer type (%z) pertains to numbers of the form· · · − 2,−1, 0, 1, 2 For non-
negative integers, the representation is the same as that ofnatural numbers (page 115),
namely a list of bits with the least significant bit first, and anon-zero most significant
bit. Negative integers are represented as the magnitude in natural form with a zero bit
appended. The following examples show a positive and a negative integer cast as integer
types (%z) and as lists of bits (%tL).

$ fun --main="13" --cast %z
13
$ fun --main="-13" --cast %z
-13
$ fun --main="13" --cast %tL
<&,0,&,&>
$ fun --main="-13" --cast %tL
<&,0,&,&,0>

3.2 Type constructors

As a matter of programming style, most applications can benefit from the use of aggregate
types and data structures. The way of building more elaborate types from the primitive
types documented in the previous section is by type constructors. Type constructors in this
language fall into two groups, which are binary and unary. The binary type constructors
are explained first because there are fewer of them and they’re easier to understand.

3.2.1 Binary type constructors

One way of using a binary type constructor in a type expression is by writing something
of the form%uvT , whereu andv are either primitive types or nested type expressions, and
T is the binary type constructor. Other alternatives are documented subsequently, but this
usage suffices for the present discussion. In this context,u andv are considered the left
and right subexpressions, respectively.

The binary type constructors in the language are listed in Table 3.2, and explained
below.

121

example

constructor expression instance

A assignment %seA ’z@Ec+’: 2.778150e+00
D dual type tree %qjD -15008/1349ˆ: <6.924+3.646jˆ: <>>
U free union %EcU ‘Y
X pair %abX (9:275,false)

Table 3.2: binary type constructors

A – Assignment

The assignment type constructorA pertains to data that are expressed according to the
syntax〈name〉: 〈meaning〉 or ˜&A(〈name〉, 〈meaning〉) as documented in the previous
chapter. The left subexpressionu in a type expression of the form%uvA is the type of the
〈name〉 field, and the right subexpressionv is the type of the〈meaning〉 field. Although
the pointer constructor̃&A uses the same letter as the related type constructor, they don’t
coincide for all other types.

The example in Table 3.2 demonstrates the case of a type expression describing assign-
ments whose name fields are character strings and whose meaning fields are floating point
numbers.

D – Dual type tree

TheDtype constructor pertains to trees whose non-terminal nodes are a different type from
the terminal nodes. In a type expression of the form%uvD, the type of the non-terminal
nodes isu, and the type of the terminal or leaf nodes isv.

The example in Table 3.2 shows a tree using the notation

〈root〉ˆ: < [〈subtree〉[, 〈subtree〉]*] >

where theˆ: operator joins the root to a list of subtrees, each of a similar form, in a
comma separated sequence enclosed by angle brackets. For a non-terminal node, the list
of subtrees is non-empty, and for a terminal node, it is the empty list, <>.

We therefore have the type expression%qjD for trees whose non-terminal nodes are
rational numbers, and whose terminal nodes are complex numbers. Accordingly, one in-
stance of this type is a tree whose root node is the rational number-15008/1349 , and
that has one leaf node, which is the complex number6.924+3.646j .

U – Free union

The free union of two typesu andv, given by the expression%uvU, includes all instances
of either type as its instances. When a value is cast as a free union, the appropriate syntax
to display it is automatically inferred from its concrete representation.

122

Free unions therefore work best when the types given by the subexpressions have dis-
joint sets of instances. In many cases, this condition is easily met. The concrete repre-
sentations of characters, strings, and rationals are mutually disjoint, and therefore always
allow unions between them to be disambiguated correctly. Naturals and booleans are dis-
joint from characters and rationals. Floating point numbers, complex numbers, andmpfr
numbers are also mutually disjoint, and disjoint from all ofthe above except strings. Ad-
dresses are disjoint from everything except for the degenerate case0:0 , which coincides
the boolean value oftrue . Tuples, assignments, and records in which the correspond-
ing fields are disjoint are necessarily also disjoint. This fact can be used to effect tagged
unions, but a better way is documented subsequently.

If the types in a free union are not mutually disjoint, priority is given to the left subex-
pression. For example, a free union between naturals and strings will interpret the empty
tuple() as either the empty string’’ or the number zero depending on which subexpres-
sion is first.

$ fun --m="()" --c %nsU
0
$ fun --m="()" --c %snU
’’

X – Pair

The X type constructor pertains to values expressed by the syntax(〈left〉, 〈right〉) . The
left subexpressionu in a type expression of the form%uvX is the type of the〈left〉 field,
and the right subexpressionv is the type of the〈right〉 field.

The example shows the expression%abX, representing pairs whose left sides are ad-
dresses and whose right sides are booleans. We therefore have (9:275,false) as an
instance of this type.

Similarly to assignment types, the same letter,X, is used for pointer expressions as in
˜&lrX . The meanings are related but in general pointers have a distinct set of mnemonics
from type expressions.

3.2.2 Unary type constructors

The remaining type constructors used in the language are unary type constructors, which
specify types that are derived from a single subtype. For theexamples in this section,
type expressions of the form%uT suffice, whereT is a unary type constructor andu is an
arbitrary type expression, whether primitive or based on other constructors.

A list of unary type constructors is shown in Table 3.3. Each of them is explained in
greater detail below.

G – Grid

TheG type constructor specifies a type of data structure that can be envisioned as shown
in Figure 3.3. The data are stored at the nodes depicted as dots, and a relationship among

123

example

constructor expression instance

G grid %nG <[0:0: 134628ˆ: <7:10>],[7:10: 3ˆ: <>]>
J job %cJ ˜&J/44%fOi& ‘2
L list %bL <true,false,true>
N a-tree %cN [10:145: ‘C,10:669: ‘I,10:905: ‘A]
O opaque %fO 2413%fOi&
Q compressed %sQ %Q(’zQPGJ26’)
S set %sS {’Pfo’,’PzHYgmq’,’We& * ’}
T tree %eT 3.262893e+00ˆ: <-9.536086e+00ˆ: <>>
W pair %EW (7.290497E+00,-9.885898E+00)
Z maybe %qZ ()
m module %qm <’zu’: 5/9,’aj’: 60/1,’Pj’: -1/24>

Table 3.3: unary type constructors

Figure 3.3: an ensemble of trees with subtrees shared among them

124

them is encoded by the connections of the arrows.

• The number of nodes and the pattern of connections varies from one grid instance to
another. Not all possible connections nor any regular pattern is required.

• A common feature of all grids is a partition among the nodes bylevels, such that
connections exist only between nodes in consecutive levels. The number of levels
varies from one grid instance to another.

• Every node in the grid is reachable from a node in the first level, shown at the left,
which may contain more than one node.

This structure therefore can be understood as either a restricted form of a rooted di-
rected graph, or as an ensemble of trees with a possibility ofvertices shared among them.
The purpose of such a representation is to avoid duplicationof effort in an algorithm by
allowing traversal of a shared subtree to benefit all of its ancestors. In some situations, this
optimization makes the difference between tractability and combinatorial explosion. Algo-
rithms exploiting this characteristic of the data structure are facilitated by functional com-
bining forms defined in thelat library distributed with the compiler. See Section 1.2.3
for a simple example of a practical application.

One of the few advantages of an imperative programming paradigm is that structures
like these have a very natural representation wherein each node stores a list of the memory
locations of its descendents. When a shared node is mutably updated, the change is ef-
fectively propagated at no cost. A similar effect can be simulated in the virtual machine’s
computational model as follows.

• An address (of the primitive type%a) is arbitrarily assigned to each node.

• Each level of the grid is represented as a separate balanced binary tree (or as balanced
as possible) of the form shown in Figure 3.1, with the nodes stored in the leaves. The
path from the root to any leaf is encoded by its address, so itsaddress is not explicitly
stored.

• Each node contains a list of the addresses (in the above sense) of the nodes it touches
in the next level, which belong to a separate address space.

• The following concrete syntax is used to summarize all of this information.

<

[

〈local address〉: 〈node〉ˆ: < 〈descendent’s address〉 . . .>,

. . .],
...

[

〈local address〉: 〈node〉ˆ: <>,

. . .]>

125

Table 3.3 shows a small example of a grid of natural numbers using this syntax, where
there are two levels and only one node in each level. A larger example using a different
type (%sG) is the following.

<
[0:0: ’egi’ˆ: <8:67,8:144,8:170,8:206>],
[

8:206: ’def’ˆ: <10:648,10:757,10:917,10:979>,
8:170: ’fgh’ˆ: <10:342,10:345,10:757,10:917>,
8:144: ’acf’ˆ: <10:342,10:757,10:978,10:979>,
8:67: ’deh’ˆ: <10:345,10:648,10:917,10:978>],

[
10:979: ’chj’ˆ: <4:0,4:9,4:10,4:15>,
10:978: ’cgj’ˆ: <4:3,4:9,4:11,4:15>,
10:917: ’efi’ˆ: <4:0,4:9,4:11,4:15>,
10:757: ’adi’ˆ: <4:3,4:9,4:10>,
10:648: ’abh’ˆ: <4:0,4:10,4:11>,
10:345: ’cij’ˆ: <4:0,4:3,4:11,4:15>,
10:342: ’aeg’ˆ: <4:3,4:10,4:11>],

[
4:15: ’bdi’ˆ: <>,
4:11: ’ehi’ˆ: <>,
4:10: ’acd’ˆ: <>,
4:9: ’ghj’ˆ: <>,
4:3: ’abc’ˆ: <>,
4:0: ’aei’ˆ: <>]>

Note that the addresses in the list at the right of each node are relative to the address space
of the succeeding level, and that the pattern of connectionsis irregular.

A few other points about grid types should be noted.

• A type of the form%tG is similar to a type%tTNL using constructors explained later
in this section, but not identical because the effect of shared subtrees is not captured
by the latter. A type%taLANL is in some sense “upward compatible” with%tG, but
is displayed differently and implies no relationships among the addresses.

• Although grids can have multiple root nodes, the combinators defined in thelat
library work only for grids with a single root.

• Grids of types that include everything (such as%g, %o, %t, and%x) and that also have
multiple root nodes might defeat the algorithm used to display them by the--cast
option, because there is insufficient information to infer the grid topology efficiently
from the concrete representation. They can still be used in practice if this information
is known and maintained extrinsically (or by inserting a unique root node).

• Badly typed or ambiguous grids that don’t cause an exceptionmay be displayed with
empty levels. Unreachable nodes are not displayed, but theycan be detected as type

126

errors by debugging methods explained subsequently, or displayed by the upward
compatible type cast mentioned above.

• Compared to the grid type constructor, the rest are easy.

J – Job

As explained in the previous chapter, the style of anonymousrecursion supported by the
virtual machine and related pseudo-pointers implies that afunction of the formrefer f
applied to an argumentx evaluates tof (˜&J(f , x)) , where the expressioñ&J(f , x) ,
called a “job”, contains a copy of the recursive function (without therefer combina-
tor) along with the original argument,x. Jobs are represented as pairs with the function
on the left and the argument on the right, but it is more mnemonic to regard them as a
distinct aggregate type with its own constructor and deconstructors,˜&J , ˜&f , and˜&a ,
respectively.

Although a job has two fields, one of them,˜&f , is always a function, and functions
in Ursala are primitive types. The type of a job is therefore determined by the type of the
other field,̃ &a . The job type constructor is consequently a unary type constructor, whose
base type is that of the argument field.

When a valuẽ&J(〈function〉, 〈argument〉) is cast as a job type%tJ for printing, the
output is of the form

˜&J/ 〈size〉%fOi& 〈text〉
where〈size〉 is a decimal number giving the size of the function measured in quits, and
〈text〉 is the display of the argument cast as the type%t. The opaque display format is used
for the function field because the explicit form is likely to be too verbose to be helpful.

L – List

The list type constructor,L, pertains to the simplest and most ubiquitous data structure in
functional languages, wherein members are stored to facilitate efficient sequential access.
As shown in many previous examples, the concrete syntax for alist in Ursala consists of a
comma separated sequence of items enclosed in angle brackets.

<item0, item1, . . . itemn>

There is also a concept of an empty list, which is expressed as<>. As explained in the
previous chapter, lists can be constructed by the˜&C data constructor, and non-empty lists
can be deconstructed by the˜&h and˜&t functions.

It is customary for all items of a list to be of the same type. The base typet in a type
expression of the form%tL is the type of the items. A list cast to this type is displayed
with the items cast to the type%t.

The convention that all items should be the same type, needless to say, is not enforced
by the compiler and hence easy to subvert. However, it is justas easy and more rewarding
to think in terms of well typed code when a heterogeneous listis needed, by calling it a
list of a free unions.

127

$ fun --m="<1,’a’,2,3,’b’>" --c %nsUL
<1,’a’,2,3,’b’>

Free unions are explained in Section 3.2.1.
Because there is no concept of an array in this language, the type%eL(lists of floating

point numbers) is often used for vectors, and%eLL(lists of lists of floating point numbers)
for (dense) matrices. The virtual machine interface to external numerical libraries involv-
ing vectors and matrices, such asfftw and lapack , converts transparently between lists
and the native array representation. Theavram reference manual also documents repre-
sentations for sparse and symmetric matrices as lists, along with all calling conventions
for the external library functions.

N – A-tree

Although there are no arrays in Ursala, there is a container that is more suitable for non-
sequential access than lists, namely the a-tree, mnemonic for addressable tree.

The concrete syntax for an a-tree is a comma separated sequence of assignments of
addresses to data values, enclosed in square brackets, as shown below.

[

a0: x0,

a1: x1,

. . .

an: xn]

The addressesai follow the same syntax as the primitive address type,%a, namely a colon
separated pair of literal decimal constants,n :m, with m in the range0 through2n−1. For
a valid a-tree, all addresses must have the samen value. The dataxi can be of any type.

A type expression of the form%tNdescribes the type of a-trees whose data values are of
the type%t. An example of an a-tree of type%qN, containing rational numbers, expressed
in the above syntax, would be the following.

[
8:1: 0/1,
8:22: 1569077783/212,
8:24: 2060/1,
8:76: -21/1,
8:140: 9/3021947915,
8:187: -198733/2,
8:234: 10/939335417423]

The crucial advantage of an a-tree is that all fields are readily accessible in logarithmic
time by way of a single deconstruction operation.

$ fun --m="˜2:0 [2:0: ’foo’,2:1: ’bar’,2:2: ’baz’]" --c

128

’foo’
$ fun --m="˜2:1 [2:0: ’foo’,2:1: ’bar’,2:2: ’baz’]" --c
’bar’
$ fun --m="˜2:2 [2:0: ’foo’,2:1: ’bar’,2:2: ’baz’]" --c
’baz’

As shown above, the deconstructor function is given simply by the address of the field as
it is displayed in the default syntax.

This efficiency is made possible by the representation of a-trees as nested pairs.

$ fun --m="[2:0: ’foo’,2:1: ’bar’,2:2: ’baz’]" --c %sWW
((’foo’,’bar’),’baz’,’’)

This output is actually a sugared form of((’foo’,’bar’),(’baz’,’’)) , which
shows more clearly that all data values are nested at the samedepth, making them all
equally accessible.

$ fun --m="((’foo’,’bar’),(’baz’,’’))" --c %sN
[2:0: ’foo’,2:1: ’bar’,2:2: ’baz’]

Moreover, the addresses aren’t explicitly stored at all, but are an epiphenomenon of the
position of the corresponding data within the structure. The deconstruction operation by
the address works because of the representation of address types as shown in Figure 3.2,
and the semantics of deconstruction operator,˜ .

The formatting algorithm for a-trees will infer the minimumdepth consistent with valid
instances of the base type. If the base type is a free union, there is a possibility of ambigu-
ity. For example, if the data can be either strings or pairs ofstrings, the expression above
is displayed differently.

$ fun --m="[2:0: ’foo’,2:1: ’bar’,2:2: ’baz’]" --c %ssWUN
[1:0: (’foo’,’bar’),1:1: (’baz’,’’)]

A few further remarks about a-trees:

• Other language features such as the assignment operator,:= , are useful for manipu-
lating a-trees, and will require further reading. This is a pure functional combinator
despite its connotations.

• There is no reliable way to distinguish between unoccupied locations in an a-tree
and locations occupied by empty values. Neither is displayed. Attempts to extract
the former will sometimes but not always cause an invalid deconstruction exception.
A-trees are best for base types that don’t have an empty instance, such as tuples and
records.

• Experience is the best guide for knowing when a-trees are worth the trouble. Large
state machine simulation problems or graph searching algorithms are obvious candi-
dates. An a-tree of states or graph nodes each containing an adjacency list storing the
addresses of its successors might allow fast enough traversal to compensate for the
time needed to build the structure.

129

O – Opaque

The opaque type constructor can be appended to any type%t to form the opaque type%tO.
These two types are semantically equivalent but displayed differently when printed as a
result of the--cast command line option.

Opaque syntax When a value is cast as type%tO, for any type expressiont (other thanc),
it is displayed in the form〈size〉%tOi& where〈size〉 is a decimal number giving the size
of the data measured in quits, andt is the same type expression appearing in the cast%tO.
For example,

$ fun --m="<1,2,3,4>" --c %nLO
17%nLOi&
$ fun --m="2.9E0" --c %EO
186%EOi&
$ fun --m=successor --c %fO
40%fOi&

Opaque semantics The reason for the unusual form of these expressions is that it has an ap-
propriate meaning implied by the semantics of the operatorsappearing in them (which are
explained further in connection with type operators). The expressions could be compiled
and their value would be consistent with the type and size of the original data. How-
ever, because the original data are not fully determined by the expression, it evaluates to a
randomly chosen value of the appropriate type and size.

$ fun --m=double --c %f
conditional(

field &,
couple(constant 0,field &),
constant 0)

$ fun --m=double --c %fO
12%fOi&
$ fun --m="12%fOi&" --c %fO
12%fOi&
$ fun --m="12%fOi&" --c %f
race(distribute,member)
$ fun --m="12%fOi&" --c %f
refer map transpose

Note that in the last two cases, above, the expression12%fOi& is seen to have differ-
ent values on different runs. This effect is a consequence ofthe randomness inherent in
its semantics. (It’s best not to expect anything too profound from a randomly generated
function.)

130

Inexact sizes Some primitive types are limited to particular sizes that can’t be varied to
order, such as booleans and floating point numbers. In such cases, the expression evaluates
to an instance of the correct type at whatever size is possible.

$ fun --m="100%eOi&" --c %eO
62%eOi&

Opaque characters Opaque data expressions will usually be evaluated differently for every
run, but an exception is made for opaque characters. In this case, the number〈size〉 ap-
pearing in the expression is not the size of the data (which would always be in the range of
3 through 7 quits for a character), but the ISO code of the character. It uniquely identifies
the character and will be evaluated accordingly.

$ fun --m="65%cOi&" --c %c
‘A
$ fun --m="65%cOi&" --c %c
‘A

However, a random character can be generated either by a sizeparameter in excess of 255
or an operand other than&, or both.

$ fun --m="256%cOi&" --c %c
229%cOi&
$ fun --m="65%cOi(0)" --c %c
175%cOi&

Q – Compressed

Any type expression ending withQ represents a compressed form of the type preceding
the Q. For example, the type%sLQis that of compressed lists of character strings. The
compressed data format involves factoring out common subexpressions at the level of the
virtual machine code representation.

• The compression is always lossless.

• It can take a noticeable amount of time for large data structures or functions.

• Compression rarely saves any real memory on short lived run time data structures,
because the virtual machine transparently combines shareddata when created by
copying or detected by comparison.

• Compression saves considerable memory (possibly orders ofmagnitude) for redun-
dant data that have to be written to binary files and read back again, because infor-
mation about transparent run time sharing is lost when the data are written.

131

Listing 3.3 a list of non-unique character strings is a candidate for compression

long = # redundant data due to a repeated line

-[resistance is futile
you will be compressed
you will be compressed]-

short = # compressed version of the above data

%Q long

Compression function The way to construct an instance of a compressed type%tQfrom an
instancex of the ordinary type%t is by applying the function%Qto x. The function%Q
takes an argument of any type and compresses it where possible. Note that%Qby itself is
not a type expression but a function.

Extraction function Extraction of compressed data can be accomplished by the function
%QI. This function takes any result previously returned by%Qand restores it to its original
form, except in the degenerate case of%Q 0.

The%QIfunction can also be used as a predicate to test whether its argument represents
compressed data. It will return an empty value if it does not,and return a non-empty
value otherwise (normally the uncompressed data). However, to be consistent with this
interpretation,%QI %Q 0evaluates to& (true) rather than0.7

Demonstration Not all data are able to benefit from compression, because it depends on the
data having some redundancy. However, lists of non-unique character strings are suitable
candidates. Given a source fileborg.fun containing the text shown in Listing 3.3, we
can see the effect of compression by executing a command to display the data in opaque
format with and without compression.

$ fun borg.fun --main="(long,short)" --c %ooX
(504%oi&,338%oi&)

The output shows that the latter expression requires fewer quits for its encoding. If the
above example is not sufficiently demonstrative, the effectcan also be exhibited by the
raw data.

$ fun borg.fun --m="(long,short)" --c %xW
(

-{
{{m[{cu[t@[mZSjCxbxS\H[qCxbtTSˆd[qCtUz?=zF]zDAwH
S\l[ˆ[\>Ohm[ˆWgz<EJ>Svd[gzFCtdbvd[ˆmjDStdbvB[ˆ]z

7The alternative would be to use a function like-+&&˜& ˜=&,%QI+- for decompression if compressed empty data are a possi-
bility, or theextract function from theext.avm library distributed with the compiler.

132

DSt>AtˆSˆ]zezf[ˆEZ‘AtNCvezJ[I=Z@]z>mTB[i=Z<b=CtB
[eJCl@[f=]w]x<@TBCe\M\E\<}-,

-{
zkKzSzPSauEkcyMz=CtfCw]z?=z<mzoAtTS\>O]cv{ˆ=ZfCt
ctdbzEjDStE[ˆ]zFCtˆSˆmjf[dUz@]z<]ZpAvctB[e=Z=Ctu
xt[<hR=]t>T@VNV\<}-)

Compressed data can be extracted automatically for printing as shown.

$ fun borg.fun --main=short --c %sLQ
%Q <

’resistance is futile’,
’you will be compressed’,
’you will be compressed’>

where the output includes%Qas a reminder that the data were compressed, and to ensure
that the data would be compressed again if the output were compiled. Decompression can
also be performed explicitly by%QI, whereupon the result is no longer a compressed type.

$ fun borg.fun --main="%QI short" --c %sL
<

’resistance is futile’,
’you will be compressed’,
’you will be compressed’>

S – Set

Analogously to the notation used for lists, a finite set can beexpressed by a comma sep-
arated sequence of its elements enclosed in braces. The elements of a set can be of any
type, including functions, although it is customary to think of all elements of a given set
has having the same type, even if that type is a free union. Thebase typet in a set type
expression%tS is the type of the elements.

Contrary to the practice with lists, the order in which the elements of a set are written
down is considered irrelevant, and repetitions are not significant. Sets are therefore repre-
sented as lists sorted by an arbitrary but fixed lexical relation, followed by elimination of
duplicates. These operations are performed transparentlyby the compiler at the time the
expression in braces is evaluated.

$ fun --m="{’a’,’b’}" --c %sS
{’a’,’b’}
$ fun --m="{’b’,’a’}" --c %sS
{’a’,’b’}
$ fun --m="{’a’,’b’,’a’}" --c %sS
{’a’,’b’}

Because sets and lists have similar concrete representations, many list operations such
as mapping and filtering are applicable to sets, using the same code. However, it is the

133

user’s responsibility to ensure that the transformation preserves the invariants of lexical
ordering and no repetitions in the concrete representationof a set. One safe way of doing so
is to compose list operations with the list-to-set pointer˜&s , documented in the previous
chapter on page 65.

T – Tree

The T type constructor is appropriate for trees in which each nodecan have arbitrarily
many descendents, and all nodes have the same type. The base typet in a type expression
%tT is the type of the nodes in the tree. This type constructor is aunary form of the dual
type tree type constructor,D, explained on page 122. A type expression%tT is equivalent
to %ttD.

Tree syntax An instance of a tree type%tT is expressed in the syntax

〈root〉ˆ: < [〈subtree〉[, 〈subtree〉]*] >

with the root having type%t. Each subtree is either an expression of the same form, or the
empty tree,̃&V() . For a tree with no descendents, the syntax is

〈root〉ˆ: <>

In either case above, the space after theˆ: operator is optional, but the lack of space before
it is required. An alternative to this syntax sometimes usedfor printing is

ˆ: (〈root〉 ,< [〈subtree〉[, 〈subtree〉]*] >)

In the usage above, the space after theˆ: operator is required. It is also equivalent to write

ˆ:< [〈subtree〉[, 〈subtree〉]*] > 〈root〉
In this usage, the absence of a space after theˆ: operator is required, and the space
between the subtrees and the root is also required. (Conventions regarding white space
with operators are explained and motivated further in Chapter 5.)

Example As a small example, an instance of tree ofmpfr (arbitrary precision) numbers,
with type%ET, can be expressed in this syntax as shown.

-8.820510E+00ˆ: <
-1.426265E-01ˆ: <

ˆ: (
-6.178860E+00,
<3.562841E+00ˆ: <>,6.094301E+00ˆ: <>>)>,

5.382370E+00ˆ: <>>

134

W – Pair

TheWtype constructor is a unary type constructor describing pairs in which both sides have
the same type. A type expression%tWis equivalent to%ttX. (The binary type constructor
X is explained on page 123.) The same concrete syntax applies,which is that a pair is
written (〈left〉, 〈right〉) , with 〈left〉 and〈right〉 formatted according to the syntax of the
base type.

An example of a type expression using this constructor is%nW, for pairs of natural num-
bers, and an instance of this type could be expressed as(120518122164,35510938) .

Z – Maybe

The Z type constructor with a base type%t specifies a type that includes all instances of
%t, with the same concrete representation and the same syntax,and also includes an empty
instance. The empty instance could be written as() or [] , depending on the base type.

$ fun --m="(1,2)" --c %nW
(1,2)
$ fun --m="(1,2)" --c %nWZ
(1,2)
$ fun --m="()" --c %nW
fun: writing ‘core’
warning: can’t display as indicated type; core dumped
$ fun --m="()" --c %nWZ
()

The core dump in such cases is a small binary file containing a diagnostic message and the
requested expression written in raw data (%x) format.

The usual applications for a maybe type are as an optional field in a record, an optional
parameter to a function, or the result of a partial function when it’s meant to be unde-
fined. Although floating point numbers of type%eand%Ehave distinct maybe types%eZ
and%EZ, it is probably more convenient to useNaNfor undefined numerical function re-
sults, which propagates automatically through subsequentcalculations according to IEEE
standards, and does not cause an exception to be raised.

Some primitive types, such as%b, %g, %n, %s, %t, and%x, already have an empty
instance, so they are their own maybe types. Any types constructed byD, G, L, N, S, T,
andZ also have an empty instance already, so they are not altered by theZ type constructor.

The types for whichZ makes a difference are%a, %c, %e, %f, %j , %q, %y, and%E, any
record type, and anything constructed byA, J , Q, W. or X. For union types, both subtypes
have to be one of these in order for theZ to have any effect.

m – Module

Themtype constructor in a type%tmis mnemonic for “module”. A module of any type%t
is semantically equivalent to a list of assignments of strings to that type,%stAL, and the

135

syntax is consistent with this equivalence. An example of a module of natural numbers,
with type%nm, is the following.

<
’foo’: 42344,
’bar’: 799191,
’baz’: 112586>

Modules are useful in any kind of computation requiring small lookup tables, finite
maps, or symbol environments.

• Modules can be manipulated by ordinary list operations, such as mapping and filter-
ing.

• The dash operator allows compile time constants in modules to be used by name like
identifiers. For example, ifx were declared as the module shown above, thenx-foo
would evaluate to42344 .

• The#import directive can be used to include any given module into the compiler’s
symbol table at compile time, in effect “bulk declaring” anycomputable list of values
and identifiers.8

Usage of operators and directives is explained more thoroughly in subsequent chapters.

3.3 Remarks

There is more to learn about type expressions than this chapter covers, but readers who
have gotten through it deserve a break, so it is worth pausinghere to survey the situation.

• All primitive types and all but three idiosyncratic type constructors supported by the
language are now at your disposal.

• While perhaps not yet in a position to write complete applications, you have sub-
stantially mastered much of the syntax of the language by learning the syntax for
primitive and aggregate types explained in this chapter.

• The perception of different types as alternative descriptions of the same underlying
raw data will probably have been internalized by now, along with the appreciation
that they are all under your control.

• Your ability to use type expressions at this stage extends to

– expressing parsers for selected primitive types

– displaying expressions as the type of your choice using the--cast command
line option

– construction of compressed data and their extraction
8The compiler doesn’t have a symbol table as such, but that’s amatter for Part IV.

136

– construction and extraction of data in self-describing format

• You’ve learned the meaning of the word “quit”.

137

A sane society would either kill me or find a use for me.

Anthony Hopkins as Hannibal Lecter

4
Advanced usage of types

The presentation of type expressions is continued and concluded in this chapter, focusing
specifically on several more issues.

• functions and exception handlers specified in whole or in part by type expressions,
and their uses for debugging and verification of assertions

• abstract and self-modifying types via record declarations, and their relation to literal
type expressions and pointer expressions

• a broader view of type expressions as operand stacks, with the requisite operators for
data parameterized types and self-referential types

4.1 Type induced functions

Several ways of specifying functions in terms of type expressions are partly introduced in
the previous chapter for motivational reasons, such asp, Q, I , Y, andi , but it is appropriate
at this point to have a more systematic account of these operators and similar ones.

The relevant type expression mnemonics are shown in Table 4.1. These can be divided
broadly between those that are concerned with exceptional conditions, useful mainly dur-
ing development, and the remainder that might have applications in development and in
production code. The latter are considered first because they are the easier group.

4.1.1 Ordinary functions

In this section, we consider type induced functions for printing, parsing, recognition, and
the construction of self describing type instances, but first, one that’s easier to understand
than to motivate.

138

mnemonic arity meaning

k 1 identity function
p 1 parsing function
C 1 exceptional input printer
I 1 instance recognizer
M 1 error messenger
P 1 printer
R 1 recursifier (forCor V)
Y 1 self-describing formatter
V 2 i/o type validator

Table 4.1: one of these at the end of a type expression makes ita function

k – Identity function

The k type operator appended to any correctly formed type expression or type induced
function transforms it to the identity function. It doesn’tmatter how complicated the
function or type expression is.

$ fun --main="%cjXsjXDMk" --decompile
main = field &
$ fun --main="%nsSWnASASk" --decompile
main = field &
$ fun --main="%sLTLsLeLULXk" --decompile
main = field &
$ fun --main="%sLTLsLeLULXk -[hello world]-" --show
hello world

The application for this feature is to “comment out” type induced functions from a
source text without deleting them entirely, because they may be useful as documentation
or for future development.1

• As a small illustration, one could envision a source text that originally contains the
code fragmentfoo+ bar , wherefoo andbar are functions and+ is the functional
composition operator.

• In the course of debugging, it is changed tofoo+ %eLM+ bar for diagnostic pur-
poses, using theM type operator explained subsequently, to verify the outputfrom
bar .

• When the issue is resolved, the code is changed tofoo+ %eLMk+ bar rather hav-
ing the diagnostic function deleted, leaving it semantically equivalent to the original
because the expression ending withk is now the identity function.

Without any extra effort by the developer, there is now a comment documenting the out-
put type ofbar and the input type offoo as a list of floating point numbers. The same

1or perhaps “komment out”

139

effect could also have been achieved byfoo+ (#%eLM+#) bar using comment de-
limiters, but the more cluttered appearance and extra keystrokes are a disincentive. The
resulting code would be the same in either case, because identity functions are removed
from compositions during code optimization.

p – Parsing function

The mnemonicp appended to certain primitive type expressions results in aparser for that
type, as explained in Section 3.1.1. The applicable types are%a, %c, %e, %E, %n, %q, %s,
and%x, as shown in Table 3.1.

The parsing function takes a list of character strings to an instance of the type, and is
an inverse of the printing function explained subsequentlyin this section. The character
strings in the argument to the parsing function are requiredto conform to the relevant
syntax for the type.

I – Instance recognizer

For a type%t, the instance recognizer is expressed%tI . Given an argumentx of any type,
the function%tI returns a value of0 if x is not an instance of the type%t, and a non-zero
value otherwise. For example, the instance recognizer for natural numbers,%nI, works as
follows.

$ fun --m="%nI 10000" --c %b
true
$ fun --m="%nI 1.0e4" --c %b
false

The determination is based on the virtual machine level representation of the argument,
without regard for its concrete syntax. Some values are instances of more than one type,
and will therefore satisfy multiple instance recognizers.

$ fun --m="%eI 1.0e4" --c %b
true
$ fun --m="%cLI 1.0e4" --c %b
true

All instance recognizer functions follow the same convention with regard to empty or
non-empty results, making them suitable to be used as predicates in programs. However,
for some types, the value returned in the non-empty case has auseful interpretation relevant
to the type.

Compressed type recognizers The compressed type instance recognizer%tQI has to uncom-
press its argument to decide whether it is an instance of%t. If it is an instance, and it’s not
empty, then the uncompressed argument is returned as the result. If it’s an instance but it’s
empty, then& is returned. See page 131 for further explanations.

140

Function recognizers If the argument to the function instance recognizer%fI can be in-
terpreted as a function, it is returned in disassembled formas a tree of type%sfOXT. The
right side of each node is the semantic function needed to reassemble it, and the left side
is a virtual machine combinator mnemonic.

$ fun --m="%fI compose(transpose,cat)" --c %sfOXT
(’compose’,48%fOi&)ˆ: <

(’transpose’,7%fOi&)ˆ: <>,
(’cat’,5%fOi&)ˆ: <>>

This form is an example of a method used generally in the language to represent terms
over any algebra. The semantic function in each node followsthe convention of mapping
the list of values of the subtrees to the value of the whole tree. This feature makes it
compatible with thẽ&K6 pseudo-pointer explained on page 85, which therefore can be
used to resassemble a tree in this form.

$ fun --m="˜&K6 %fI compose(transpose,cat)" --decompile
main = compose(transpose,cat)

Other function recognizers The job type recognizer%tJI behaves similarly to the function
recognizer. For an argument of the form˜&J(f , a) , wherea is of type t, the result
returned will be a disassembled version off , as above. The same is true of the recognizers
%fZI , %fOI , %fOZI , etcetera. Recognizers of assignments and pairs whose right sides
are functions will also return the disassembled function ifrecognized.

P – Printer

For any type expression%t, a printing function is given by%tP, which will take an instance
of the type to a list of character strings. The output contains a display of the data in
whatever concrete syntax is implied by the type expression.

$ fun --m="%nLP <1,2,3,4>" --cast %sL
<’<1,2,3,4>’>
$ fun --m="%tLLP <1,2,3,4>" --cast %sL
<’<<&>,<0,&>,<&,&>,<0,0,&>>’>
$ fun --m="%bLLP <1,2,3,4>" --cast %sL
<

’<’,
’ <true>,’,
’ <false,true>,’,
’ <true,true>,’,
’ <false,false,true>>’>

Note that the output in every case is cast to a list of strings%sL, because printing functions
return lists of strings regardless of their arguments or their argument types. On the other
hand, the--cast option isn’t necessary if the output is known to be a list of strings.

141

$ fun --m="%bLLP <1,2,3,4>" --show
<

<true>,
<false,true>,
<true,true>,
<false,false,true>>

A few other points are relevant to printing functions.

• In contrast with parsing functions, which work only on a small set of primitive types,
printing functions work with any type expression.

• In contrast with the--cast command line option, printing functions don’t check
the validity of their argument. They will either raise an exception or print misleading
results if the input is not a valid instance of the type to be printed.

• Being automatically generated by the compiler from its internal tables, printing func-
tions for non-primitive types are not as compact as the equivalent hand written code
would be, making them disadvantageous in production code.

• Printing functions for aggregate types probably shouldn’tbe used in production code
for the further reason that end users shouldn’t be required to understand the language
syntax.

Y – Self-describing formatter

The self describing formatter,Y, when used in an expression of the form%tY, is a function
that takes an argument of type%t to a result of type%y, the self describing type. The
result contains the original argument and the type tag derived from%t, as required by the
concrete representation for values of type%y.

This operation is briefly recounted here in the interest of having the explanations of
all type induced functions collected together in this section, but a thorough discussion in
context with motivation and examples is to be found startingon page 120.

4.1.2 Exception handling functions

It’s a sad fact that programs don’t always run smoothly. Hardware glitches, network down-
time, budget cuts, power failures, security breaches, regulatory intervention, BWI alerts,
and segmentation faults all take their toll. Most of these phenomena are beyond the scope
of this document. Programs in Ursala can never cause a segmentation fault, except through
vulnerabilities introduced by external libraries writtenin other languages.2 However, there
is a form of ungraceful program termination within our remit.

When the virtual machine is unable to continue executing a program because it has
called for an undefined operation, it terminates execution and reports a diagnostic message
obtained either by interrogation of the program or by default. These events are preventable

2or by a bug in the virtual machine, of which there are none known and none discovered through several years of heavy use

142

in principle by better programming practice, and considered crashes for the present dis-
cussion.

The supported mechanism for reporting of diagnostic messages during a crash is ver-
satile enough to aid in debugging. Full details are documented in theavram reference
manual, but in informal terms, it is a simple matter to supplya wrapper for any misbe-
having function adding arbitrarily verbose content to its diagnostic messages. It is also
possible to interrupt the flow of execution deliberately so as to report a diagnostic given by
any computable function. Often the most helpful content is adisplay of an intermediate
result in a syntax specified by a type expression. The functions described in this section
take advantage of these opportunities.

C – Exceptional input printer

An expression of the form%tC denotes a second order function that can be used to find
the cause of a crash. For a given functionf , the function%tC f behaves identically tof
during normal operation, but returns a more informative error message thanf in the event
of a crash.

• The content of the message is a display of the argument that was passed tof causing
it to crash, followed by the message reported byf , if any.

• The original argument passed tof is reported, independent of any operations subse-
quently applied to it leading up to the crash.

• The argument is required to be an instance of the type%t, and will be formatted
according to the associated concrete syntax.

• If the display of the argument takes more than one line, it is separated from the
original message returned byf by a line of dashes for clarity.

The expression%Cby itself is equivalent to%gC, which causes the argument to be reported
in general type format. This format is suitable only for small arguments of simple types.

Intended usage The best use for this feature is with functions that fail intermittently for
unknown reasons after running for a while with a large dataset, but reveal no obvious bugs
when tried on small test cases. Typically the suspect function is deeply nested inside some
larger program, where it would be otherwise difficult to infer from the program input the
exact argument that crashed the inner function. More tips:

• If the program is so large and the bug so baffling that it’s impossible to guess which
function to examine, the type operator with a numerical suffix (e.g.,%0, %1, %2. . .)
can be used just like a crashing argument printer%tC, but with no type expressiont
required. The diagnostic will consist only of the literal number in the suffix. Start by
putting one of these in front of every function (with different numbers) and the next
run will narrow it down.

143

Listing 4.1 toy demonstration of the crasher type operator,C

#import std
#import nat

f = # takes predecessors of a list of naturals, but has a bug

map %nC predecessor # this should get to the bottom of it

t = (%nLC f) <25,12,5,1,0,6,3>

• In particularly time consuming cases or when the input type is unknown, the usage
of %xCwill serve to capture the argument in binary format for further analysis. The
output in raw data syntax can be pasted into the source text, or saved to a binary file
with minor editing (see page 119).

• Very verbose diagnostic messages can be saved to a file by piping the standard error
stream to it. Thebash syntax is$ myprog 2> errlog , wheremyprog is any
executable program or script, including the compiler.

• Judicious use of opaque types, especially for arguments containing functions, can
reduce unhelpful output.

Unintended usage This feature isnothelpful in cases where the cause of the error is a badly
typed argument, because the type of the argument has to be known, at least approximately
(unless one uses%xCand intends to figure out the type later). TheV type operator ex-
plained subsequently in this section is more appropriate for that situation. An attempt to
report an argument of the wrong type will either show incorrect results or cause a further
exception.

Example Listing 4.1 provides a compelling example of this feature inan application
of great sophistication and subtlety. The functionf is supposed to take a list of nat-
ural numbers as input, and return a list containing the predecessor of each item. The
predecessor function is undefined for an input of zero, and raises an exception with
the diagnostic message ofnatural out of range . This case slipped past the testing
team and didn’t occur until the dataset shown in the listing was encountered in real world
deployment. The dataset is too large for the problem to be found by inspection, so the code
is annotated to elucidate it.

$ fun crsh.fun --c %nL
fun:crsh.fun:9:13: <25,12,5,1,0,6,3>
--- --------
0
--- --------
natural out of range

144

The output from the compilation shows two arguments displayed, because there are two
nested crashing argument printers in the listing. The outerone,%nLC, pertains the whole
function f , and properly shows its argument as a list of natural numbers, while the inner
one is specific to thepredecessor function and displays only a single number. The first
four arguments to thepredecessor function in the list were processed without incident
and not shown, but the zero argument, which caused the crash,is shown.

• Generally only the innermost crashing argument printer that isolates the problem is
needed, but they can always be nested where helpful.

• The line and column numbers displayed in the compiler’s output refer only to the
position in the file of the top level function application operator that caused the error,
rarely the site of the real bug.

• When the bug is fixed, the crashing argument printers should be changed to%nCkand
%nLCkinstead of being deleted, especially if the correct types are hard to remember.

M – Error messenger

Whereas theC type operator adds more diagnostic information to a function that’s already
crashing, theMtype operator instigates a crash. This feature is useful because sometimes
a program can be incorrect without crashing, but its intermediate results can still be open
to inspection. Often an effective debugging technique combines the two by first identi-
fying an input that causes a crash with theC operator, and then stepping through every
subprogram of the crashing program individually using theMoperator.

Usage The evaluation of an expression of the form%tM x causesx to be displayed
immediately in a diagnostic message, with the syntax given by the type%t. However,
rather than applying an error messenger directly to an argument, a more common use is to
compose it with some other function to confirm its input or output.

• If a function f is changed to%tM; f , the originalf will never be executed, but
a display will be reported of the argument it would have had the first time control
reached it (assuming the argument is an instance of%t).

• If the function is changed to%uM+ f , it will not be prevented from executing, and if
it is reached, its output will be reported immediately thereafter, with further compu-
tations prevented.

• Another variation is to write%tC %uM+ f , which will show both the input and the
output in the same diagnostic, separated by a line of dashes.Note the absence of a
composition operator afterC, and the presence of one afterM.

• For very difficult applications, it is sometimes justified toverify the code step by
step, changing every fragmentf+ g+ h to %tM+ f+ %uMk+ g+ %vMk+ h, and
commenting out each previous error messenger to test the next one. The result is that
the code is more trustworthy and better documented.

145

Diagnosing type errors A catch-22 situation could arise when an error messenger is used
to debug a function returning a result of the wrong type. In order for an error messenger
to report the result, its type must be specified in the expression, but in order for the type of
result to be discovered, it must be reported as such.

A useful technique in this situation is to specify successive approximations to the type
on each execution. The first attempt at debugging a functionf has%oM+ f in the source,
to confirm at least thatf is being reached. Iff should have returned a pair of something,
the size reported for the opaque data should be greater than zero.

The next step is to narrow down the components of the result that are incorrectly typed.
If the type should have been%abX, then error messengers of%aoXM, %obXM, and%ooXM
can be tried separately. However, it would save time to use free unions with opaque types,
as in an error messenger of%aoUboUXM. The incorrectly typed component(s) will then be
reported in opaque format, while the correctly typed component, if any, will be reported
in its usual syntax.

The technique can be applied to other aggregate types such astrees and lists, using an
error messenger like%aoUTMor %aoULM. If only one particular node or item of the result
is badly typed, then only that one will be reported in opaque format. In the case of record
types (documented subsequently in this chapter) union withthe opaque type in an error
messenger will allow either the whole record or only particular fields to be displayed in
opaque format, making the output as informative as possible.

R – Recursifier

TheR type operator can be appended to expressions of the form%tCor %tV, to make them
more suitable for recursively defined functions. If a recursive functionf crashes in an
expression of the form%tCR f , the diagnostic will show not just the argument tof , but
the specific argument to every recursive invocation off down to the one that caused the
crash. The effect for%tVR f is analogous. The printer and verifier functions behave as
documented in all other respects.

• The compiler will complain ifR is appended to a type expression that doesn’t end
with Cor V.

• The compiler will complain if this operation is applied to something other than a
recursively defined function. A recursively defined function is anything whose root
combinator in virtual code isrefer (as shown by--decompile), which includes
code generated by theo pseudo-pointer and several functional combining forms such
as* ˆ (tree traversal),̂& (recursive conjunction), and̂? (recursive conditional).

Example A certain school of thought argues against defensive programming on the basis
that it’s more manageable for a subprogram in a large system to crash than to exceed its
documented interface specification when it’s undefined. Listing 4.2 shows a tree traversing
function f that doesn’t work for empty trees by design. It also doesn’t work for any tree
with an empty subtree. Otherwise, for a tree of natural numbers, it doubles the number in

146

Listing 4.2 value off is undefined for empty trees

#library+

x = # random test data of type %nT

7197774595263ˆ: <
10348909689347579265ˆ: <

158319260416525061728777ˆ: <
0ˆ: <>,
˜&V(),
574179086ˆ: <

ˆ: (
1460,
<0ˆ: <>,1ˆ: <>,1707091ˆ: <>,30ˆ: <>>)>>,

213568ˆ: <>,
128636ˆ: <97630998857ˆ: <>>>>

f = ˜&diNiCBPvV * ˆ

every node by inserting a 0 in the least significant bit position. The listing is assumed to
be in a source file namedrcrsh.fun .

$ fun rcrsh.fun
fun: writing ‘rcrsh.avm’
$ fun rcrsh --main=f --decompile
main = refer compose(

couple(
conditional(

field(&,0),
couple(constant 0,field(&,0)),
constant 0),

field(0,&)),
couple(field(0,(&,0)),mapcur((&,0),(0,(0,&)))))

Let’s find out what happens when the functionf is applied to the test datax shown in the
listing, which has an empty subtree.

$ fun rcrsh --main="f x" --c %nT
fun:command-line: invalid deconstruction

This is all as it should be, unless of course the function crashed for some other reason. To
verify the chain of events leading to the crash, we can execute

$ fun rcrsh --main="(%nTCR f) x" --c %nT 2> errlog

and view the crash dump fileerrlog (or whatever name was chosen) whose contents are
reproduced in Listing 4.3. Alternatively, a more concise crash dump is obtained by using
opaque types.

147

Listing 4.3 recursive crash dump from Listing 4.2 showing the chain of calls leading to a crash

fun:command-line: 7197774595263ˆ: <
10348909689347579265ˆ: <

158319260416525061728777ˆ: <
0ˆ: <>,
˜&V(),
574179086ˆ: <

ˆ: (
1460,
<0ˆ: <>,1ˆ: <>,1707091ˆ: <>,30ˆ: <>>)>>,

213568ˆ: <>,
128636ˆ: <97630998857ˆ: <>>>>

--- --------------------
10348909689347579265ˆ: <

158319260416525061728777ˆ: <
0ˆ: <>,
˜&V(),
574179086ˆ: <

ˆ: (
1460,
<0ˆ: <>,1ˆ: <>,1707091ˆ: <>,30ˆ: <>>)>>,

213568ˆ: <>,
128636ˆ: <97630998857ˆ: <>>>

--- --------------------
158319260416525061728777ˆ: <

0ˆ: <>,
˜&V(),
574179086ˆ: <

ˆ: (
1460,
<0ˆ: <>,1ˆ: <>,1707091ˆ: <>,30ˆ: <>>)>>

--- --------------------
˜&V()
--- --------------------
invalid deconstruction

148

$ fun rcrsh --main="(%oCR f) x"
fun:command-line: 499%oi&
--- --------
430%oi&
--- --------
222%oi&
--- --------
0%oi&
--- --------
invalid deconstruction

The zero size of the last argument means it can only be empty, which demonstrates that the
crash was caused specifically by an empty subtree. Of course,it also would be necessary
in practice to verify that the function doesn’t crash and gives correct results for valid input,
but this issue is beyond the scope of this example.

V – Type validator

For a given functionf , an expression of the form%abV f represents a function that is
equivalent tof whenever the input tof is an instance of type%a and the output fromf is
of type%b, but that raises an exception otherwise.

• If the input to a function of the form%abV f is not an instance of the type%a,
the diagnostic message reported when the exception is raised will be the words
“bad input type ”. The functionf is not executed in this case.

• If the input is an instance of%a, the functionf is applied to it. If the output from
f is not an instance of%b, the diagnostic message will report the input in the con-
crete syntax associated with%a, followed by a line of dashes, followed by the words
“bad output type ”.

• If f itself causes an exception in the second case, only the diagnostic from f is
reported.

The type operatorV is best understood as a binary operator in that it requires two subex-
pressions in the type expression where it occurs,a andb. Its result is not a type expression
but a second order function, which takes a functionf as an argument and returns a mod-
ified version off as a result. The modified version behaves identically tof in cases of
correctly typed input and output.3

Validator usage This feature is useful during development for easily localizing the origin
of errors due to incorrect typing. It might also be useful during beta testing but proba-
bly not in production code, due to degraded performance, increased code size, and user
unfriendliness.

3Advocates of strong typing may see this section as a vindication of their position. It’s true that you don’t have these problems
with a strongly typed language (or at least not after you get it to compile), but on the other hand, you aren’t allowed to write most
applications in the first place.

149

Although the type validation operator pertains to both the input and the output types of
a function, it would be easy to code a validator pertaining tojust one of them by using a
type that includes everything for the other.

• If a function is polymorphic in its input but has only one typeof output (for example,
a function that computes the length of list of anything), it is appropriate to use a
validator of the form%otV or %xtV on it, which will concern only the output type.
The latter will be more helpful for finding the cause of a type error, if any, by reporting
the input that caused the error in raw format.

• A validator like %txV is meaningful in the case of a function with only one input
type but many output types (for example, a function that extracts the data field from
self-describing%ytype instances).

• This technique can be extended to functions with more limited polymorphism by
using free unions. For example,%ejUjV would be appropriate for a function that
takes either a real or a complex argument to a complex result.

• Some useless validators are%xxVand%ooV, which have no effect.

Example A naive implementation of a function to perform a bitwiseAND operation on a
pair of natural numbers is given by the following pseudo-pointer expression.

$ fun --main="˜&alrBPalhPrhPBPfabt2RCNq" --decompile
main = refer conditional(

conditional(field(0,(&,0)),field(0,(0,&)),constant 0),
couple(

conditional(
field(0,((&,0),0)),
field(0,(0,(&,0))),
constant 0),

recur((&,0),(0,(((0,&),0),(0,(0,&)))))),
constant 0)

The problem with this function is that the result is not necessarily a valid representation
of a natural number, because it doesn’t maintain the invariant that the most significant bit
should be&.

This error can be detected through type validation with sufficient testing. In practice
we might run the program on a large randomly generated test data set, but for expository
purposes a couple of examples are tried by hand. On the first try, it appears to be correct.

$ fun --m="(%nWnV ˜&alrBPalhPrhPBPfabt2RCNq) (8,24)" --c
8

On the second try, the invalid output is detected.

150

$ fun --m="(%nWnV ˜&alrBPalhPrhPBPfabt2RCNq) (8,16)" --c
fun:command-line: (8,16)
--- --------
bad output type

Because the function is recursively defined, we can also try theR operator on it for more
information.

$ fun --m="(%nWnVR ˜&alrBPalhPrhPBPfabt2RCNq) (8,16)" -- c
fun:command-line: (8,16)
--- --------
(4,8)
--- --------
(2,4)
--- --------
(1,2)
--- --------
bad output type

This result shows that even an input as simple as(1,2) would cause a type error. To get
a better idea of the problem, we examine the raw data.

$ fun --m="˜&alrBPalhPrhPBPfabt2RCNq (1,2)" --c %tL
<0>

This result combined with a mental simulation of the listingof the decompiled virtual code
above is enough to identify the problem.

4.2 Record declarations

Difficult programming problems are made more manageable by the time honored tech-
niques of abstract data types. The object oriented paradigmtakes this practice further,
with a tightly coupled relationship between code and data, and interfaces whose bound-
aries are carefully drawn. The functional paradigm promotes an equal footing for func-
tions and data, largely subsuming the characteristics of objects within traditional records
or structures, because their fields can be functions. However, one benefit of objects re-
mains, which is their ability to be initialized automatically upon creation and to maintain
specified invariants automatically during their existence.

The present approach draws on the strengths of object orientation to the extent they are
meaningful and useful within an untyped functional context. The mechanism for abstract
data types is called a record in this manual, and it plays a similar rôle to records or struc-
tures in other languages. The terminology of objects is avoided, because methods are not
distinguished from data fields, which can contain functions. However, an additional func-
tion can be associated optionally with each field, which initializes or updates it implicitly
whenever its dependences are updated. These features are documented in this section.

151

Listing 4.4 a library exporting an untyped record with three fields and anexample instance

#library+

myrec :: front middle back

an_instance = myrec[front: 2.5,middle: ’a’,back: 1/3]

4.2.1 Untyped records

The simplest kind of record declaration is shown in Listing 4.4, which has a record named
myrec with fields namedfront , middle , andback . A record declaration may be
stored for future use in a library by the#library+ directive, or used locally within the
source where it is declared.

Field identifiers

If a record is declared by no more than the names of its fields, it serves as a user defined
container for values of any type. In this regard, it is comparable to a tuple whose com-
ponents are addressed by symbolic names rather than deconstructors like&l and&r . In
fact, the field identifiers are only symbolic names for addresses chosen automatically by
the compiler, and can be treated as data. With Listing 4.4 in afile namedrlib.fun , we
can verify this fact as shown.

$ fun rlib.fun
$ fun: writing ‘rlib.avm’
$ fun rlib --main="<front,middle,back>" --cast %aL
<2:0,2:1,1:1>

Record mnemonics

The record mnemonic appears to the left of the double colons in a record declaration, and
has a functional semantics.

• If the record mnemonic is applied to an empty argument, it returns an instance of the
record in which all fields are addressable (i.e., without causing an invalid deconstruc-
tion exception) but empty.

• If the record mnemonic is applied to a non-empty argument, the argument is treated
as a partially specified instance of the record, and the function given by the mnemonic
fills in the remaining fields with empty values or their default values, if any.

For an untyped record such as the one in Listing 4.4, the emptyform and the initialized
form of the record are the same, because the default value of each field is empty. In

152

general, the empty form provides a systematic way for user defined polymorphic functions
to ascertain the number of fields and their memory map for a record of any type.4

For the example in Listing 4.4, the record mnemonic ismyrec , and has the following
semantics.

$ fun rlib --m=myrec --decompile
main = conditional(

field &,
couple(

compose(
conditional(field &,field &,constant &),
field(&,0)),

field(0,&)),
constant 1)

This function would be generated for the mnemonic of any untyped record with three
fields, and will ensure that each of the three is addressable even if empty.

$ fun rlib --m="myrec ()" --c %hhZW
(((),()),())

However, the main reason for using a record is to avoid havingto think about its concrete
representation, so neither the record mnemonic nor the default instance would ever need
to be examined to this extent.

Instances

An instance of a record is normally expressed by a comma separated sequence of assign-
ments of field identifiers to values, enclosed in square brackets, and preceded by the record
mnemonic.

〈record mnemonic〉[
〈field identifier〉: 〈value〉,

...
〈field identifier〉: 〈value〉]

The fields can be listed in any order, and can be omitted if their default values are intended.
The code in Listing 4.4 would have worked the same if the declaration of the instance had
been like this.

an_instance = myrec[back: 1/3,front: 2.5,middle: ’a’]

To initialize only themiddle field and leave the others to their default values, the syntax
would be like this.

4There is of course no concept of mutable storage in the language. References to updating and initialization throughout this manual
should be read as evaluating a function that returns an updated copy of an argument. For those who find a description is these terms
helpful, all arguments to functions are effectively “passed by value”. Although the virtual machine is making pointer spaghetti behind
the scenes, sharing is invisible at the source level.

153

an_instance = myrec[middle: ’a’]

The record mnemonic is necessary to supply any implicit defaults. This syntax is similar
to that of an a-tree (page 128), except that the addresses aresymbolic rather than literal.
Unlike lists, sets, and a-trees, there is no expectation that all fields in a record should have
same type.

In some situations, it is convenient to initialize the values of a pair of fields by a function
returning a pair, so a variation on the above syntax can be used as exemplified below.

point[(y,x): mpfr..sin_cos 1.2E0, floating: true]

Thempfr..sin_cos function used in this example computes a pair of numbers more
efficiently than computing each of them separately.

To express an instance of a record in which all fields have their default values, a useful
idiom is 〈record mnemonic〉&. That is, the record mnemonic is applied to the smallest
non-empty value,&.

Deconstruction

The field identifiers declared with a record can be used as deconstructors on the instances.

$ fun rlib --m="˜front an_instance" --c %e
2.500000e+00
$ fun rlib --m="˜middle an_instance" --c %s
’a’
$ fun rlib --m="˜back an_instance" --c %q
1/3
$ fun rlib --m="˜(front,back) an_instance" --c %eqX
(2.500000e+00,1/3)

The values that are extracted are consistent with those thatare stored in the record instance
shown in Listing 4.4. The dot operator is a useful way of combining symbolic with literal
pointer expressions.

$ fun rlib --m="˜middle.&h an_instance" --c %c
‘a

An expression of the form̃a. b x is equivalent tõ b ˜ a x, except wherea is a pointer
with multiple branches, in which case it follows the rules discussed in connection with the
composition pseudo-pointer (page 79). To ensure correct disambiguation, this usage of the
dot operator permits no adjacent spaces.

Implicit type declarations

Whenever a record is declared by the:: operator, a type expression is implicitly declared
as well, whose identifier is the record mnemonic preceded by an underscore. Identifiers
with leading underscores are reserved for implicit declarations so as not to clash with user

154

Listing 4.5 Typed records annotate some or all of the fields with a type expression.

#import std

#library+

goody_bag :: # record declaration with typed fields

number_of_items %n # field types are specified like this
cost %e
celebrity_rank %cZ
occasion %s
hypoallergenic %b

goodies = # an instance of the typed record

goody_bag[
number_of_items: 6,
cost: 125.00,
celebrity_rank: ‘B,
occasion: ’Academy Awards’,
hypoallergenic: true]

defined identifiers. The record type identifier can be used like any other type expression
for casting or for type induced functions.

$ fun rlib --main=an_instance --cast _myrec
myrec[front: 57%oi&,middle: 6%oi&,back: 8%oi&]

Values cast to untyped records are printed with all fields in opaque format because there
is no information available about the types of the fields, andwith any empty fields sup-
pressed. The opaque format nevertheless gives an indication of the sizes of the fields. The
next example demonstrates a record instance recognizer.

$ fun rlib --main="_myrec%I an_instance" --cast %b
true

When a type expression given by a symbolic name is used in conjunction with other type
constructors or functionals such asI andP, the symbolic name appears on the left side of
the%in the type expression, and the literals appear on the right,as int%u. This convention
is a matter of necessity to avoid conflation of the two.

4.2.2 Typed records

The next alternative to an untyped record is a typed record, which is declared with the
syntax exemplified in Listing 4.5.

• Typed records have an optional type expression associated with each field in the
declaration.

155

• The type expression, if any, follows the field identifier in the declaration, separated
by white space, with no other punctuation or line breaks required.

• There is usually no ambiguity in this syntax because type expressions are readily dis-
tinguishable from field identifiers, but the type expressionoptionally can be paren-
thesized, as in(%cZ) .

• Parentheses are necessary only when the type expression is given by a single user
defined identifier without a leading underscore.

Typed record instances

The syntax for typed record instances is the same as that of untyped records, but there is
an assumption that the field values are instances of their respective types. This assumption
allows the record instance to be displayed with a more informative concrete syntax than
the opaque format used for untyped records. If the source code in Listing 4.5 resides in
file namedbags.fun , the record instance would be displayed as shown.

$ fun bags.fun
fun: writing ‘bags.avm’
$ fun bags --m=goodies --c _goody_bag
goody_bag[

number_of_items: 6,
cost: 1.250000e+02,
celebrity_rank: ‘B,
occasion: ’Academy Awards’,
hypoallergenic: true]

Type checking

The instance checker of a typed record verifies not only that all fields are addressable, but
that they are all instances of their respective declared types.

$ fun bags --m="_goody_bag%I 0" --c %b
false
$ fun bags --m="_goody_bag%I goody_bag[cost: ’free’]" -c % b
false
$ fun bags --m="_goody_bag%I goody_bag[cost: 0.0]" --c %b
true

This convention applies also to the type validator operator, V, when used in conjunction
with typed records (page 149), and to the--cast command line option, which will de-
cline to display a badly typed record instance as such.

$ fun bags --m="goody_bag[cost: ’free’]" --c _goody_bag
fun: writing ‘core’
warning: can’t display as indicated type; core dumped

156

Listing 4.6 default values with nested records

t :: a %e b %q

u :: c _t d %E

#cast _u

x = u& # default value of a record of type _u

Default values

Fields in a typed record sometimes have non-empty default values to which they are auto-
matically initialized if left unspecified.

$ fun bags --m="goody_bag&" --c _goody_bag
goody_bag[cost: 0.000000e+00]

This example shows the default value of0.0 automatically assigned to thecost field,
even though no value was explicitly specified for it. These conventions are observed with
regard to default values.

• If the empty value,() , is a valid instance of the field type, then that value is the
default. Types with empty instances include naturals, strings, booleans, and all lists,
sets, trees, grids, and “maybe” types (%tZ).

• Primitive types with non-empty default values include the numeric types%e, %E,
and%q, whose defaults are0.0 , 0.0E0 , and0/1 . For the%Etype, the minimum
precision is used. The address type%ahas a default value of0:0 .

• If a field in a record is also a record, the default value of the field is given by the
default value of the inner record.

• The default value of a record is the value obtained by initializing all of its fields to
their default values.

• If a field in a record is a pair for which both sides have defaultvalues, the default
value of the field is the pair of default values.

An example of a typed record with a field that is also a typed record is shown in List-
ing 4.6. When this code is compiled, the output is

u[c: t[a: 0.000000e+00,b: 0/1],d: 0.00E+00]

Some types, such as functions and characters, have neither an empty instance nor a
sensible default value. If such a field is left unspecified, the record is badly typed. If
there is sometimes a good reason for such a field to be undefined, then the corresponding
“maybe” type should be used for that field in the record declaration.

157

Listing 4.7 Recursively defined records are a hundred percent legitimate.

contract :: main_clause %s subclauses _contract%L

hit =

contract[
main_clause: ’yadayada’,
subclauses: <

contract[main_clause: ’foo’],
contract[

main_clause: ’bar’,
subclauses: <

contract[main_clause: ’lot’],
contract[main_clause: ’of’],
contract[main_clause: ’buffers’]>],

contract[main_clause: ’baz’]>]

Recursive records

Typed records open the possibility of fields that are declared to be of record types them-
selves, by way of implicitly declared type identifiers as seen in previous examples, such as
_myrec and_goody_bag . A hierarchy of record declarations used appropriately can
be an important aspect of an elegant design style.

When multiple record declarations are used together, the issue inevitably arises of
cyclic dependences among them. Circular definitions are generally not valid in Ursala
except by special arrangement (i.e., with the#fix compiler directive), but in the case of
record declarations, they are valid and are interpreted appropriately.5

Listing 4.7 briefly illustrates the use of recursion in a record declaration. In this case,
only a single declaration is involved, and it depends on itself by invoking its own type iden-
tifier, _contract . Instances of this type can be cast or type checked as any other type.
This technique is applicable in general to any number of mutually dependent declarations.

Although it serves to illustrate the idea of recursive records, the record in Listing 4.7
offers no particular advantage over the type of trees of strings,%sT. Trees are an inherently
recursive container suitable for most applications in practice and are better integrated with
other features of the language. However, one could undoubtedly envision some suitably
complicated example for which only a user defined recursive container would suffice.

4.2.3 Smart records

The facility for automatically initialized fields in typed records can be taken a step fur-
ther by having them initialized according to a specified function. Records with custom
designed initialization functions are called smart records in this manual.

5only for the record declarations, not for mutually dependent declarations of instances of the records

158

Smart record syntax

The syntax for smart recard declarations is upward compatible with untyped records and
typed records, consisting of a record mnemonic, followed bythe record declaration oper-
ator :: , followed by a white space separated sequence of triples of field identifiers, type
expressions, and initializing functions.

〈record mnemonic〉 ::

〈field identifier〉 〈type expression〉 〈initializing function〉
...

〈field identifier〉 〈type expression〉 〈initializing function〉
Untyped and uninitialized fields may be mixed with initialized fields in the same declara-
tion. For an initialized field, a type expression is requiredby the syntax, but an untyped
initialized field can be specified either with an opaque type expression,%o, or an empty
value () as a place holder. This syntax is usually unambiguous, but the initialization
function can be parenthesized if necessary to distinguish it from a field identifier.

Semantics

The calling convention for the initializing function is that its argument is the whole record,
and its result is the value of the field that it initializes. Itwill normally access any fields
on which its result depends by deconstructor functions using their field identifiers in the
normal way. An initializing function may raise an exception, which is useful if its purpose
is only to verify an assertion or invariant.

A field in a record could be declared as a record type itself. Inthat case, the inner record
is initialized first by its own initializing function beforebeing accessible to the initializing
functions of the outer record. The same applies to any type offield that has a non-empty
default value.

If a field contains a list of records, every record in the list is first initialized locally
before being accessible to the initializing functions at the outer level. The same applies to
other containers, such as sets and a-trees, and other types having default values, such as
floating point numbers.

If there are multiple fields with initializing functions in the same record, they are effec-
tively evaluated concurrently. Any data dependences amongthem are resolved according
to the following protocol.

• All field initializing functions are evaluated with identical inputs.

• When a result is obtained for every field, a new record is constructed from them.

• If any field in the new record differs from the corresponding field in the preceding
one, the process is iterated.

• The result from any field initializing function is accessible by the others as of the next
iteration.

159

Listing 4.8 polar and retangular coordinates automatically maintained

#import std
#import nat
#import flo

#library+

point :: # each field has a type and an initializer

x %eZ -|˜x,-&˜r,˜t,timesˆ/˜r cos+ ˜t&-,˜r,! 0.|-
y %eZ -|˜y,-&˜r,˜t,timesˆ/˜r sin+ ˜t&-,! 0.|-
r %eZ -|˜r,-&˜x,˜y,sqrt+ plus+ sqrˆ˜/˜x ˜y&-,˜x,˜y,! 0.|-
t %eZ -|˜t,-&˜x,˜y,math..atan2ˆ/˜y ˜x&-,˜y&& ! div\2. pi, ! 0.|-

functions

add = point$[x: plus+ ˜x˜˜,y: plus+ ˜y˜˜]
rotate = point$[r: ˜&r.r,t: plus+ ˜/&l &r.t]
scale = point$[r: times+ ˜/&l &r.r,t: ˜&r.t]
invert = scale/-1.
orbit = scale/2.1+ addˆ/invert rotate/0.5

• Initialization terminates either when a fixed point is reached or a repeating cycle is
detected.

• In the case of a cycle, the record instance with the minimum weight in the cycle is
taken as the result, or with multiple minimum weights an arbitrary choice is made.

An initializing function never gets to see a record in which some fields have been initialized
more than others. If multiple iterations are needed, every field will have been initialized
the same number of times. In practical applications, very few iterations should be needed
unless the initializing functions are inconsistent with one another. However, it is the user’s
responsibility to ensure convergence.

Example

Listing 4.8 shows a simple example of a smart record developed for a small library of
operations on two dimensional real vectors or points in a plane. A point has two equiv-
alent representations, either as a pair of cartesian cordinates(x, y), or as a pair of polar
coordinates,(r, t), which are related as shown.

x = r cos(t) r =
√

x2 + y2

y = r sin(t) t = arctan(y/x)

The smart record allows a point to be specified either by its(x, y) coordinates or its(r, t)
coordinates, and automatically infers the alternative. This feature is convenient because

160

some operations are better suited to one representation than the other, and can be expressed
in reference to the appropriate one. Moreover, compositions of different operations require
no explicit conversions between representations.

Much of the code in Listing 4.8 involves language features introduced in subsequent
chapters, so it is not discussed in detail at this stage. However, some crucial ideas should
be noted.

• Addition uses the cartesian representation.

• Rotation and scaling use the polar representation.

• The orbit function composes four functions without reference to either representation
and without explicit conversions.

To see smart records in action, we store Listing 4.8 in a file namedplib.fun and
compile it as follows.

$ fun flo plib.fun
fun: writing ‘plib.avm’

The remaining fields are initialized automatically when a value of1. is assigned toy .

$ fun plib --m="point[y: 1.]" --c _point
point[

x: 0.000000e+00,
y: 1.000000e+00,
r: 1.000000e+00,
t: 1.570796e+00]

Thescale function changes only ther coordinate, but the others are automatically ad-
justed.

$ fun plib --m="scale/2. point[x: 0.5,y: 1.]" --c _point
point[

x: 1.000000e+00,
y: 2.000000e+00,
r: 2.236068e+00,
t: 1.107149e+00]

The same effect is achieved by adding a pair of equal points, even though only thex andy
coordinates are directly referenced by theadd function.

$ fun plib --m="add ˜&iiX point[x: 0.5,y: 1.]" --c _point
point[

x: 1.000000e+00,
y: 2.000000e+00,
r: 2.236068e+00,
t: 1.107149e+00]

161

Listing 4.9 Parameterized records allow generic or polymorphic types.

#import std
#import nat

polyset "t" :: # parameterized by the element type

elements "t"%S
cardinality %n length+ ˜elements

realset = polyset %e
realset_type = _polyset %e

x = realset[elements: {1.0,2.0,3.0}]
y = (polyset %s)[elements: {’foo’,’bar’}]

4.2.4 Parameterized records

A way of defining general classes of records with a single declaration is to use a parame-
terized record, such as the one shown in Listing 4.9. The ideais that the common features
of a class of records are fixed in the declaration, and the features that vary from one to
another are represented by dummy variables.

• The dummy variables can be used in the declaration anywhere an identifier for a con-
stant could be used, whether to parameterize the type expressions or the initializing
functions. The same dummy variable can be used in several places.

• The record mnemonic has the semantics of a higher order function. When applied
to a parameter value, the record mnemonic of a parameterizedrecord instantiates
the dummy variable as the parameter and returns a function that can be used as an
ordinary record mnemonic.

• The implicitly declared type identifier of a parameterized record doesn’t represent a
type expression, but a function that takes a parameter as input and returns a type ex-
pression as a result. The result returned can be used like an ordinary type expression.

Applications

One application for parameterized records would be to specify a polymorphic type class.
The parameter can determine the type of a field in the record, among other things. An-
other would be to implement optional or pluggable features in a field initializing function.
However, there may be simpler solutions to these problems than parameterized records.

• Polymorphic records can be obtained in various ways by declaring the changeable
fields as general, opaque, raw, or self-describing types (%g, %o, %x, or %y, respec-
tively), or as a free union of some known set of types.

162

• If an initializing function requires a proliferation of optional configuration settings,
the record can be declared with extra fields to store them. Every field in a record is
accessible to every initialization function in it.

In fact, it is difficult to identify a compelling case for parameterized records. I (the author
of the language) don’t consider them a useful feature but have provided them partly as a
friendly gesture to those who may feel otherwise, and partlyas an exercise in compiler
writing.

Syntax

For the simple case of a first order parameterized record, thesyntax for the declaration is
as follows.

〈record mnemonic〉 〈dummy variable〉 :: 〈fields〉
• The〈fields〉 have the syntax explained previously for typed or smart records, but may

also employ free occurrences of dummy variables.

• The 〈dummy variable〉 can be a double quoted string containing any printable char-
acters other than a double quote, and that is not broken across lines.

• Alternatively, lists and tuples of dummy variables are allowed in place of a single
one, in any combination to any depth. They follow the usual syntax for lists and
tuples in the language as comma separated sequences enclosed in angle brackets or
parentheses.

Higher order parameterized records require one of the following forms, where thev’s are
dummy variables or lists or tuples thereof, as explained above.

(〈record mnemonic〉 v0) v1 :: 〈fields〉
((〈record mnemonic〉 v0) v1) v2 :: 〈fields〉

(((〈record mnemonic〉 v0) v1) v2) v3 :: 〈fields〉
...

The parentheses in this usage are necessary and must be nested as shown to inhibit the
usual right associativity of function application in the language. An alternative syntax for
higher order records is the following.

〈record mnemonic〉(v0) v1 :: 〈fields〉
〈record mnemonic〉(v0)(v1) v2 :: 〈fields〉

〈record mnemonic〉(v0)(v1)(v2) v3 :: 〈fields〉
...

In this form, the parentheses are optional but a lack of spacebefore each dummy variable
is compulsory, except before the last one. Juxtaposition without a space is interpreted as a
left associative version of function application.

163

Usage

The use of a record mnemonic for a parameterized record must match its declaration, both
in the order and the structure of the parameters. In this regard, it should be noted particu-
larly by experienced functional programmers that there is afirm distinction in this language
between a second order parameterized record and a first orderrecord parameterized by a
pair. That is,

(rec "a") "b" :: . . .

is not semantically equivalent to

rec ("a","b") :: . . .

Although they are similarly expressive, the latter has a somewhat more efficient imple-
mentation. The choice between them is a design decision, perhaps favoring the former
when there is some reason to expect that"a" doesn’t need to be changed as often as"b" .

First order If something is declared as a first order parameterized record rec , then a
relevant record instance would be expressed as

(rec x)[. . .]

wherex matches the size or arity of the parameter. That is, ifrec were declared

rec ("a","b") :: . . .

then the value ofx should be a pair, so that its left side can be instantiated as"a" and its
right side as"b" . If rec were declared as

rec <"u","v","w"> :: . . .

thenx should be a list of length three. If dummy variables occur in nested tuples or lists,
the parameter should have a similar form.

Note that ifrec is a parameterized record, then it is not correct to writerec[. . .] as a
record instance without a parameter to the mnemonic, but it is possible to define a specific
record type

some_rec = rec some_param

and then to express an instance assome_rec[. . .] .

Higher order If a higher order parameterized record is declared

(. . . ((rec "a") "b") . . . "z") :: . . .

the same considerations apply, with the additional provision that the nesting of function
applications in the use of the mnemonic must match its declaration, and the innermost

164

argument must match the structure of the innermost parameter. Hence, an instance of the
relevant record would be expressed

(. . . ((rec a_val) b_val) . . . z_val)[. . .]

Special cases of such a record can also be defined and invoked accordingly by fixing one
or more of the inner parameters.

spec = rec a_val

An instance could then be expressed

(. . . (spec b_val) . . . z_val)[. . .]

Types The type identifier of a parameterized record follows the same calling conventions
as the record mnemonic, but returns a type expression. Otherwise, all of the above discus-
sion applies.

This situation is particularly relevant to recursively defined parameterized records, in
which care must be taken to employ the type expression correctly. For example it would
not be correct to write

rec "a" :: foo bar _rec%L

because_rec by itself is not a type expression but a function returning a type expression.
Rather, it would be necessary to write

rec "a" :: foo bar (_rec "a")%L

or something similar.
It is not strictly necessary for the formal parameter of the type identifier to be the same

as that of the whole declaration (although certain optimizations apply if it is). For example,
a tree with node types alternating by levels could be declared as follows.

tree ("x","y") :: root "x" subtrees (_tree ("y","x"))%L

The argument to the type mnemonictree and the type identifier_tree should always
be a pair of type expressions.

Example

Listing 4.9 defines a first order parameterized record meant to model a polymorphic set
type with an automatically initialized field maintaining the cardinality of the set. The
parameter is a type expression giving the types of the elements. In one case a specialized
form of the record is defined, with the element type fixed as real. In another case, the
record with an element type of strings is invoked.

Assuming Listing 4.9 resides in a fileprec.fun , we can exercise it as follows.

165

$ fun prec.fun --m=x --c realset_type
polyset(1%o&)[

elements: {2.000000e+00,3.000000e+00,1.000000e+00},
cardinality: 3]

$ fun prec.fun --m=y --c "_polyset %s"
polyset(1%oi&)[elements: {’bar’,’foo’},cardinality: 2]

The1%oi& parameter to thepolyset record mnemonic is displayed as a reminder that
the latter is a first order parameterized record. It can be seen that in each case, the set
elements are displayed as instances of the corresponding parameter type.

4.3 Type stack operators

Some types and type induced functions remain problematic tospecify in terms of the type
expression features introduced hitherto. These include enumerated types, recursive types
other than records or trees, tagged unions, and functions togenerate random instances of a
type. Where records are concerned, there is still a need to beable to combine two different
record types given by symbolic names within a single binary constructor (e.g., a pair of
records). These remaining issues are all addressed by a combination of some new type
operators, and a new way of looking at type expressions documented in this section.

4.3.1 The type expression stack

To use type expressions to their fullest extent, it is necessary to understand them in more
operational terms than previously considered. Previous examples have employed type
expressions of the form%uvW , for a binary type constructorW and arbitrary type expres-
sionsu andv, referring tou as the left subexpression andv as the right. Equivalently, one
could envision an automaton scanning forward through the expression and accumulating
parts of it onto a stack. WhenW is reached, the left operandu will be at the bottom of
the stack, and the more recently scanned right operandv will be at the top.W is then
combined with the uppermost operands on the stack, coincidentally also its left and right
subexpressions.

If type expressions really were scanned by an automaton thatused a stack, then perhaps
more flexible ways of building them would be possible. The initial contents of the stack
could be chosen to order, and some direct control of the automaton could be requested
when the expression is scanned. There is in fact a way of doingboth of these.

Initializing the stack

It is mentioned on page 155 that a symbolic type expression (for example, a record type
_foobar) can be combined with literal type operators (for example, the instance recog-
nizer operatorI) in a type expression such as_foobar%I . The symbolic name on the
left of the%and the literals on the right are previously justified by syntactic necessity, but
it is generally true that any expressionx can be placed immediately to the left of a type

166

mnemonic interpretation

d duplicate the operand on the top of the stack
l replace the top operand on the stack with its left side
r replace the top operand on the stack with its right side
w swap the top two operands on the stack

Table 4.2: type stack manipulation operators

(%s,%cL) d→ (%s,%cL)

(%s,%cL)

l→

%s

(%s,%cL) w→

(%s,%cL)

%s r→

%cL

%s X→ %scLX

Figure 4.1: illustration of type stack evolution to evaluate (%s,%cL)%dlwrX

expression. In operational terms, the effect will be thatx is pushed onto the otherwise
empty stack before scanning begins.

Controlling the scanning automaton

With stack initialization settled, the issue of instructing the automaton is addressed by the
four operators in Table 4.2. These operators can be seen as instructions addressed directly
to the automaton like keystrokes on a calculator, rather than components of the type being
constructed. There are some additional notes to the brief descriptions in the table.

• If the top value on the stack is a list rather than a pair, thel operator will extract its
head and ther operator will extract its tail.

• If the top value is a triple rather than a pair, thel operator will extract the left side,
and ther operator will extract the other pair of components. The latter can be further
deconstructed byl or r .

• The above generalizes ton-tuples of the form(x0, x1 . . . xn), assuming no inner
parentheses. On the other hand, a triple((x, y), z) is treated as a pair whose left
side is a pair.

Example

A simple example conveniently demonstrates all four type stack manipulations. The initial
contents of the type stack will be the pair of type expressions (%s,%cL) , for strings and
lists of characters respectively. Our task will be to write atype expression that manually
constructs the product type%scLX from this configuration. Although this technique is
unduly verbose for a pair of literal type expressions, it could also be used on a pair of
symbolic type expressions, such as record type identifiers,for which there would be no
alternative.

167

mnemonic interpretation

B record type constructor the hard way
Q compressor function or compressed type constructor
i random instance generator
h recursive type or recursion order lifter
u unit type constructor

Table 4.3: type operators with idiosyncratic usage

This task is easily accomplished by the sequence of operationsd, l , w, andr in that
order. An animation of the algorithm is shown in Figure 4.1. To confirm that this
understanding is correct, we execute the following test.

$ fun --m="(’foo’,’bar’)" --c "(%s,%cL)%dlwrX"
(’foo’,<‘b,‘a,‘r>)
$ fun --m="(’foo’,’bar’)" --c %scLX
(’foo’,<‘b,‘a,‘r>)

With identical results in both cases, the types appear to be equivalent. To be extra sure, we
can even do this,

$ fun --m="˜&E(%scLX,(%s,%cL)%dlwrX)" --c %b
true

recalling that thẽ&E pseudo-pointer is for comparison.
Another variation shows that the subexpressions need not beused in the order they’re

written down, because the automaton can be instructed to thecontrary.

$ fun --m="(’foo’,’bar’)" --c "(%s,%cL)%drwlX"
(<‘f,‘o,‘o>,’bar’)

However the original way is less confusing.
The patterndlwr is needed so frequently in type expressions that it is inferred auto-

matically when the literal portion of a type expression begins with a binary constructor.

$ fun --m="˜&E((%s,%cL)%X,(%s,%cL)%dlwrX)" --c %b
true

Remembering this convention can save a few keystrokes.

4.3.2 Idiosyncratic type operators

A small selection of type operators remaining to be discussed is documented in this sec-
tion, which is shown in Table 4.3. All of these rely in some essential way on an appro-
priately initialized type stack in order to be useful, and therefore depend on the preceding
discussion as a prerequisite.

168

B – Record type constructor

A type expression of the formx%Brepresents a record type. If it is used explicitly instead
of declaring a record the normal way, thenx should be a list of the form

<
〈record mnemonic〉: 〈initializer〉,
〈field identifier〉: 〈type expression〉,
...

...
〈field identifier〉: 〈type expression〉>

where the record mnemonic and field identifiers are characterstrings, and the initializer is a
function to initialize the record. This function must be consistent with the conventions for
record initializing functions explained in Section 4.2.3 and with the types and initializing
functions of the subexpressions, as well as their number andmemory map.

This type constructor never has to be used explicitly because the compiler does a good
job of generating record type expressions automatically from record declarations. It exists
as a feature of the language only to establish a semantics forrecord declarations in terms
of a quasi-source level transformation. Users are advised to let the compiler handle it.

Q – Compressor function or compressed type constructor

There are several ways of using theQ type operator as previously noted on pages 131
and 140. One way is in specifying the type expressions of compressed types, another is in
specifying a function that uncompresses an instance of a compressed type, and another is as
a compression function. Examples are%sLQfor the type of compressed lists of character
strings,%sLQI for the instance recognizer and extraction function of compressed lists of
character strings, and%Qfor the (untyped) compression function.

In view of type expressions as stacks, it would be equivalentto write t%Qor t%QI
respectively for the compressed form or extraction function of a typet. There is also a
more general form of compression function,n%Q, wheren is a natural number. Note that
this usage is disambiguated fromt%Qby n being a natural number andt being a type
expression.

Granularity of compression The numbern specifies the granularity of compression. Higher
granularities generally provide less effective but fastercompression. The compression
algorithm works by factoring out common subtrees in its argument where doing so can
result in a net decrease in space. The granularityn is the size measured in quits of the
smallest subtree that will be considered for factoring out.

Choice of granularity Anything with significant redundancy can be compressed witha
granularity of 0, equivalent to%Qwith no parameter. If faster compression is preferred,
the best choice of granularity is data dependent. Granularities on the order of103 quits
or more are conducive to noticeably faster compression, butnot always applicable. For

169

example, to compress a function of the formh(f, f) wheref is a large function or con-
stant appearing twice in the function be compressed, a granularity larger than the size off
would be ineffective. A granularity equal to the size off or slightly smaller would causef
to be factored out and nothing else, assuming it is the largest repeated subexpression. (The
size off can be determined by displaying it in opaque format or by theweight function.)

i – Random instance generator

The i type operator generates a function that generates random instances of a given type.
Some comments relevant to thei operator are found on page 130 in relation to the seman-
tics of the printed format of opaque types, because they are printed as an expression that
includes thei operator, but the present aim is to document thei operator specifically and
in detail.

Usage In terms of the stack description of type expressions, thei operator requires two
operands on the stack, with the top one being a type expression and the one below being
a natural number. A simple way of using it is therefore by an expression of the form
(n, t)%i for a natural numbern and a symbolic type expressiont, or more concisely
n%ui if the type can be expressed as a sequence of literalsu. The former relies on the
convention of an implicitdlwr inserted before thei as mentioned on page 168.

Size of generated data The natural numbern usually represents the size measured in quits
of the random data that the function will generate. In some cases the size is inapplicable
or only approximate because the concrete representation ofthe type instances constrains
it. For example, boolean values come in only two sizes. However, a size must always be
specified.

In one other case, namely expresions of the formn%cOi with n less than 256, the
numbern represents the ISO code of the character that is generated ifthe function is
applied to the argument&. That is, the function behaves deterministically when applied to
& but returns a random character otherwise.

Semantics of generating functions Other than as noted above, random instance generators
ignore their arguments, hence the usual idiomatic practiceof writing n%ui& to express a
random compile-time constant, wherein the argument is&. An alternative would be for the
argument to influence the statistical properties of the result, but to do so in any more than
anad hocway is a matter for further research by compiler developers.

Consequently, there is no way of controlling the distribution of results obtained by
random instance generators other than by post-processing (although the language provides
other ways to generate random data that are more controllable). Some rough guidelines
about the (hard coded) statistics used by instance generators are as follows.

• Floating point numbers of type%eor %Eare uniformly distributed between−10
and10.

170

• Complex numbers (type%j) have their real and imaginary parts uncorrelated and
uniformly distributed between−10 and10.

• Strings, natural numbers and most aggregate types such as lists and sets have their
length chosen by a random draw from a uniform distribution whose upper bound
increases logarithmically withn. The sizes of the elements or items are then chosen
randomly to make up the total required size.

• Raw data, transparent types, trees, and functions are generated by anad hocalgorithm
to achieve a qualitative mix of tree shapes.

Properly speaking, random instance generators are not functions at all, and do not sit
comfortably within the functional programming paradigm. Some comments on thẽ&K8
pseudo-pointer in Section 2.5.1 are applicable here as well.

Example To generate an arbitrary module of dual type trees of characters and natural
numbers for stress testing a function that operates on such types, the following expression
can be used.

$ fun --m="500%cnDmi&" --c %cnDm
<

’QMS’: ‘Uˆ: <
0ˆ: <>,
‘Pˆ: <8ˆ: <>,14ˆ: <>,0ˆ: <>,6ˆ: <>>,
ˆ: (

149%cOi&,
<2ˆ: <>,˜&V(),1ˆ: <>,0ˆ: <>,0ˆ: <>>),

2ˆ: <>>,
’{V}gamO$‘’: 244%cOi&ˆ: <218%cOi&ˆ: <24ˆ: <>>,2ˆ: <>>,
’?xtyv9kN#/AJ’: 2ˆ: <>,
’P9tPxo[_’: 220%cOi&ˆ: <˜&V(),0ˆ: <>,4ˆ: <>>,
’-/.X-D+g‘Y’: ‘Pˆ: <0ˆ: <>>>

See page 130 for more examples.

Limitations Due to issues with non-termination, random instance generators apply only to
non-recursive types (i.e., those that don’t involve theh operator or circular record declara-
tions). A diagnostic message of “bad i type ” is reported if it is used with a recursive
type.

h – Recursive type or recursion order lifter

The recursive type operatorh can be used to specify the types of self-similar data struc-
tures. Normally tree types (%xT and%xD) or recursively defined records (page 158) are
sufficient for this purpose, but this type constructor facilitates unrestricted patterns of self-
similarity if preferred, and with less source level verbiage than a record.

171

Semantics This operator can be understood only in terms of the type expression stack,
because its arity is variable. If the top of the stack alreadycontains anh, then the next
h is combined with it like a unary operator, but otherwise it serves as a primitive. The
h operator is not meaningful in itself, but its presence in a type expression implies the
validity of certain semantics preserving rewrite rules by definition.

• If an h appears without anyh adjacent to it, the innermost subexpression containing
it may be substituted for it.

• If a consecutive sequence ofn of them appears without anotherh adjacent to it, the
sequence can be replaced by the subexpression terminated bythen-th type opera-
tor following the sequence, numbering from 1. This rule is a generalization of the
previous one.

These rewrite rules always lengthen a type expression and never lead to a normal form, but
the intuition is that they allow a type expression to be expanded as far as needed to match
a given data structure.

Examples The simplest example of a recursive type is%hL. This is the type of lists of
nothing but more lists of the same. It is equivalent to%hLL, and to%hLLL, and so on.
Anything can be cast to this type.

$ fun --m="0" --c %hL
<>
$ fun --m="&" --c %hL
<<>>
$ fun --m="’foo’" --c %hL
<

<<<>>,<<>,<>>>,
<<<>>,<<>,<<>,<>>>>,
<<<>>,<<>,<<>,<>>>>>

The next simplest example is the type of nested pairs of emptypairs,%hhWZ. Because
there are two consecutive recursive type constructors, this type is equivalent to%hhWZWZ,
and so on.

$ fun --m="0" --c %hhWZ
()
$ fun --m="(&,&,0)" --c %hhWZ
(((),()),((),()),())

For a more complicated example, a type of binary trees of strings is constructed using
assignment of strings to pairs of the type. The trees are expressed in the form

〈root〉: (〈left subtree〉, 〈right subtree〉)
The empty tree is() , a tree with only one node is’a’: () , a tree with two empty
subtrees is’b’: ((),()) , and so on. The type expression is%shhhhWZAZ.

172

$ fun --m="’a’: (’b’: (’c’: (),’d’: ()),())" --c %shhhhWZAZ
’a’: (’b’: (’c’: (),’d’: ()),())

u – Unit type constructor

These types have only a single instance, and are expressed bya type expression of the
form 〈instance〉%u. For example, the type containing only the true boolean value could be
expressedtrue%u .

The printing function for a unit type prints the instance in general (%g) form. Because
printing functions don’t check the validity of their arguments, they will print the instance
even if the argument is something other than that. However, the --cast command line
argument will detect a badly typed argument.

Unit types have a default value when declared as the type of a field in a record. The
default value is the instance. The field will be automatically initialized to the instance
when the record is created.

Tagged unions A good use for unit types is to express tagged unions, which could be done
by an expression such as(0%unX,&%usX)%U for a tagged union of naturals (%n) and
strings (%s), using boolean values (0 and&) as the tags. Naturals, characters, and strings
also make good tags. The tag field could be on the left or the right side of a pair, but more
efficient code is generated when the tag field is on the left, asshown above.

A tagged union avoids the possibility of ambiguity characteristic of free unions by
ensuring that the instances of the subtypes of the union havedisjoint sets of concrete
representations. For example, the empty tree() could represent either the natural number
0 or the empty string,’’ , but the tag value determines the intended interpretation.

$ fun --main="(0,())" --c "(0%unX,&%usX)%U"
(0,0)
$ fun --main="(&,())" --c "(0%unX,&%usX)%U"
(&,’’)

Enumerated types Another use for unit types is to construct enumerated types by forming
the free union of a collection of them. The benefits of an enumerated type are that the
instance checker can automatically verify membership, so records with enumerated types
for their fields have built in sanity checking and initialization. The default value of a field
declared as an enumerated type is an arbitrary but fixed instance, depending on the order
they are given in the type expression.

An example of an enumerated type for weekdays would be

((((’mon’%u,’tue’%u)%U,’wed’%u)%U,’thu’%u)%U,’fri’% u)%U

A more elegant and more efficient way of expressing it would be

enum block3 ’montuewedthufri’

173

using functions introduced subsequently. The instance checker can be seen to work as
expected.

$ fun --m="(enum block3 ’montuewedthufri’)%I ’mon’" --c %b
true
$ fun --m="(enum block3 ’montuewedthufri’)%I ’sun’" --c %b
false

On the other hand, if the concrete representation of an enumerated type is of no conse-
quence but symbolic names for the instances would be convenient, then a simpler way to
declare one would be to use the field identifiers from a record declaration instead of char-
acter strings, as inweekdays :: mon tue wed thu fri . A further declaration
along these lines

weekday_type = enum <mon,tue,wed,thu,fri>

would allowweekday_type to be used as an ordinary type expression, but the displayed
format of a value cast to this type would be more difficult to interpret than one with strings
as a concrete representation.

4.4 Remarks

This chapter in combination with the previous one brings to aclose all necessary prepa-
ration to use type expressions and related features effectively in Ursala. You are welcome
to take it cafeteria style, because in this language types are your servant rather than your
master (barring BWI alerts to the contrary).

Although type expressions are first class objects in the language, we have avoided
discussion of their concrete representations, because they are designed to be treated as
opaque. As one author aptly put it, “the type of type is type”.Readers wishing to know
more about how they are implemented are referred to Part IV ofthis manual on compiler
internals.

If any of this material is difficult to remember, a quick reminder can be obtained by the
command$ fun --help types whose output is shown in Listing 4.10.

174

Listing 4.10 output from$ fun --help types

type stack operators of arity 0

E push primitive arbitrary precision floating point type
a push primitive address type
b push primitive boolean type
c push primitive character type
e push primitive floating point type
f push primitive function type
g push primitive general data type
j push primitive complex floating point type
n push primitive natural number type
o push primitive opaque type
q push primitive rational type
s push primitive character string type
t push primitive transparent type
x push primitive raw data type
y push primitive self-describing type

type stack operators of arity 1

B construct a record type from a module
C transform top type to exceptional input printing wrapper
G transform top type to recombining grid thereof
I transform top type to instance recognizer
J transform top type to job thereof
L transform top type to list thereof
M transform top type to error messenger
N transform top type to balanced tree thereof
O make top type printed as opaque
P transform top type to printing function
Q transform top type to compressed version
R qualify C or V with recursive attribute
S transform top type to set thereof
T transform top type to a tree thereof
W transform top type to a pair
Y transform top type to self-describing formatter
Z replace top type with union with empty instance
d duplicate the operand on the top of the stack
h push recursive type or raise the top one
k transform top type or function to identity function
l replace the top operand on the stack with its left side
m transform top type to list of assignments of strings theret o
p transform top type to parsing function
r replace the top operand on the stack with its right side
u transform top constant to unit type

type stack operators of arity 2

A transform top two types type to an assignment
D replace top two types with dual type tree
U replace top two types with free union thereof
V transform top types to i/o validation wrapper generator
X transform top two types type to a pair
i transform top type to random instance generator
w swap the top two operands on the stack

175

Just say to me “you’re going to have to do a whole lot better
than that”, and I will.

Harrison Ford inMosquito Coast

5
Introduction to operators

Most programs in Ursala attain their prescribed function through an algebra of functional
combining forms. Its terms derive from the dozens of libraryfunctions and endless supply
of user defined primitives documented elsewhere in this manual, along with a versatile
repertoire of operators addressed in this chapter and the succeeding one. As the key to all
aspects of flow and control, a ready command of these operators is no less than the essence
of proficiency in the language.

Although all features of the language are extensible by various means, in normal usage
the operators are regarded as a fixed set, albeit a large one. There are about a hundred
operators, most of which are usable in prefix, infix, postfix, and nullary forms, and many
of them further enhanced by optional suffixes modifying their semantics.

Because operators are a broad topic, they are covered in two chapters. This chapter dis-
cusses conventions pertaining to operators in general, followed by detailed documentation
of the more straightforward class of so called aggregate operators. The next chapter cata-
logs the full assortment of the remaining available operators in groups related by common
themes as far as possible.

The design of the language favors a pragmatic choice of operators over aesthetic notions
of orthogonality. Any operator described here has earned its place by being useful in
practice with sufficient frequency to warrant the mental effort of remembering it.

5.1 Operator conventions

This section briefly documents some general conventions regarding operator syntax, arity,
precedence, and algebraic properties.

176

suffix applicable stems

pointers & := -> ˆ= $ ˜ * * |\ ˆ ˆ˜ ˆ| ˆ * ? ˆ? ?= ?< * ˜ != -< * | ˜| |=
opcodes .. .| .!
types % %-
| / \
˜ ˆ˜ ˆ| ˆ *
$ / \ / * \ * + ;

* / \ / * \ * + ; * = ˆ˜ ˆ| ˆ * * ˆ %= |=
- %=
. + ; * ˆ
; / \
< ˆ?
= / * \ * + ; * = ˆ˜ ˆ| ˆ * ˆ? * ˆ %= |=

Table 5.1: suffixes and their operator stems

5.1.1 Syntax

Syntactically an operator consists of a stem followed by a suffix. The stem is expressed
by non-alphanumeric characters or punctuation marks. These characters are not valid in
user defined function names or other identifiers. The most frequently used operators have a
stem of a single character, such as+ or : . However, there aren’t enough non-alphanumeric
characters to allow a separate one for each operator, so someoperator stems are expressed
by two consecutive characters, such asˆ: and |= . These character combinations when
used as an operator stem are treated in every way as indivisible units, just as if they were a
single character.

The suffix of an operator may contain alphanumeric or non-alphanumeric characters,
depending on the operator. Lexically the stem and the suffix are nevertheless an indivisible
unit.

Use of suffixes

The suffix modifies the semantics of an operator, usually in some small way. For example,
an expression likef+g represents the composition of functionsf andg, but f+ * g, with
a suffix of * on the composition operator, is equivalent tomap f+g , the function that
appliesf+g to every item of a list.

Not all operators allow suffixes, and among those that do, theeffect of the suffixes
varies. Two illustrative examples familiar from previous chapters involving operators with
suffixes are& and%, for pseudo-pointers and type expressions. Quite a few operators allow
pointer expressions as suffixes, as shown in Table 5.1, and they use them in different ways.

Further lexical conventions

Because operator characters are not valid in identifiers, operators and identifiers can be
adjacent without intervening white space and without ambiguity. In fact, omitting white
space is often a requirement for reasons to be explained presently.

177

A possibility of ambiguity arises when operators are written consecutively, or when an
operator with an alphanumeric suffix is followed immediately by an identifier. Lexically
the ambiguity is always resolved in favor of the left operator at the expense of the right.
For example,/ and* are both operators, but so is/ * , and this character combination is
interpreted as the latter operator rather than a juxtaposition of the other two.

In rare cases where a juxtaposition without space is semantically necessary but syntac-
tically ambiguous, the expressions can be parenthesized.

5.1.2 Arity

There are four possible arities for most operators, which are prefix, postfix, infix, and solo
(nullary). An infix operator takes two operands and is written between them. Prefix and
postfix operators take one operand and are written before or after it, respectively. A solo
operator takes no operands as such, but may be used as a function or as the operand of
another operator. Aggregate operators such as parenthesesand brackets are outside this
classification, and some operators do not admit all four arities.

Disambiguation

It is important to be precise about the arity intended for anyusage of an operator, because
the semantics may differ between different arities of the same operator, and no general rule
relates them. For operators admitting only one arity, thereis no ambiguity, but otherwise
the usual way of distinguishing between arities of an operator is by its proximity to any
operands in the source text.

• If an operator can be either infix or something else, then the infix arity is implied
precisely when the operator is immediately preceded and followed by operands with
no intervening white space or comments, as inf+g .

• If infix usage is ruled out but the operator admits a postfix form, the postfix usage is
implied whenever the operator is immediately preceded by anoperand, as inf * .

• If both the infix and postfix usages can be excluded but prefix and solo usages are
possible, the determination in favor of the prefix usage is indicated by an operand
immediately following the operator, as in˜p .

The crucial observation should be that white space affects the interpretation. An ex-
pression likef=>y has a different meaning fromf=> y , because the=> is interpreted
as infix in the first case and postfix in the second. These conventions differ from other
modern languages, wherein white space plays no rôle in disambiguation.

Pathological cases

Although the rules above are not completely rigorous, a realuser (as opposed to a compiler
developer) should view arity disambiguation this way most of the time, and parenthesize
an expression fully when in doubt. Doubts might occur in the case of an operator in its

178

solo usage being the operand of another operator. For example, thẽ and+ operators both
allow solo usage, thẽ can also be prefix, and the+ can also be postfix, so does˜+ mean
(˜)+ or ˜(+) ? It’s best to settle the issue by writing one of the latter.

On the other hand, some may consider parentheses an unsightly and unwelcome in-
trusion, and some may insist on a clear convention as a matterof principle. The latter
are referred to Part IV of this manual, while the former may find it convenient to ask the
compiler whether it will parse the expression the way they intend.

$ fun --m="˜+" --parse
main = (˜)+

The output from the--parse option shows the main expression fully parenthesized, and
is useful where operators are concerned. The alternative parsing, incidentally, would not
be sensible for these particular operators, and on that score the compiler usually gets it
right.

5.1.3 Precedence

Operator precedence rules settle questions of whether an expression likex+y/z is parsed
asx+(y/z) or (x+y)/z . The parsing that is most intuitive to a person who has learned
to think in Ursala turns out to require fairly complicated rules when formally codified.
An operator precedence relation exists, but it is neither transitive, reflexive, nor anti-
symmetric. For a given pair of operators, the relationhip may also depend on the way
their arities are disambiguated.

The intuitive approach

The easiest way to cope with operator precedence when learning the language is to write
most expressions fully parenthesized at first, and wait for habits to develop. For example,
instead of writingf+g * for the composition off with the map ofg, write f+(g *) so
there is no mistaking it for(f+g) * . In time, it may become noticeable that the usage
f+(g *) occurs more frequently in practice than(f+g) * . It then becomes meaningful to
ask whether the compiler does the “right thing”, by parsing it the way it would usually be
intended.

$ fun --m="f+g * " --parse
main = f+(g *)

There’s a good chance that it does, because the precedence rules were developed from
observations of usage patterns. In cases where it accords with intuition, one may choose to
drop the habit of fully parenthesizing expressions of that form, until eventually parentheses
are used only when necessary.

In combination with this learning approach, two operator precedence rules are impor-
tant enough to be committed to memory from the outset, or it will be difficult to make any
progress.

179

* | $!= % - * ˆ ? + !| / * - : ::

-< $- %= %˜ .. :- ?$; && / * - * ˆ: =
-> $ˆ * ˜ ˆ <: ?< ˆ= -= \ --
|= * -˜ ˆ * => ?= == \ * |
˜| * = =: ˆ| ˆ? ˆ!

-$ =] ˆ˜ |\ ˆ&
-: [= ||
.! ˜- ˜<
.| ˜=
@
˜ *
˜˜

Table 5.2: each operator in the table is equivalent in precedence to its column header

• Function application, when expressed by juxtaposition with white space between the
operands, has lower precedence than almost everything elseand is right associative.
Hencef+g u/v x parses as(f+g) ((u/v) x) .

• Function application expressed by juxtaposition without intervening white space has
higher precedence than almost everything else and is left associative. Hence the
expressiong+f(n)x is parsed asg+((f(n))x) .

The operators having lower precedence than application in first case are only things like
commas, parentheses, and declaration operators. The only exception to the second rule is
the prefix tilde˜ operator. Associativity is not a separate issue from precedence, because
it’s a consequence of whether an operator has lower precedence than itself.

Experienced functional programmers might observe that right associativity of function
application will seem unconventional to them, but they are outnumbered by mathemati-
cians, engineers, and scientists other than quantum physicists. Those who take issue are
asked to consider whether the alternative of left associativity would make much sense in a
language without automatic currying.

The formal approach

For the benefit of compiler developers, bug hunters, and language lawyers, and to prove
that such a thing exists, a complete account of precedence rules for all infix, prefix, and
postfix operators other than function application is given by Tables 5.2 through 5.6.

Equivalent precedences Operators are partitioned into seventeen equivalence classes with
respect to precedence. The classes with multiple members are shown in Table 5.2. The
remaining tables are expressed in terms of a representativemember from each class.

There are four operator precedence relations, each applicable to a different context, and
each depicted in a separate one of Tables 5.3 through 5.6. Precedence relationships for

180

* | $!= % - * ˆ ? + !| := ˜ . / ! * - : ::

* | • • • • • • • • • •
$ • • • •

!= • • • • • • •
% • • • • • •
-

* ˆ • • • • • • • •
?
+ • • • • • • • • • • •

!| • • • • • • • •
:= • • • • •

˜
. •
/ • • • • • • • • • • • •
!

* - • • •
: • •

:: • • • • • • • • • • • • •

Table 5.3: infix-infix operator precedence relation

* | $!= % - * ˆ ? + !| := ˜ . / ! * - : ::

* | • • • • • • • • •
$ • • • • •

!= • • • • • • •
%
-

* ˆ • • • • • • • •
?
+

!| • • • • • • •
:= • • • • • •

˜ • •
.
/
!

* - • • •
: • •

::

Table 5.4: prefix-postfix operator precedence relation

181

* | $!= % - * ˆ ? + !| := ˜ . / ! * - : ::

* | • • • • • • • • • •
$ • • • •

!= • • • • • • •
%
-

* ˆ • • • • • • • •
?
+

!| • • • • • • • •
:= • • • • •

˜ • • •
.
/
!

* - • • •
: • •

::

Table 5.5: prefix-infix operator precedence relation

* | $!= % - * ˆ ? + !| := ˜ . / ! * - : ::

* | • • • • • • • • •
$ • • • • • • • • •

!= • • • • • • •
% • • • • • •
-

* ˆ • • • • • • • •
?
+ • • • • • • • • •

!| • • • • • •
:= • • • • •

˜
. •
/ • • • • • • • • •
!

* - • • •
: • •

:: • • • • • • • • • • • • • •

Table 5.6: infix-postfix operator precedence relation

182

operators not shown in Tables 5.3 through 5.6 can be inferredby their equivalence to those
that are shown based on Table 5.2.

How to read the tables Each occurrence of a bullet in a table indicates for the relevant
context that the operator next to it in the left column has a “lower” precedence than the
operator above it in the top row. However, precedence is not atotal order relation. Two
operators can be unrelated, or can be “lower” than each other. To avoid confusion, it is
best simply to refer to one operator as being related to another by the precedence relation,
and to assume nothing about a relationship in the other direction.

• Table 5.3 pertains to precedence relationships between infix operators. If an infix
operator⊕ from the left column is unrelated to an infix operator⊗ from the top
row (i.e., if a bullet is absent from the corresponding position), then an expression
x⊕ y ⊗ z will be parsed as(x⊕ y)⊗ z. Otherwise, it will be parsed asx⊕ (y ⊗ z).

• Table 5.4 pertains to precedence relationships between prefix and postfix operators.
If a prefix operator△ from the left column is unrelated to a postfix operator▽ from
the top row, then an expression△x▽ will be parsed as(△x)▽ Otherwise, it will be
parsed as△(x▽).

• Table 5.5 pertains to relationships between prefix and infix operators. If a prefix
operator△ from the left column is unrelated to an infix operator⊕ from the top row,
then an expression△x⊕ y will be parsed as(△x)⊕ y. Otherwise, it will be parsed
as△(x⊕ y).

• Table 5.6 pertains to relationships between infix and postfixoperators. If an infix
operator⊕ from the left column is unrelated to a postfix operator▽ from the top row,
then an expressionx ⊕ y▽ will be parsed as(x ⊕ y)▽. Otherwise, it will be parsed
asx⊕ (y▽).

5.1.4 Dyadicism

Although a given operator may have different meanings depending on the way its arity
is disambiguated, in many cases the meanings are related by aformal algebraic property.
The word “dyadic” is used in this manual to describe operators that allow an infix arity
and have certain additional characteristics.

• If an operator◦ has a solo and an infix arity, and it meets the additional condition
(◦) (a, b) = a ◦ b for all valid operandsa andb, then it is called solo dyadic.

• If an operator◦ allows a prefix and an infix arity such that(◦b) a = a ◦ b, then it is
called prefix dyadic.

• If an operator◦ admits a postfix and an infix arity, and satisfies(a◦) b = a ◦ b, then
it is called postfix dyadic.

183

Motivation for dyadic operators

Determining the dyadicism of a given operator in this sense obviously is not computable,
so the property or lack thereof is recorded for each operatorby a table internal to the
compiler. This information permits certain code optimizations, and also reduces the bulk
of reference documentation. Where an operator is noted to bedyadic, the semantics for
the dyadic arity may be inferred from that of the infix, and need not be explicitly stated.

Dyadic operators also make the language easier to use. If an expression likef+g:-k
is required, and the intended parsing isf+(g:-k) , another alternative to parenthesizing
it, remembering the precedence rules, or checking them withthe --parse option is to
remember that the composition operator (+) is postfix dyadic. The expression therefore
can be rewritten asf+ g:-k consistently with its intended meaning. The space represents
function application, which has the lowest precedence of all, so the expression can only be
parsed as(f+) (g:-k) .

If the intended parsing is(f+g):-k , which would not be the default under the prece-
dence rules, there is still an alternative. Using the fact that the reduction operator (:-) is
prefix dyadic, we can rewrite the expression as:-k f+g .

Table of dyadic operators

Most operators are dyadic in one form or another, especiallypostfix, so it may be easier to
remember the counterexamples, such as the folding operator, =>. The following table lists
the arities and dyadicisms for all infix, prefix, postfix, and solo operators in the language
other than function application and declaration operators.

Table 5.7: Operator arities and algebraic properties

arity dyadicism

mnemonic prefix infix postfix solo prefix postfix solo

: • • • • • • •
ˆ: • • • • • • •

| • • •
-- • • • • • • •
- * • • • • • • •
* - • • • •

! • •
/ • • •
\ • • •

/ * • • •
\ * • • •

& •
@ • •
. • • •
˜ • •

:= • • • • • • •
&& • • • • • • •

184

Table 5.7: Operator arities and algebraic properties (continued)

arity dyadicism

mnemonic prefix infix postfix solo prefix postfix solo

|| • • • • • • •
!| • • • • • • •
ˆ& • • • • • • •
ˆ! • • • • • • •
-= • • • • •
== • • • • •
˜< • • • • •
˜= • • • • •
-> • • • • • • •
ˆ= • •

+ • • • • •
; • • • •

|\ • •
˜˜ • •

$ • •
˜ * • •

* • •
* = • •

ˆ • • • •
ˆ˜ • • • •
ˆ| • • • •
ˆ * • • • •

? • •
ˆ? • •
?= • •
?$ • •
?< • •
=> • • • • • •
:- • • • • • • •
<: • • • • • • •
* ˆ • • • • •

- •
.. • •
.| • • • •
.! • • • •

% • •
%˜ • •
%- •
-$ • • • • • • •
-: • • • • • •
=: • •
-˜ • •
˜- • •
* ˜ • • •
!= • • • •

185

operators meaning

-? . . . ?- cumulative conditional with default last
-+ . . .+- cumulative functional composition
-| . . . |- cumulative short circuit functional disjunction
-! . . . !- cumulative logical valued short circuit functional disjunction
-& . . .&- cumulative short circuit functional conjunction

[. . .] record or a-tree delimiters
<. . .> list delimiters
{ . . . } set delimiters
(. . .) tuple delimiters

-[. . .]- text delimiters

Table 5.8: aggregate operators; each encloses a comma separated sequence of expressions

Table 5.7: Operator arities and algebraic properties (continued)

arity dyadicism

mnemonic prefix infix postfix solo prefix postfix solo

%= • • • • • • •
=] • • • • •
[= • • • • •
$ˆ • • • •
$- • • • •
-< • • • •
* | • • • •
˜| • • • •
|= • • • •

5.1.5 Declaration operators

Two infix operators whose discussion is deferred are:: and=.

• The :: is used only for record declarations, and is explained thoroughly in the pre-
vious chapter.

• The = is used only for declarations other than records. It can appear at most once
in any expression, and only at the root. It is better understood as a syntactically
sugared compiler directive than an operator. Rather than computing a value, it effects
a compile-time binding of a value to an identifier.

Declarations are discussed further in a subsequent chapterregarding their interactions with
name spaces and output-generating compiler directives.

186

〈operand〉0

〈operand〉1

〈operand〉n〈operand〉n−1

Figure 5.1: representation of a tuple(〈operand〉0, 〈operand〉1, . . . 〈operand〉n)

5.2 Aggregate operators

The operators listed in Table 5.8 are usable only in matchingpairs, and with the exception
of the text delimiters,-[. . .]- , they enclose a comma separated sequence of arbitrarily
many expressions. With each enclosed expression serving asan operand, considerations
of arity and precedence are not relevant to aggregate operators, but they employ a common
convention regarding suffixes, as explained presently.

5.2.1 Data delimiters

The essential concepts of records, a-trees, lists, sets, tuples, and text follow from previous
chapters, where the data delimiter operators in Table 5.8 are each introduced purely as
a concrete syntax for one of these containers. When viewed asoperators in their own
right, they transform the machine representations of theiroperands to that of data structure
containing them.

() – Tuple delimiters

On the virtual machine level, everything is represented either as an empty value or a pair.
This representation directly supports the tuple delimiters, (. . .) . An empty tuple,() ,
maps to the empty value. If there is only one operand, the representation of the tuple is
that of the operand. Otherwise, the representation is a pairwith the first operand on the
left and the representation of the tuple containing the remaining operands on the right, as
shown in Figure 5.1.

<> – list delimiters

The list delimiters work similarly to the tuple delimiters except that a distinction is made
between a singleton list and its contents. An empty list mapsto the empty value, and any

187

〈operand〉0

〈operand〉1

〈operand〉n

Figure 5.2: representation of a list<〈operand〉0, 〈operand〉1, . . . 〈operand〉n>

other list maps to the pair with the head on the left and the tail on the right. Equivalently,
a list representation is like a tuple in which the last component is always empty, as shown
in Figure 5.2.

{} – set delimiters

The set delimiters perform the same operation as the list delimiters, followed by the ad-
ditional operation of sorting and removing duplicates. Thesorting is done by the lexical
order relation on characters and strings (regardless of theelement type).

[] – record or a-tree delimiters

For these operators, each operand is expected to be an assignment of the form

〈address〉: 〈value〉

or equivalently a pair of an address and a value. The address is normally of the%atype,
which is to say that its virtual machine representation has at most a single descendent
at each level of the tree, as shown in Figure 5.3. (Branched addresses can be used if the
associated data are a tuple of sufficient arity, as noted on page 154). The result is a structure
in which each value is stored at a position that can be reachedby following a path from
the root described by the corresponding address.

Figure 5.3 provides a simple illustration of this operation. The structure created by
the record delimiter operators from the given data containsthe value〈foo〉 addressable by
descending twice to the left, per the associated address. The value of〈baz〉 is addressable
twice to the right, and〈bar〉 is reached by the alternating path associated with it.

The semantics of the record delimiters is unspecified in cases of duplicate or overlap-
ping addresses. In the current implementation, no exception is raised, but one field value
may be overwritten by another partly or in full.

188

[

: 〈foo〉,

: 〈bar〉,

: 〈baz〉

⇒
〈foo〉 〈baz〉

〈bar〉

]

Figure 5.3: Record delimiters store the data at offsets relative to the root.

(〈operand〉 , 〈operand〉 , . . .)

m
︷ ︸︸ ︷

- [〈pretext〉-[

m
︷ ︸︸ ︷

〈operand〉

m
︷ ︸︸ ︷

]- 〈intext〉-[

m
︷ ︸︸ ︷

〈operand〉

m
︷ ︸︸ ︷

]- 〈intext〉-[
. . .

m
︷ ︸︸ ︷

]- 〈postext〉]-

Figure 5.4: analogy between an expression with text delimiters and a tuple

189

-[]- – text delimiters

These operators follow a different pattern than the other data delimiters, because they
don’t enclose a comma separated sequence of operands. One way of understanding them
is in syntactic terms according to the discussion of dash bracket notation on page 118.
Alternatively, they can be viewed as delimiting operators forming an expression analogous
to a tuple. The left parenthesis corresponds to something ofthe form-[〈pretext〉-[, the
right parenthesis corresponds to]- 〈postext〉]- , and the rôle of a comma is played by
]- 〈intext〉-[. This analogy is depicted in Figure 5.4.

• The embedded text can be arbitrarily long and can include line breaks, making the
delimiters very thick operators, but operators nevertheless.

• In order for the expression to be well typed, the operands must evaluate to lists of
character strings.

• Each of these operators has the semantic effect of concatenating its operands with
the embedded text either before, between, or after the operands, as explained on
page 118.

• The embedded text is not an operand but a hard coded feature ofthe operator. One
might think in terms of a countable family of such operators,each induced by its
respective embedded text.

5.2.2 Functional delimiters

The remaining aggregate operators from Table 5.8, represent functional combining forms.
With the exception of-+ . . .+- , they all pertain to conditional evaluation in some way.
Although they normally enclose a comma separated sequence of operands, they can also
be used with an empty sequence, as in-++- . In this form, the pair of operators together
represent a function that applies to a list of operands rather than enclosing them. For exam-
ple, -!p,q,r!- is semantically equivalent to-!!- <p,q,r> . The latter alternative is
more useful in situations where the list of operands is generated at run time and can’t be
explicitly stated in the source.1

Composition

The simplest and most frequently used functional combiningform is the composition oper-
ator,-+ . . .+- , which denotes composition of a sequence of functions givenby the expres-
sions it encloses. That is, a composition of functionsf0 throughfn applied to an argument
x evaluates to the nested application.

-+ f0, f1, . . . fn+- x ≡ f0 f1 . . . fn x

where function application is right associative. The commas are necessary as separators,
because the expressions forf0 throughfn may contain operators of any precedence.

1difficult to motivate until you’ve had some practice at usinghigher order functions routinely

190

Composition example In a composition of functions, the last one in the sequence isneces-
sarily evaluated first, as this example of a composition of three pointers shows.

$ fun --m="-+˜&x,˜&h,˜&t+- <’foo’,’bar’,’baz’>" --c
’rab’

The tail of the list,<’bar’,’baz’> is computed first bỹ&t , then the head of the tail,
’bar’ , by ˜&h , and finally the reversal of that by˜&x .

Optimization of composition Compositions are automatically optimized where possible.
For example, the three functions in the above sequence can bereduced to two.

$ fun --main="-+˜&x,˜&h,˜&t+-" --decompile
main = compose(reverse,field(0,(0,&)))

Optimizations may also affect the “eagerness” of a composition.

$ fun --m="-+constant’abc’,˜&t,˜&h,˜&x+-" --d
main = constant ’abc’

The constant function returns a fixed value regardless of itsargument, so there is no need
for the remaining functions in the composition to be retained.

Cumulative conditionals

The cumulative conditional form,-? . . .?- , is used to define a function by cases. Its
normal usage follows this syntax.

-?

〈predicate〉: 〈function〉,
...

〈predicate〉: 〈function〉,
〈default function〉 ?-

The entire expression represents a single function to be applied to an argument.

• Each predicate in the sequence is applied to the argument in the order they’re written,
until one is satisfied.

• The function associated with the satisfied predicate is applied to the argument, and
the result of that application is returned as the result of the whole function.

• The semantics is non-strict insofar as functions associated with unsatisfied predicates
are not evaluated, nor are predicates or functions later in the sequence.

• If no predicate is satisfied, then the default function is evaluated and its result is
returned.

191

f(x)

0.00

1.00

2.00

3.00

4.00

x

0.00 0.50 1.00 1.50 2.00 2.50

Figure 5.5: model of an inflationary cosmology according tof -theory

A simple contrived example of a function defined by cases is shown in Figure 5.5. The
definition of this function is as follows.

f(x) =







0 if x ≤ 0
3
√
x if 0 < x ≤ 1

x2 if 1 < x ≤ 2
4 otherwise

This function can be expressed as shown using the-? . . .?- operators,

f = -?

fleq\0.: 0.!,

fleq\1.: math..cbrt,

fleq\2.: math..mul+ ˜&iiX,

4.!?-

wherefleq is defined asmath..islessequal , the partial order relation on floating
point numbers from the host system’s C library, by way of the virtual machine’smath
library interface. The predicatefleq\ k uses the reverse binary to unary combinator.
When applied to an argumentx it evaluates asfleq\ k x = fleq (x, k), which is true if
x ≤ k. The exclamation points represent the constant combinator.

Logical operators

The remaining aggregate operators in Table 5.8 support cumulative conjunction and two
forms of cumulative disjunction. Similarly to the cumulative conditional, they all have a
non-strict semantics, also known as short circuit evaluation.

192

• Cumulative conjunction is expressed in the form-& f0, f1, . . . fn&- . Eachfi is ap-
plied to the argument in the order they’re written. If anyfi returns an empty value,
then an empty value is the result, and the rest of the functions in the sequence aren’t
evaluated. If all of the functions return non-empty values,the value returned by last
function in the sequence,fn, is the result.

• Cumulative disjunction is expressed in the form-| f0, f1, . . . fn|- . Similarly to
conjunction, eachfi is applied to the argument in sequence. However, the first non-
empty value returned by anfi is the result, and the remaining functions aren’t evalu-
ated. If every function returns an empty value, then an emptyvalue is the result.

• An alternative form of cumulative disjunction is-! f0, f1, . . . fn!- . This form has
a somewhat more efficient implementation than the one above,but will return only a
true boolean value (&) rather than the actual result of a functionfi when it is non-
empty, fori < n. This result is acceptable when the function is used as a predicate in
a conditional form, because all non-empty values are logically equivalent.

Some examples of each of these combinators are the following.

$ fun --m="-&˜&l,˜&r&- (0,1)" --c
0
$ fun --m="-&˜&l,˜&r&- (1,2)" --c
2
$ fun --m="-|˜&l,˜&r|- (0,1)" --c
1
$ fun --m="-|˜&l,˜&r|- (1,2)" --c
1
$ fun --m="-!˜&l,˜&r!- (0,1)" --c
1
$ fun --m="-!˜&l,˜&r!- (1,2)" --c
&

Interpretation of exclamation points by thebash command line interpreter, even within a
quoted string, can be suppressed only by executing the command set +H in advance,
which is not shown.

5.2.3 Lifted delimiters

All of the aggregate operators in Table 5.8 follow a consistent convention regarding suf-
fixes. The left operator of the pair (such as< or {) may be followed by arbitrarily many
periods (as in<. or {..). For the text delimiters, the suffix is placed after the second
opening dash bracket (as in-[〈text〉-[.). The closing operators (e.g.,> and}) take no
suffix.

The effect of a period in an aggregate operator suffix is best described as converting
a data constructor to a functional combining form, with eachsubsequent period “lifting”
the order by one. Periods used in functional combining formssuch as-|. only lift their
order. These concepts may be clarified by some illustrations.

193

First order list valued functions

The first order case is easiest to understand. The expression

<f0, f1, . . . fn>

where eachfi is a function, represents a list of functions, but the expression

<. f0, f1, . . . fn>

represents a function returning a list. When this function is applied to an argumentx, the
result is the list

<f0 x, f1 x, . . . fn x>

That is, all functions are applied to the same argument, and alist of their results is made.
These distinctions are illustrated as follows. First we have a list of three trigonometric

functions, which is each compiled to a virtual machine library function call.

$ fun --m="<math..sin,math..cos,math..tan>" --c %fL
<

library(’math’,’sin’),
library(’math’,’cos’),
library(’math’,’tan’)>

The function returning the list of the results of these threefunctions is expressed with a
suffix on the opening list delimiter.

$ fun --m="<.math..sin,math..cos,math..tan>" --c %f
couple(

library(’math’,’sin’),
couple(

library(’math’,’cos’),
couple(library(’math’,’tan’),constant 0)))

This function constructs a structure following the representation shown in Figure 5.2. To
evaluate the function, we can apply it to the argument of 1 radian.

$ fun --m="<.math..sin,math..cos,math..tan> 1." --c %eL
<8.414710e-01,5.403023e-01,1.557408e+00>

The result is a list of floating point numbers, each being the result of one of the trigono-
metric functions.

Text templates

The same technique can be used for rapid development of document templates in text
processing applications.

$ fun --m="-[Dear -[. ˜&iNC]-,]- ’valued customer’" --show
Dear valued customer,

194

A first order function made from text delimiters, with functions returning lists of strings
as the operands, can generate documents in any format from specifications of any type. In
this example, the document is specified by a single characterstring, which need only be
converted to a list of strings by the˜&iNC pseudo-pointer.

Lifted functional combinators

A suffix on an opening aggregate operator such as-+ raises it to a higher order. A function
of the form

-+. h0, h1, . . . hn +-

applied to an argumentu will result in the composition

-+ h0 u, h1 u, . . . hn u +-

If there are two periods, the function is of a higher order. When applied to an argument
v, the result is a function that still needs to be applied to another argument to yield a first
order functional composition.

(-+.. h0, h1, . . . hn +- v) u ≡ -+. h0 v, h1 v, . . . hn v +- u

≡ -+ (h0 v) u, (h1 v) u, . . . (hn v) u +-

This pattern generalizes to any number of periods, althoughhigher numbers are less com-
mon in practice. It also applies to other aggregate operators such as logical and record
delimiters, but a more convenient mechanism for higher order records using the$ oper-
ator is explained in the next chapter. Lambda abstraction using the. operator is another
alternative also introduced subsequently.

Example Lifted functional combinators, like any higher order functions, are used mainly
to abstract common patterns out of the code to simplify development and maintenance.
One way of thinking about a lifted composition is as a mechanism for functional templates
or wrappers.

A small but nearly plausible example is shown in Listing 5.1.Some language features
used in this example are introduced in the next chapter, but the point relevant to the present
discussion is thewrapper function.

The wrapper takes the form of a lifted composition

-+. 〈back end〉!,˜&, 〈front end〉!+-

where the exclamation points represent the constant functional combinator. When applied
to any functionf , the result will be the composition

-+ 〈back end〉, f , 〈front end〉+-

wherein the front end serves as a preprocessor and the back end as a postprocessor to the
functionf .

195

Listing 5.1 when to use a higher order composition

#import std
#import nat

#library+

retype = # takes assignments of instance recognizers to type converters

-??-+ --<-[unrecognized type conversion]-!%>

promote = ..grow\100+ ..dbl2mp # 100 bits more precise than d efault 160

wrapper = # allows high precision for intermediate calculat ions

-+.
retype<%EI: ..mp2dbl,%ELI: ..mp2dbl * ,%ELLI: ..mp2dbl ** >!,
˜&,
retype<%eI: promote,%eLI: promote * ,%eLLI: promote ** >!+-

rad_to_deg = # converts radians to degrees with high precisi on

wrapper mp..mul/1.8E2+ mp..divˆ/˜& mp..pi+ mp..prec

In this example, the front end converts standard floating point numbers, vectors, or
matrices thereof to arbitrary precision format. The function f is expected to operate on
this representation, presumably for the sake of reduced roundoff error, and the final result
is converted back to the original format.

The code in Listing 5.1, stored in a file namedpromo.fun , can be tested as follows.

$ fun promo.fun --archive
fun: writing ‘promo.avm’
$ fun promo --m="rad_to_deg 2." --c %e
1.145916e+02

A further point of interest in this example is the use of-??- as a function in the
definition of retype . Effectively a new functional combining form is derived from the
cumulative conditional, which takes a list of assignments of predicates to functions, but
requires no default function. The predicates are meant to betype instance recognizers and
the functions are meant to be type conversion functions.

$ fun promo --m="retype<%nI: mpfr..nat2mp> 153" --c %E
1.530E+02

A default function that raises an exception is supplied automatically because it is never
meant to be reached.

$ fun promo --m="retype<%nI: mpfr..nat2mp> ’foo’" --c %E
fun:command-line: unrecognized type conversion

196

Listing 5.2 output from the command$ fun --help outfix

outfix operators

-?..?- cumulative conditional with default case last
-+..+- cumulative functional composition
-|..|- cumulative ||, short circuit functional disjunctio n
-!..!- cumulative !|, logical valued functional disjuncti on
-&..&- cumulative &&, short circuit functional conjunctio n

[..] record delimiters
<..> list delimiters
{..} specifies sets as sorted lists with duplicates purged
(..) tuple delimiters

The content of the diagnostic message is the only feature specific to the definition of
retype as a type converter.

5.3 Remarks

A quick summary of the aggregate operators described in thischapter is available interac-
tively from the command

$ fun --help outfix

whose output is shown in Listing 5.2. Some of these, especially the logical operators, are
comparable to infix operators that perform similar operations, as the listing implies and as
the next chapter documents.

197

If you truly believe in the system of law you administer in my
country, you must inflict upon me the severest penalty possible.

Ben Kingsley inGandhi

6
Catalog of operators

With the previous chapter having exhausted what little there is to say about operators in
general terms, this chapter details the semantics for each operator in the language on more
of an individual basis. The operators are organized into groups roughly by related func-
tionality, and ordered in some ways by increasing conceptual difficulty. An understanding
of the conventions pertaining to arity and dyadic operatorsexplained previously is a pre-
requisite to this chapter.

6.1 Data transformers

The six operators listed in Table 6.1 are used to express lists, assignments, sets, and trees,
and some are already familiar from many previous examples. The set union operator,| ,
has only infix and solo arities, but the others have all four arities. These operators represent
first order functions in their infix arities, and are dyadic inother arities (see Section 5.1.4).
Hence, it is possible to writetˆ:u andtˆ: u interchangeably for a tree with roott and
subtreesu.

meaning illustration

: list or assignment constructiona: ≡ <a,b>
ˆ: tree construction rˆ:<vˆ:<>> ≡ ˜&V(r,<˜&V(v,<>)>)

| union of sets {a,b}|{b,c} ≡ {a,b,c}
-- concatenation of lists <a,b>--<c,d> ≡ <a,b,c,d>
- * left distribution a- * <b,c> ≡ <(a,b),(a,c)>

* - right distribution <a,b> * -c ≡ <(a,c),(b,c)>

Table 6.1: data transformers

198

meaning illustration

! constant functional x! y ≡ x
/ binary to unary combinator f/k x ≡ f(k,x)
\ reverse binary to unary combinator f\k x ≡ f(x,k)

/ * mapped binary to unary combinator f/ * k <a,b> ≡ <f(k,a),f(k,b)>
\ * mapped reverse binary to unary combinatorf\ * k <a,b> ≡ <f(a,k),f(b,k)>

Table 6.2: constant forms

Consistently with the dyadic property, the infix and postfix forms of these operators
have a higher order functional semantics. For example,x--y is a data value, the con-
catenation of a listx with a list y , but --y is the function that appends the listy to its
argument, andx-- is the function that appends its argument tox . In this way, the we have
the required identity,x--y ≡ x-- y ≡ --y x , while the expressions--y andx-- are
also meaningful by themselves. A few more minor points are worth mentioning.

• The set union operator,| , is parsed as infix whenever it immediately follows an
operand with no white space preceding it, and has an operand following it with or
without white space. Otherwise it is parsed as a solo operator.

• The colon is considered to construct a list when used as an infix or solo operator,
and an assignment when used as a prefix or postfix operator. Although the identity
a: b ≡ a:b ≡ :b a is valid as far as concrete representations are concerned, only
the equivalence betweena: b and:b a is well typed (cf. Figures 5.1 and 5.2). On
the other hand, typing is only a matter of programming style.

• As noted on page 59, the colon can also be used in pointer expressions pertaining to
lists.

• The distribution operator- * in solo usage is equivalent to the pseudo-pointer˜&D
(page 75), and* - is equivalent tõ&rlDrlXS .

• None of these operators has any suffixes.

6.2 Constant forms

The operators shown in Table 6.2 are normally used to expressfunctions that may depend
on hard coded constants. They have these algebraic properties.

• The constant combinator can be used either as a solo or as a postfix operator, and
satisfies! x ≡ x! for all x .

• The binary to unary combinators can be used as solo or infix operators, and are
dyadic.

199

6.2.1 Semantics

The constant combinator and binary to unary combinators arewell known features of
functional languages, although the notation may vary.1 The binary to unary combinators
may also be familiar to C++ programmers as part of the standard template library.

Constant combinators

The constant combinator takes a constant operand and constructs a function that maps
any argument to that operand. Such functions occur frequently as the default case of a
conditional or the base case of a recursively defined function.

Binary to unary combinators

The binary to unary combinators/ and\ take a function as their left operand and a constant
as their right operand. The function is expected to be one whose argument is usually a
pair of values. The combinator constructs a function that takes only a single value as
an argument, and returns the result obtained by applying theoriginal function to the pair
made from that value along with the constant operand. For the/ combinator, the constant
becomes the left side of the argument to the function, and forthe\ combinator, it becomes
the right.

Standard examples are functions that add 1 to a number,plus/1. or plus\1. , and
a function that subtracts 1 from a number,minus\1. . Normally theplus andminus
functions perform addition or subtraction given a pair of numbers. In the latter case, the
reverse binary to unary combinator is used specifically because subtraction is not commu-
tative.

Currying A frequent idiomatic usage of the binary to unary combinatoris in the expres-
sion /// , which is parsed as(/)/(/) , and serves as a currying combinator. Any mem-
berf of a function space(u × v) → w induces a functiong in u → (v → w) such that
g = /// f . This effect is a consequence of the semantics of these operators and their
algebraic properties whose proof is a routine exercise.

Example The currying combinator allows any function that takes a pair of values to be
converted to one that allows so-called partial application. For example, a partially valuable
addition function would be/// plus . It takes a number as an argument and returns a
function that adds that number to anything.

$ fun flo --m="((/// plus) 2.) 3." --c
5.000000e+00

Theplus function is defined in theflo library distributed with the compiler.
1Curried functional languages don’t need a binary to unary combinator, but the reverse binary to unary combinator could be a

problem for them.

200

Mapped binary to unary combinators

The operators/ * and\ * serve a similar purpose to the binary to unary combinators above,
but are appropriate for operations on lists. The left operand is a function taking a pair of
values and the right operand is a constant, as above, but the resulting function takes a list
of values rather than a single value. The constant operand ispaired with each item in the
list and the function is evaluated for each pair. A list of theresults of these evaluations is
returned.

This example uses the concatenation operator explained in the previous section to con-
catenate each item in a list of strings with an’x’ .

$ fun --m="--\ * ’x’ <’a’,’b’,’c’>" --c
<’ax’,’bx’,’cx’>

6.2.2 Suffixes

The binary to unary combinators/ and \ allow suffixes consisting of any sequence of
the characters$, | , ; , and* . that doesn’t begin with* . The mapped binary to unary
combinators/ * and\ * allow suffixes consisting of any sequence of the characters$, =,
and* . Each character alters the semantics of the function constructed by the operator in a
particular way. To summarize their effects briefly,

• the$ makes the function apply to both sides of a pair

• the | makes the function triangulate over a list

• the; makes the function transform a list by deleting all items forwhich it is false

• the* makes the function apply to every item of a list

• the= flattens the resulting list of lists into the concatenation of its items.

When multiple characters are used in a single suffix, their effects apply cumulatively in
the order the characters are written.

The suffix for / or \ may not begin with* because in that case it is lexed as the/ *
or \ * operator. However, the latter have the same semantics as theformer would have if
* could be used as the suffix. The triangulation and flattening suffixes are specific to the
operators for which they are semantically more appropriate.

Examples

Some experimentation with these operator suffixes is a better investment of time than read-
ing a more formal exposition would be. A few examples to get started are the following.

• This example shows how negative numbers can be removed from alist.

$ fun flo --m="fleq/;0. <-2.,-1.,0.,1.,2.>" --c %eL
<0.000000e+00,1.000000e+00,2.000000e+00>

201

meaning illustration

& pointer constructor &l ≡ (((),()),())
. composition or lambda abstractioñ &h.&l ≡ ˜&hl
˜ deconstructor functional ˜p ≡ field p

:= assignment &l:=1! (2,3) ≡ (1,3)

Table 6.3: pointer operations

• This examples shows the effect of a combination of list flattening and applying to
both sides of a pair. Note the order of the suffixes.

$ fun --m="--\ * =$’x’ (<’a’,’b’>,<’c’,’d’>)" --c
(’axbx’,’cxdx’)

• This example shows a naive algorithm for constructing a series of powers of two.

$ fun --m="product/|2 <1,1,1,1,1>" --c %nL
<1,2,4,8,16>

The last example works becausef/|n <a,b,c,d> is equivalent to

<a,f(n,b),f(n,f(n,c)),f(n,f(n,f(n,d)))>

Often there are several ways of expressing the same thing, and the choice is a matter
of programming style. The functionproduct/|2 is equivalent to the pseudo-pointer
˜&iNiCBK9 (see pages 76 and 87).

In case of any uncertainty about the semantics of these operators, there is always re-
course to decompilation.

$ fun --m="--\ * =$’x’" --decompile
main = fan compose(

reduce(cat,0),
map compose(cat,couple(field &,constant ’x’)))

6.3 Pointer operations

A small classification of operators shown in Table 6.3 pertains to pointers in one way or
another.

6.3.1 The ampersand

The ampersand has been used extensively in previous examples variously as the identity
pointer, the true boolean value, or a notation for the pair ofempty pairs, which are all
equivalent in their concrete representations, but at this stage, it is best to think of it is as an
operator.

202

The ampersand is an unusual operator insofar as it takes no operands and has only a
solo arity. However, it allows a pointer expression as a suffix.

Although other operators employ pointer expressions in more specialized ways, the
meaning of the ampersand operator is simply that of the pointer expression in its suffix.
The semantics of pointer expressions is documented extensively in Chapter 2.

Most operators that allow pointer suffixes can accommodate pseudo-pointers as well,
but the ampersand is meaningful only if its suffix is a pointer, except as noted below.

6.3.2 The tilde

The tilde operator can be used either as a prefix or as a solo operator. It has the algebraic
property that̃ x ≡ ˜x for all x . A distinction is made nevertheless between the solo
and the prefix usage because the latter has higher precedence.

The operand of the tilde operator can be any expression that evaluates to a pointer.
A primitive form of such an expression would be a pointer specified by the ampersand
operator, a field identifier from a record declaration, or a literal address from an a-tree or
grid type. Tuples of these expressions are also meaningful as pointers, and the colon and
dot operators can be used to build more pointer expressions from these.

The tilde operator is defined partly as a source level transformation that lets it depend
on the concrete syntax of its operand. Pseudo-pointer suffixes for the ampersand operator,
while not normally meaningful in themselves, are acceptable when the ampersand forms
part of the operand of a tilde operator. The tilde in this caseeffectively disregards the
ampersand and makes direct use of the pseudo-pointer suffix.

The result returned by the tilde operator is a either a virtual code program of the form
field p for an pointer operandp, or a function of unrestricted form if its operand is a
pseudo-pointer. Thefield combinator pertains to deconstructors, which are functions
that return some part of their argument specified by a pointer.

6.3.3 Assignment

The assignment operator,:= , performs an inverse operation to deconstruction. It satisfies
the equivalence

˜a a:=f x ≡ f x

for any addressa, function f , and datax . It is also dyadic in all arities. Intuitively
this relationship means that whereas deconstruction retrieves the value from a field in a
structure, assignment stores a value in it.

Fields in the result that aren’t specifically assigned by this operation inherit their values
from the argumentx . If b were an address different froma, then˜b a:=f x would
be the same as̃b x . This condition defies a simple rigorous characterization,but the
following examples should make it clear.

203

Usage

The address in an expressiona:=f x can refer to a single field or a tuple of fields in the
argumentx . In the latter case, the functionf should return a tuple of a compatible form.2

$ fun --m="&h:=’c’! <’a’,’b’>" --c %sL
<’c’,’b’>
$ fun --m="(&h,&th):=˜&thPhX <’a’,’b’>" --c %sL
<’b’,’a’>

• As the second example above shows, multiple fields can be referenced or inter-
changed by an assignment without interference, provided their destinations don’t
overlap.

• The address in an assignment can be a pointer expression containing constructors,
(e.g.,&hthPX instead of(&h,&th)), but it must be a pointer rather than a pseudo-
pointer. (See Chapter 2 for an explanation.)

• If the address of an assignment refers to multiple fields and the function returns a
value with not enough (such as an empty value) an exception israised with the diag-
nostic message of “invalid assignment ”.

Suffixes

An optional pointer expressions may be supplied as a suffix, with the syntax:= s. The
suffix can be a pointer or a pseudo-pointer, but it must be given by a literal pointer constant
rather than a symbolic name.

The suffix is distinct from the operands and may be used in any arity. However, when a
suffix is used in the prefix or infix arities, as in:= sf or a:= sf , and the right operand
f begins with alphabetic character,f must be parenthesized to distinguish it from a suffix.
In fact, any right operand to an assignment with or without a suffix must be parenthesized
if it begins with an alphabetic character.

The purpose of the suffix is to specify a postprocessor. An expressiona:= s f with
a suffixs is equivalent to -+˜& s,a:=f+- or ˜& s+ a:=f . This feature is a matter
of convenience because assignments are almost always composed with deconstructors or
pseudo-pointers in practice, as a regular user of the language will discover.

Non-mutability

The idea of storage is non-mutable as always. Ifx represents a store, thena:=f is a
function that returns a new store differing fromx at locationa. Evaluating this function
has no effect on the interpretation ofx itself, as this example shows.

$ fun --m="x=<1> y=(&h:=2! x) z=(x,y)" --c %nLW,z
(<1>,<2>)

2If you’re trying these examples, be sure to executeset +H first to suppress interpretation of the exclamation point bythebash
command line interpreter.

204

The original value ofx is retained inz despite the definition ofy asx with a reassigned
head.

Growing a new field

In order for the above equivalence to hold without exception, assignment to a field that
doesn’t exist in the argument causes it to grow one rather than causing an invalid decon-
struction. For example, an attempt to retrieve the head of the tail of a list with only one
item causes an invalid deconstruction, as expected,

$ fun --m="˜&th <1>" --c %n
fun:command-line: invalid deconstruction

but retrieving that of a list in which it has been assigned doesn’t.

$ fun --m="˜&th &th:=2! <1>" --c %n
2

The assignment to the second position in the list either overwrites the item stored there if
it exists (in a non-mutable sense) or creates a new one if it doesn’t.

$ fun --m="&th:=2! <1>" --c %nL
<1,2>

It could also happen that other fields need to be created in order to reach the one being
assigned. In that case, the new fields are filled with empty values.

$ fun --m="&tth:=2! <1>" --c %nL
<1,0,2>

It is the user’s responsibility to ensure that fields createdin this way are semantically
meaningful and well typed.

$ fun --m="&tth:=2.! <1.>" --c %eL
fun: writing ‘core’
warning: can’t display as indicated type; core dumped

An empty value is not well typed in a list of floating point numbers.

Manual override

Assignment can be used to override the usual initializationfunction for a record and set
the value of a field “by hand”. (See Section 4.2.3 for more about initialization functions in
records.) A simple illustration is a recordr with two natural type fieldsu andw, wherein
w is meant track the value ofu and double it.

r :: u %n w %n ˜u.&NiC

By default, this mechanism works as expected.

205

$ fun --m="r :: u %n w %n ˜u.&NiC x= _r%P r[u: 1]" --s
r[u: 1,w: 2]

However, ifu is reassigned, the initialization function is bypassed, and w retains the same
value.

$ fun --m="r::u %n w %n ˜u.&NiC x=_r%P u:=3! r[u: 1]" --s
r[u: 3,w: 2]

Obviously, invariants meant to be maintained by the record specification can be violated
by this technique, so it is used only as a matter of judgment when circumstances warrant.
The normal way of expressing functions returning records iswith the$ operator, explained
subsequently in this chapter, which properly involves the initialization functions.

Changing a field in a record by an assignment can also cause it to be badly typed. Even
if the field itself is changed to an appropriate type, the typeinstance recognizer of a record
takes the invariants into account.

$ fun --m="r::u %n w %n ˜u.&NiC x=_r%I u:=3! r[u: 1]" -c %b
false

For this reason, the updated record will not be cast to the type_r .

$ fun --m="r::u %n w %n ˜u.&NiC x= u:=3! r[u: 1]" --c _r
fun: writing ‘core’
warning: can’t display as indicated type; core dumped

The badly typed record was displayable in previous examplesonly by the_r%P function,
which doesn’t check the validity of its argument.

6.3.4 The dot

The dot operator has two unrelated meanings, one for relative addressing, making it topical
for this section, and the other for lambda abstraction. The operator allows either an infix
or a postfix arity. The infix usage pertains to relative addressing, and the postfix usage to
lambda abstraction.

Relative addressing

An expression of the forma.b with pointersa andb describes the addressb relative
to a. Semantically the dot operator is equivalent to theP pointer constructor (pages 63
and 79), but the latter appears only in literal pointer constants, whereas the dot operator
accommodates arbitrary expressions involving literal or symbolic names.

In many cases, the deconstruction of a valuex by a relative address̃a.b could also be
accomplished by first extracting the fielda and then the fieldb from it, as in˜b ˜a x .
In these cases, the dot notation serves only as a more conciseand readable alternative,
particularly for record field identifiers (see page 154 for anexample).

206

The equivalence between˜a.b x and˜b ˜a x holds whena is a pseudo-pointer,
a pointer referring to only a single field, or a pointer equivalent to the identity, such as
&lrX , &C, &nmA, or &V. However, an interpretation more in keeping with the intuition of
relative addressing is applicable when the left operand,a, represents a pointer to multiple
fields. In this case, the pointerb is relative to each of the fields described bya, and the
above mentioned equivalence doesn’t hold.

Pointers to multiple fields are expressions like&b, &hthPX , or a pair of field identifiers
(foo,bar) . The dot operator could be put to use in taking thebar field from the first
two records in a list by&hthPX.bar .

Lambda abstraction

An alternative to the use of combinators to specify functions is by lambda abstraction, so
called because its traditional notation isλx. f(x), wherex is a dummy variable andf(x) is
an expression involvingx. This idea has a well established body of theory and convention,
to which the current language adheres for the most part. However, theλ symbol itself is
omitted, because the dot as a postfix operator is sufficientlyunambiguous, and dummy
variables are enclosed in double quotes to distinguish themfrom identifiers.

Parsing The postfix arity of the dot operator is indicated when it is immediately preceded
by an operand and followed by white space, which is then followed by another operand.
This last condition is necessary because lambda abstraction is mainly a source level trans-
formation.

When it is used for lambda abstraction, the dot operator has alower precedence than
function application and any non-aggregate operator except declarations (= and ::). It
is also right associative. These conditions imply the standard convention that the body of
an abstraction extends to the end of the expression or to the next enclosing parenthesis,
comma, or other aggregate operator.

Semantics The function defined by a lambda abstraction"x". f("x") is computed by
substituting the argument to the function for all free occurrences of"x" in the expression
f("x") and evaluating the expression.

Free occurrences of a variable in the body of a lambda abstraction are usually all oc-
currences except in contrived examples to the contrary. Technically a free occurrence of
a variable"x" is one that doesn’t appear in any part of a nested lambda abstraction ex-
pressed in terms of a variable with the same name (i.e., another "x").

An example of an occurrence that isn’t a free occurrence of"x" is in the expression
"x". "x". "x" . This expression nevertheless has a well defined meaning, which is
the constant function returning the identity function,˜&! .3 Nested lambda abstractions
are ordinarily an elegant specification method for higher order functions that can be more
easily readable than the equivalent combinatoric form.

3With no opportunity for substitution, applying this expression to any argument yields"x". "x" , which is the identity function
because applying it to any argument yields the argument.

207

meaning illustration

-> iteration p->f ≡ p?(p->f+ f,˜&)
ˆ= fixed point computation fˆ= x ≡ fˆ= f x

+ composition f+g x ≡ f g x
; reverse composition g;f x ≡ f g x
@ composition with a pointer g@h ≡ g+˜&h

Table 6.4: sequencing operators

Pattern matching Lambda abstractions can also be expressed in terms of lists or tuples
of dummy variables, in any combination and nested to any depth. The syntax for lists
and tuples of dummy variables is the same as usual, namely a comma separated sequence
enclosed by angle brackets or parentheses.

The reason for using a pair of dummy variables would be to express a function that
takes a pair of values as an argument and needs to refer to eachvalue individually. When
a pair of dummy variables is used, each component of the argument is identified with a
distinct variable, and they can appear separately in the expression. For example, a function
that concatenates a pair of lists in the reverse order could be expressed as

("x","y"). "y"--"x"

When a function is defined as a lambda abstraction with a tupleof dummy variables,
it should be applied only to arguments that are tuples with atleast as many components,
or else an exception may be raised due to an invalid deconstruction. Similarly, a list of
dummy variables in the definition means that the function should be applied only to lists
with at least one item for each dummy variable. For nested lists or tuples, each component
of the argument should match the arity or length of the corresponding component in the
nested list or tuple of dummy variables. See page 164 for a related discussion.

Repeating a dummy variable within the same pattern, as in("x","x"). "x" , is
allowed but has no special significance.4 There is nothing to compel this function to be
applied only to pairs of equal values. The component of the argument to which a repeated
dummy variable refers in the body of the abstraction is unspecified. Note that this example
differs from the case of a nested lambda abstraction, wherein repeated variables have a
standard interpretation as discussed above.

6.4 Sequencing operations

Five operators pertain feeding the output from one functioninto another or feeding it back
to the same one. They are listed in Table 6.4. There are two foriteration and three for
composition.

4An alternative semantics considered and rejected in the design of Ursala would allow a pattern with repetitions to express a partial
function restricted to a domain matching the pattern. This semantics would be useful only in the context of a function defined by cases
via multiple partial functions, which raises various practical and theoretical issues.

208

6.4.1 Algebraic properties

These operators are designed with various algebraic properties to be as convenient as pos-
sible in typical usage.

• The iteration combinator-> allows all four arities and is fully dyadic.

• The fixed point iterator has postfix and solo arities, and satisfiesfˆ= ≡ ˆ= f .

• The composition with pointers operator,@, has only postfix and solo arities, with the
same algebraic properties as the fixed point iterator.

• The composition operator,+, lacks a prefix arity but is otherwise dyadic.

• The reverse composition operator,; , also lacks a prefix arity. It is postfix dyadic, but
its solo arity satisfies(; f) g ≡ f; g .

The pointers in f@s is a suffix rather than an operand, and must be a literal pointer
constant rather than an identifier or expression. Without a suffix, the identity pointer is
inferred, which has no effect. A late addition to the language, this operator’s purpose is
more to reduce the clutter in many expressions than to provide any more functionality.

6.4.2 Semantics

The semantics of these operators are as simple as they look, and require no lengthy dis-
course.

• The fixed point iterator,̂= , applies a function to the original argument, then applies
the function again to the result, and so on, until two consecutive results are equal.
The last result obtained is the one returned. Non-termination is a possibility.5

• The iteration combinator in a functionp->f similarly applies the functionf repeat-
edly, but uses a different stopping criterion. The predicate p is applied to each result
from f , and the first result for whichp is false is returned. The result may also be the
original argument ifp isn’t satisfied by it, in which casef is never evaluated.

• The composition operator in a functionf+g appliesg to the argument, feeds the out-
put fromg into f , and returns the result fromf . This function is the infix equivalent
of one given by the aggregate operator-+f,g+- .

• The reverse composition operator, used in a functionf;g , is semantically equivalent
to the composition operator with the operands interchanged, i.e.,g+f or -+g,f+- .

5See page 78 for a discussion of equality.

209

6.4.3 Suffixes

All of the operators in Table 6.4 can be used with a suffix. The suffix can be used in any
arity the operators allow. There are three different conventions followed be these operators
regarding suffixes.

• The iterations-> andˆ= allow a literal pointer constant as a suffix.

• The fixed point iterator̂= also allows the= character in a suffix.

• The composition operators+ and ; can take a suffix consisting of any sequence of
the characters* , =, . , and$.

Iteration postprocessors

A pointer constants serves as a postprocessor to the iteration operators, similarly to its
use by the assignment operator. That is,p-> sf is equivalent tõ& s+ p->f , andfˆ= s
is equivalent tõ& s+ fˆ= . The right operand to-> in its infix or prefix arities must be
parenthesized to distinguish it from a suffix if it begins with an alphabetic character.

For the fixed point iterator̂= , a suffix of = can be used, as in̂== , either with or
without a pointer constant. The effect of the= is to generalize the stopping criterion to
compare each newly computed result with every previous result, rather than comparing it
only to its immediate predecessor. This criterion makes thecomputation more costly both
in time and memory usage, but will allow it to terminate in cases of oscillation, where the
alternative wouldn’t.

Embellishments to composition

The suffixes to the composition operators alter the semantics of the function they would
normally construct in the following ways.

• The* makes the function apply to all items of a list.

• The= composes the function with a list flattening postprocessor.

• The$ makes the function apply to both sides of a pair.

• The. makes the function transform a list by deleting the items that falsify it.

These explanations may be supplemented by some examples.

$ fun --m="˜&h+ * ˜&t <’ab’,’cd’,’ef’,’gh’>" --c
’bdfh’
$ fun --m="˜&t+=˜&t <’ab’,’cd’,’ef’,’gh’>" --c
’efgh’
$ fun --m="˜&h+$˜&t (<’ab’,’cd’>,<’ef’,’gh’>)" --c
(’cd’,’gh’)
$ fun --m="˜&t+.˜&t <’abc’,’de’,’fgh’,’ij’>" --c
<’abc’,’fgh’>

210

meaning illustration

? conditional ˜&w?(˜&x,˜&r) ≡ ˜&wxrQ
ˆ? recursive conditional pˆ?(f,g) ≡ refer p?(f,g)
?= comparing conditional x?=(f,g) ≡ ˜&==x?(f,g)
?< inclusion conditional x?<(f,g) ≡ ˜&-=x?(f,g)
?$ prefix conditional x?$(f,g) ≡ ˜&=]x?(f,g)

Table 6.5: conditional forms

The functions above are equivalent to the pseudo-pointers˜&thPS , ˜&ttL , ˜&bth , and
˜&ttPF . When multiple characters appear in the same suffix, their effect is cumulative
and the order matters.

$ fun --m="˜&t+.=˜&t <’abc’,’de’,’fgh’,’ij’>" --c
’abcfgh’
$ fun --m="˜&t+.=˜&t" --decompile
main = compose(reduce(cat,0),filter field(0,(0,&)))

6.5 Conditional forms

Several forms of non-strict evaluation of functions conditioned on a predicate are afforded
by the operators listed in Table 6.5. These operators have only postfix and solo arities, and
therefore are not dyadic, but they share the algebraic property

(p?)(f,g) ≡ (?)(p,f,g)

where these expressions are fully parenthesized to emphasize the arity. More frequent
idiomatic usages arep?/f g and?(p,˜&/f g) , etcetera, with line breaks per stylistic
convention.

6.5.1 Semantics

These operators are defined in terms of the virtual machine’sconditional combinator,
a second order function that takes a predicatep and two functionsf andg to a function
that evaluates tof or g depending on the predicate.

conditional(p, f , g) x =

{
f (x) if p(x) is non-empty
g(x) otherwise

The non-strict semantics means the function not chosen is not evaluated and therefore un-
able to raise an exception. This behavior is similar to theif . . . then . . .else statement
found in most languages.

• The? operator in a functionp?(f,g) directly corresponds to theconditional
combinator with a predicatep and functionsf andg.

211

• The ?= operator in a functionx?=(f,g) allows any arbitrary constantx in place
of a predicate, and translates to theconditional combinator with a predicate that
tests the argument for equality with the constant.6

• The?$ operator in a functionx?$(f,g) allows any list or string constantx in place
of a predicate, and translates to theconditional combinator with a predicate that
holds for any list or string argument having a prefix ofx .

• The?< operator in a functionx?<(f,g) with a constant list or setx tests the argu-
ment for membership inx rather than equality.

• The ˆ? operator in a functionpˆ?(f,g) translates to aconditional wrapped
in a refer combinator, equivalent torefer conditional(p,f,g) .

Therefer combinator is used in recursively defined functions. An expression of the form
(refer f) x evaluates tof ˜&J(f,x) . See pages 44 and 72 for further explanations.

6.5.2 Suffixes

The conditional operators listed in Table 6.5 all allow pointer expressions as suffixes, and
theˆ? additionally allows suffixes containing the characters=, $, and<.

Equality and membership suffixes

The ˆ? operator with a suffix= is a recursive form of the?= operator. That is, the func-
tion pˆ?=(f,g) is equivalent torefer p?=(f,g) . Similarly,pˆ?<(f,g) is equiv-
alent to the functionrefer p?<(f,g) , andpˆ?$(f,g) is equivalent to the function
refer p?$(f,g) . The=, $ and< characters are mutually exclusive in a suffix. The
effect of using more than one together is unspecified.

Pointer suffixes

The pointer expressions in a functionp?s(f,g) serves as a preprocessor to the predicate
p, making the function equivalent to(p+ ˜& s)?(f,g) . The expressions can be a
pseudo-pointer but must be a literal constant. Note that only the predicatep is composed
with ˜& s, not the functionsf andg.

For the?= and?< operators, the pointer expression is composed with the implied pred-
icate. Hence,x?= s(f,g) is equivalent to(˜&E/x+ ˜& s)?(f,g) andx?< s(f,g)
is equivalent to(˜&w\x+ ˜& s)?(f,g) . (See page 78 for a reminder about the equality
and membership pseudo-pointersE andw.)

Combined suffixes

A pointer expression and one of< or = may be used together in the same suffix of the
ˆ? operator, as inpˆ?= s(f,g) or pˆ?< s(f,g) , with the obvious interpretation as a
recursive form of one of the above operators with a pointer suffix.

6see page 78 for a discussion of equality

212

meaning illustration

&& conjunction f&&g ≡ f?(g,0!)
|| semantic disjunction f||g ≡ f?(f,g)
!| logical disjunction f!|g ≡ f?(&!,g)
ˆ& recursive conjunction fˆ&g ≡ refer f&&g
ˆ! recursive disjunction fˆ!g ≡ refer f!|g
-= membership f-= s ≡ ˜&wˆ(f,s!)
== comparison f== x ≡ ˜&Eˆ(f,x!)
˜< non-membership f˜< s ≡ ˆwZ(f,s!)
˜= inequality f˜= x ≡ ˆEZ(f,x!)

Table 6.6: predicate combinators

6.6 Predicate combinators

A selection of operators for constructing predicates useful for conditional forms among
other things is shown in Table 6.6. There are operators for testing of equality and mem-
bership in normal and negated forms, and for several kinds offunctional conjunction and
disjunction.

6.6.1 Boolean operators

The boolean operators in Table 6.6 are&&, || , !| , ˆ& , andˆ! . Algebraically, they allow
all four arities and are fully dyadic. Semantically, they are second order functions that take
functions rather than data values as their operands, and their results are functions. The
functions they return have a non-strict semantics. There are currently no suffixes defined
for these operators.

Non-strictness

The non-strict semantics means that in their infix usages, the right operand isn’t evaluated
in cases where the logical value of the result is determined by the left. A prefix usage
such as&&q represents a function that needs to be applied to a predicatep, and will then
construct a predicate equivalent to the infix formp&&q. The resulting predicate therefore
evaluatesp first and thenq only if necessary. Similar conventions apply to other arities.

Semantics

The meanings of these operators can be summarized as follows.

• A function f&&g appliesf to the argument, and returns an empty value iff the re-
sult from f is empty, but otherwise returns the result obtained by applying g to the
argument.

213

• A function f||g appliesf to the argument, and returns the result fromf if it is
non-empty, but otherwise returns the result of applyingg to the argument. Although
it is semantically equivalent tof?(f,g) , it is usually more efficient due to code
optimization.

• A function f!|g is similar to f||g but even more efficient in some cases. It will
return a true boolean value& if the result fromf is non-empty, but otherwise will
return the result fromg.

• The functionfˆ&g is equivalent torefer f&&g .

• The functionfˆ!g is equivalent torefer f!|g .

Therefer combinator is used in recursively defined functions. An expression of the form
(refer f) x evaluates tof ˜&J(f,x) . See pages 44 and 72 for further explanations.

The aggregate operators-&f,g&- , -|f,g|- , and-!f,g!- have a similar seman-
tics to the first three of these operators but allow arbitrarily many operands. See page 192
for more information.

6.6.2 Comparison and membership operators

The operators==, ˜= , -= , and˜< from Table 6.6 pertain respectively to equality, inequal-
ity, membership, and non-membership. These operators haveno suffixes. They allow all
four arities but are dyadic only in their postfix arity. For their prefix arities, they share the
algebraic property

f; ==x ≡ f==x

but in their solo arities they are only first order functions taking pairs of data to boolean
values.

• In the infix usage, these operators are second order functions that require a function
as a left operand and a constant as the right operand. They construct a function that
works by applying the given function to the argument and testing its return value
against the given constant, whether for equality, inequality, membership, or non-
membership, depending on the operator.

• In the prefix usage, the operand is a constant and the result isa function that tests its
argument against the constant.

• In the postfix usagef== , as implied by the dyadic property, a functionf as an
operand induces a function that can be applied to a constantx , to obtain an equivalent
function tof==x , and similarly for the other three operators.

For the membership operators, the constant or the right operand should be a set or a list,
and the result from the function if any should be a possible member of it. For example,
-=’0123456789’ is the function that tests whether its argument is a numeric character,
and returns a true value if it is.

214

meaning illustration

- table lookup <’a’: x,’b’: y>-a ≡ x
.. library combinator l..f ≡ library(’l’,’f’)
.| run-time library replacement lib.|func f ≡ f
.! compile-time library replacement lib.!func f ≡ f

Table 6.7: module dereferencing

6.7 Module dereferencing

Four operators shown in Table 6.7 are useful for access and control of library functions.
Library functions can be those that are implemented in otherlanguages and linked into the
virtual machine such as the linear algebra and floating pointmath libraries, or they can be
implemented in virtual code stored in.avm library files that are user defined or packaged
with the compiler. The dash operator,- , is useful for the latter and the other operators are
useful for the former.

6.7.1 The dash

This operator allows only an infix arity and has a higher precedence than most other oper-
ators. The left operand should be of a typet%mfor some typet, which is to say a list of
assignments of strings to instances oft, and the right operand must be an identifier.

Syntax

The dash operator is implemented partly as a source level transformation that allows it
to have an unusual syntax. The identifier that is its right operand need not be bound to a
value by a declaration elsewhere in the source. Rather, it should be identical to some string
associated with an item of the left operand. The value of an expressionfoo-bar is the
value associated with the string’bar’ in the list foo . Although’bar’ is a string, it is
not quoted when used as the right operand to a dash operator.

• If the right operand to a dash operator is anything other thana single identifier, an
exception is raised with the diagnostic message of “misused dash operator ”
during compilation.

• If the right operands doesn’t match any of the names in the left operand, an exception
is raised with the message of “unrecognized identifier: s”.

Semantics

Although it is valid to write a dash operator with a literal list of assignments of strings to
values as its left operand

<’ s0’: x0, . . . ’ sn’: xn>- sk

215

a more useful application is to have a symbolic name as the left operand representing a
previously compiled library module.

Any source text containing#library+ directives generates a library file with a suffix
of .avm when compiled, that can be mentioned on the command line during a subsequent
compilation. Doing so causes the name of the file (without the.avm suffix) to be avail-
able as a predeclared identifier whose value is the list of assignments of strings to values
declared in the library. A usage likelib-symbol allows an externally compiled symbol
from a library namedlib.avm to be used locally, provided that file name is mentioned
on the command line during compilation.

The #import directive serves a related purpose by causing all symbols defined in a
library to be accessible as if they were locally declared. However, the dash operator is
helpful when an external symbol has the same name as a locallydeclared symbol, because
it provides a mechanism to distinguish them.

Type expressions

Type expressions associated with record declarations in modules are handled specially by
the dash operator. The compiler uses a compressed format fortype expressions to save
space when storing them in library files. The dash operator takes this format into account.

When any identifier beginning with an underscore is used as the right operand to a
dash operator, and its value is detected to be that of a compressed type expression, the
value is uncompressed automatically. This effect is normally not noticeable unless the
module containing a type expression is accessed by other means than the dash operator in
an application that makes direct use of type expressions.

Compressed libraries

If a file containing#library+ directives is compiled with the--archive command
line option, the file is written in a compressed format. This compression is optional and is
orthogonal to that of type expressions mentioned above.

The dash operator automatically detects whether its left operand is a compressed mod-
ule and accesses it transparently. Operating on compressedmodules otherwise requires un-
compressing them explicitly, which can be performed by the function%QI. See page 132
for an example.

6.7.2 Library invocation operators

The other kind of library functions are those that are written in C or Fortran and are invoked
directly by the virtual machine. The virtual machine code for a call to this kind of library
function is essentially a stub

library(〈library name〉, 〈function name〉)

containing the name of the library and the function as character strings, which are looked
up at run time by an interpreter. The available libraries andfunction names are site specific,

216

but can be viewed by executing the shell command

$ fun --help library

as shown in Listing 1.10 on page 46, and as documented in theavram reference manual.
Aside from invoking a library function by thelibrary combinator explicitly as

shown above, there are three operators intended to make it more convenient as shown
in Table 6.7, which are the.. (elipses),.! , and.| operators.

Syntax

Algebraically the library name is the left operand and the function name is the suffix for
each of these operators. The right operand, if any, can be anyexpression representing a
function. All three operators allow solo and postfix usage. The.! and.| operators allow
infix usage and are postfix dyadic.

Syntactically the library name must be an identifier, which needn’t be declared any-
where else because it is literally translated to a string by asource transformation, similarly
to the right operand of a dash operator as explained above. Anything other than an identi-
fier as the left operand to one of these operators causes a compile time exception.

The function name in the suffix may contain digits, which are not normally valid in
identifiers, as well as letters and underscores.

Both the library and function names can be recognizably truncated or even omitted
where there is no ambiguity (either because a function namesis unique across libraries, or
because a library has only one function).

Semantics

The operators differ in their semantics, as explained below.

The elipses The .. allows only a postfix or solo arity, with the solo arity corresponding
to the case where the library name is omitted. It is translated directly to thelibrary
combinator mentioned above with an attempt to complete any truncated library or function
names at compile time.

• If there isn’t a unique match found for either the library or the function name in the
postfix usagelib..func , it is taken literally (even if no such function or library
exists on the compile time platform).

• If there isn’t a unique match found for the function name in the solo usage (i.e., with
the library name omitted), then a compile time exception is raised with the diagnostic
message “unrecognized library function ”.

Compile time replacement Integration of compatible replacements for external library func-
tions is important for portability, but the library function is preferable where available for
reasons of performance. The.! operator provides a way for a replacement function to be

217

used in place of an unavailable library function. The determination of availability is made
at compile time based on the virtual machine configuration onthe compilation platform.

• An expression of the formlib.!func f evaluates tof if no unique match to the
library function is found, but it evaluates tolib..func otherwise.

• A solo usage of the form.!func f behaves analogously, but obviously may fail
to find a unique match for the library function in some cases where the usage above
would not.

• Consistently with the dyadic property and solo semantics, an expression.!func
or lib.!func by itself evaluates either to the identity function or to a constant
function returninglib..func , depending on whether a matching library function
is found during compilation.

• In any case, no compile time exception is raised, but run timeerrors are possible if a
library function present on the compile time platform is absent from the target.

Run time replacement The .| operator provides a way for a replacement function to be
used in place of an unavailable library function with the determination of availability made
at run time.

• An expression of the formlib.|func f represents a function that performs a run
time check for the availability of a function namedfunc in a library namedlib . If
such a function exists and is unique, it is applied to the argument, but otherwise the
functionf is applied to the argument.

• A solo usage of the form.|func f behaves analogously, but searches every virtual
machine library for a function namedfunc .

• Consistently with the above usages, an expression.|func or lib.|func by itself
represents a higher order function that needs to be applied to a functionf in order to
yield a meaningful combination oflib..func andf .

• This operator is unlikely to cause either compile time or runtime errors, and will
generate code that makes the best use of available library functions on the target in
exchange for a slight run time overhead.

6.8 Recursion combinators

Four operators shown in Table 6.8 are grouped together loosely on the basis that they
abstract common patterns of recursion, particularly over lists and trees.

218

meaning illustration

=> folding f=>k <x,y> ≡ f(x,f(y,k))
:- reduction f:-k <x,y,z,w> ≡ f(f(x,y),f(z,w))
<: recursive composition f<:g ≡ refer f+g

* ˆ tree traversal ˜&dxPvV * ˆ0 ≡ ˜&dxPvVo

Table 6.8: recursion combinators

6.8.1 Recursive composition

One operator from Table 6.8 that requires very little explanation is<: , for recursive com-
position. It has all four arities, no suffixes, and is fully dyadic. It is semantically equivalent
to the composition operator,+, with the result wrapped in arefer combinator. That is,
a functionf<:g is equivalent torefer f+g . As noted previously, therefer combi-
nator is used in recursively defined functions. An expression of the form(refer f) x
evaluates tof ˜&J(f,x) . See page 72 for more information.

6.8.2 Recursion over trees

The tree traversal operator,* ˆ , is a generalization of the tree folding pseudo-pointer,o,
introduced on page 70, that allows greater flexibility in thehandling of empty subtrees,
and accommodates arbitrary functional expressions as operands rather than literal pointer
constants. It is useful for performing bottom-up calculations on trees.

The operator allows all arities and is prefix dyadic. The solousage* ˆ f is equivalent
to the postfix usagef* ˆ . A function of the formf* ˆ k operates on a tree according to the
following recurrence.

(f* ˆ k) ˜&V() = k

(f* ˆ k) dˆ:< v0 . . . vn> = f (dˆ:<(f* ˆ k) v0 . . . (f* ˆ k) vn>)

A function f* ˆ differs fromf* ˆ k by being undefined for the empty tree˜&V() or any
tree with an empty subtree.

The tree traversal operator allows a suffix consisting of anysequence of the characters
* (asterisk),. (period), and=. Each of these characters specifies a transformation of the
resulting function. The* makes it apply to every item of a list, the= composes it with
a list flattening postprocessor, and the. makes it transform a list by deleting items that
falsify it. When multiple characters occur in the same suffix, their effect is cumulative and
the order matters.

6.8.3 Recursion over lists

The remaining two operators in Table 6.8 construct functions operating on lists according
to patterns of recursion sometimes known as folding or reduction. A typical application
for these operators is summing over a list of numbers.

219

Folding

The folding operator,=> takes a function operating on pairs of values and an optional
constant as a vacuous case result to a function that operateson a list of values by nested
applications of the function.

The operator can be used in any of four arities, with the infix form allowing a user
defined vacuous case. It is prefix and solo dyadic, but the postfix form is without a vacuous
case and consequently has a different semantics. There are currently no suffixes defined
for it.

A function expressed asf=>k, which is equivalent to(=>k) f and(=>) (f, k) by the
dyadic properties, applies the following recurrence to a list.

(f=>k) <> = k

(f=>k) h: t = f(h, (f=>k) t)

If f were addition andk were 0, this function would compute a cumulative sum. Cumula-
tive products might conventionally have a vacuous case of 1.A function expressed by the
postfix formf=> is evaluated according to this recurrence.

(f=>) <> = <>

(f=>) <h> = h

(f=>) h: t: u = f(h, (f=>) t: u)

This form tends to have unexpected applications inad hoctransformations of data, such
as converting a list of lengthn to ann-tuple by˜&=> (cf. Figures 5.1 and 5.2).

Reduction

The reduction operator,:- , performs a similar operation to folding, but the nesting of
function applications follows a different pattern, and thevacuous case result doesn’t enter
into the calculation unnecessarily. The difference is illustrated by these two examples,
which fold and reduce the operation of concatenation followed by parenthesizing with an
empty vacuous case.

$ fun --m="-+’(’--,--’)’,--+-=>’’ ˜&iNCS ’abcdefgh’" --c
’(a(b(c(d(e(f(g(h))))))))’
$ fun --m="-+’(’--,--’)’,--+-:-’’ ˜&iNCS ’abcdefgh’" --c
’(((ab)(cd))((ef)(gh)))’

The original motivation for the reduction operator as opposed to folding was to avoid
imposing unnecessary serialization on the computation. The current virtual machine im-
plementation does not exploit this capability.

Algebraically the reduction operator has all four arities,no suffixes, and is fully dyadic
(i.e., the vacuous case must always be specified). Semantically it may be regarded either
as folding with an unspecified order of evaluation, limitingit to associative operations,
or can have a formal specification consistent with above example, as documented for the

220

meaning illustration

$ˆ maximizer nleq$ˆ <1,2,3> ≡ 3
$- minimizer nleq$- <1,2,3> ≡ 1
-< sort nleq-< <2,1,3> ≡ <1,2,3>

* ˜ filter ˜=‘x * ˜ ’axbxc’ ≡ ’abc’
˜| distributing filter ˜=˜| (‘a,’bac’) ≡ ’bc’
|= partition ==|= ’mississippi’ ≡ <’m’,’ssss’,’pp’,’iiii’>
!= bipartition ˜=‘x!= ’axbxc’ ≡ (’abc’,’xx’)

* | distributing bipartition ==* | (‘a,’bac’) ≡ (’a’,’bc’)
-˜ forward bipartition ==‘x-˜ ’xax’ ≡ (’x’,’ax’)
˜- backward bipartition ==‘x˜- ’xax’ ≡ (’xa’,’x’)

Table 6.9: list combinators with predicate operands

reduce combinator in theavram reference manual.7 A restricted form of this operation
is provided by theK21 pseudo-pointer explained on page 89.

6.9 List transformations induced by predicates

Some operators shown in Table 6.9 are designed to support frequently needed list calcula-
tions such as sorting, searching, and partitioning. A common feature of these operators is
that they specify a function by a predicate or a boolean valued binary relation. Except as
noted, all of these operators apply equally well to lists andsets.

6.9.1 Searching and sorting

Searching a list for an extreme value can be done by either of two operators,$ˆ and$- ,
while sorting a list can be done by the-< operator. Searching is semantically equivalent
to sorting followed by extracting the head of the sorted list, but is more efficient, requir-
ing only linear time. Each of these operators requires a binary relational predicate and
optionally a pointer or pseudo-pointer identifying a field on which to base the comparison.

A binary relational predicatep for these purposes is any function that takes a pair of
values as an argument and returns a non-empty result if and only if the left value pre-
cedes the right according to some transitive relation. Thatis, p(x, y) is true if and only if
x ⊑ y for a relation⊑. Examples of suitable relations are≤ on floating point numbers as
computed byfleq from theflo library, and alphabetic precedence on character strings
as computed bylleq from the standard library,std.avm . The examplenleq used in
Table 6.9 is the partial order relation on natural numbers.

The pointer operandf can be any literal or symbolic expression evaluating to a pointer,
including literals such as&thl or &hthPX , field identifiers such asfoobar , or combi-
nations of them such asfoobar.(&h:&tt) . Pseudo-pointers are also acceptable, such
as&zl or foo.&iNC .

7For a reduction combinator definedab initio as a one-liner, see the filecom.fun in the compiler source directory.

221

Semantics

The maximizing and minimizing functions cause an exceptionwhen applied to empty lists,
but sorting an empty list is acceptable.

• The maximizing functionp$ˆf applied to a list<x0 . . . xn> returns the itemxi for
which ˜f xi is the maximum with respect to the relationp.

• The minimizing functionp$- f applied to a list<x0 . . . xn> returns the itemxi for
which ˜f xi is the minimum with respect to the relationp.

• The sorting functionp-< f applied to a list<x0 . . . xn> returns a permutation of the
list in which ˜f of each item precedes that of its successor with respect to the predi-
catep.

Algebraic properties

None of these operators is dyadic, but they can be used in all four arities and have similar
algebraic properties

Postfix usage The postfix form of any of these operators, such asp-< , p$- , or p$ˆ , is
semantically equivalent to the infix form with a right operand of the identity pointer,p-<& ,
etcetera. That means the whole items of the argument list are comparedto one another by
p rather than a particular fieldf thereof.

Solo usage The solo usages(-<) p, ($ˆ) p, and($-) p are equivalent to the respective
postfix usagesp-< , p$ˆ , andp$- . That is, they imply an identity pointer in place of the
right operand and base the comparison on whole items of the list.

Prefix usage The prefix form of the sorting operator,-< f is equivalent tolleq-< f ,
wherelleq is the lexical total order relation on character strings, and also the relation
used by the compiler to represent sets as ordered lists.

The prefix forms of the maximizing and minimizing operators$ˆ f and$- f are equiv-
alent toleql$ˆ f andleql$- f respectively, whereleql is the relational predicate that
tests whether one list is less or equal to another in length. The standard library defines
leql as˜&alZˆ!˜&arPfabt2RB .

Suffixes

Each of these operators allows a suffix, which can be any literal pointer or pseudo-pointer
constant to be used as a postprocessor. That is,p-< sf with a pointer expressions is
equivalent tõ & s+ p-< f . Consequently, if the right operandf to a sorting or searching
operator begins with an alphabetic character, it must be parenthesized to distinguish it from
a suffix.

222

6.9.2 Filtering

The operation of filtering a list is that of transforming it toa sublist of itself wherein every
item that falsifies a given predicate is deleted. Some operators previously introduced, such
as composition and binary to unary combinators, can specifyfiltering functions by way of
their suffixes, and filtering can also be done by the pseudo-pointersF, K16, andK17, but
there are two operators intended specifically for filtering.

• The filter operator* ˜ takes a predicate as an operand, and constructs a function that
filters a list by deleting items that falsify the predicate (i.e., for which the predicate
has an empty value).

• The distributing filter operator̃| takes a binary relational predicatep as an operand
(not necessarily transitive) and constructs a function that takes a pair(a,<x0 . . . xn>)
to the sublist of the right argument containing only thosexi for which p(a, xi) is
non-empty.

One way of thinking about these operators is that* ˜ is used when the filtering criterion
can be hard coded and˜| is used when it’s partly data dependent.

Usage

These operators can be used as follows.

• The˜| operator is usable in any arity, and* ˜ can be infix, postfix, or solo.

• In the prefix and infix usages, the right operand is a pointer expression.

• Both operators allow a pointer constant as a suffix, which serves as a postprocessor.

• The right operand, if any, must be parenthesized to distinguish it from a suffix if it
begins with an alphabetic character.

Algebraic properties

Neither operator is dyadic, but the following algebraic properties hold, wherep is a predi-
cate andf is a pointer expression.

• The prefix usage of distributing bipartition implies a predicate of equality.

˜| f ≡ (==)˜| f

• The postfix usage of either operator is equivalent to the infixusage with an identity
pointer as the right operand.

p* ˜ ≡ p* ˜&

• The postfix usage of either operator has an equivalent solo usage.

p* ˜ ≡ (* ˜) p

• The infix usage of either operator has an equivalent postfix usage.

p* ˜ f ≡ (p+ ˜f)* ˜

223

Semantics

It is possible to supplement the informal descriptions above with rigorous definitions of
these operators in various ways. The* ˜ in postfix and solo forms without a suffix directly
corresponds to the virtual machine’sfilter combinator, as documented in theavram
reference manual. Alternatively, we may define

p* ˜ sf ≡ ˜& s+ * = &&˜&iNC p+ ˜f

p˜| sf ≡ ˜& s+ ˜&rS+ p* ˜ f+ - *

using operators defined elsewhere in this chapter, wherep is a predicate,f is a pointer
expression ands is a literal pointer or pseudo-pointer constant. Definitions for other arities
are implied by the algebraic properties.

As indicated by these relationships, there is a minor point of difference between the
usage of the pointer operandf with these operators and the sorting and searching operators
described previously. In the present case,˜f is applied to a pair of values, and its result is
fed top. In the previous case,˜f is applied only to items of a list individually, and the pairs
of its results are fed top. The latter is more appropriate whenp is a relational predicate, as
with sorting and searching, whereas the present alternative is more general.

6.9.3 Bipartitioning

Bipartitioning is the operation of transforming a setS to a pair of subsets(L,R) such that
L∩R is empty andL∪R = S. It can also apply whereS is a list, in which case the items
of L andR preserve their order and multiplicity.

The bipartition operator!= shown in Table 6.9 takes a predicatep that is applicable to
elements of a list or setS and constructs a function that bipartitionsS into (L,R) such that
p is true of all elements ofL and false for all elements ofR. This operator is documented
further below, along with several related operators* | , -˜ , and˜- also shown in Table 6.9.
Pseudo-pointers with similar semantics are documented in Section 2.5.2.

Bipartition

The != operator can be used in any of prefix, infix, postfix, and solo arities. The left
operand, if any, is a predicate and the right operand, if any,is a pointer or pseudo-pointer
expression. The operator may also have a literal pointer constant as a suffix. If there
is a right operand beginning with an alphabetic character, it must be parenthesized to
distinguish it from a suffix.

Algebraic properties The following algebraic properties hold, wherep is a predicate andf
is a pointer expression.

• The postfix usage implies the identity as a pointer operand.

p!= ≡ p!=&

224

• The prefix usage implies the identity function as a predicate.

!= f ≡ ˜&!= f

• The infix usage is defined by the solo usage.

p!= f ≡ (!=) p+ ˜f

Semantics It is straightforward to give a formal semantics for the postfix arity (and the
others by implication) in terms of thẽ&j pseudo-pointer for set difference and the filter
combinator.

(p!=) x = ((!=) p) x = ((p* ˜) x,˜&j/ x (p* ˜) x)

The optional suffix serves as a postprocessor in any arity. For a pointer constants, any
function of the formp!= sf , != sf , p!= s, or != s. is equivalent tõ& s+ g, whereg is
given byp!= f , != f , p!= , or != respectively.

Distributing bipartition

The distributing bipartition operator* | is used to bipartition a list according to a binary
relation. A functionp* | f takes pair of(x,< y0 . . . yn>) as an argument, and it returns a
pair of lists(< yi . . .>,< yj . . .>) collectively containing all of the itemsy0 throughyn.
For allyi in the left side of the result,p ˜f (x, yi) has a non-empty value (using the same
x in every case). For allyj in the right side,p ˜f (x, yj) has an empty value.

This operator has the same algebraic properties and aritiesas the bipartition operator
discussed above, and makes similar use of an optional pointer expression as a suffix. Its
semantics is given by

p* | sf ≡ ˜& s+ ˜&brS+ p!= f+ - *

where the suffixs is a literal pointer constant andf is any pointer expression, possibly
parenthesized.

Ordered bipartition

The two operators,-˜ and˜- , are used for bipartitioning a listS based on a predicatep
into a pair of lists(L,R) such thatS is the concatenation ofL andR.

• A functionp-˜ applied toS will construct(L,R) with L as the maximal prefix ofS
whose items all satisfyp.

• A functionp˜- will makeR the maximal suffix whose items all satisfyp.

In operational terms,p-˜ scans forward through a list from the head and stops at the first
item for whichp is false, whereasp˜- scans backwards from the end. The results may
or may not coincide with each other or withp!= depending on repetitions inS and the
semantics ofp.

These operators allow solo usages, with(-˜) p equivalent top-˜ , and(˜-) p equiva-
lent top˜- , and they each allow a pointer suffix to specify a postprocessor.

225

6.9.4 Partitioning

The partition operator,|= , shown in Table 6.9 can be used to identify equivalence classes
of items in a list or a set according to any given equivalence relation, or by the transitive
closure of any given relation. This operator is very expressive, for example by allowing a
function locating clusters or connected components in a graph to be expressed simply in
terms of a suitable distance metric or adjacency relation.

Usage

The partition operator can be used in prefix, postfix, infix, and solo arities. In the prefix
and infix arities, the right operand is a pointer expression.In the postfix and infix arities,
the left operand is a binary relational predicate. There mayalso be a a suffix in any arity
consisting of a sequence of the characters=, * , or a literal pointer constant. The right
operand, if any, must be parenthesized to distinguish it from a suffix if it begins with an
alphabetic character.

Algebraic properties

The operator is not dyadic, but has these properties, which also hold when it has a suffix.

• The prefix usage implies a relational predicate of equality by default.

|= f ≡ (==)|= f

• The postfix usage implies the identity pointer by default.

p|= ≡ p|=&

• The infix usage can be defined by the solo usage.

p|= f ≡ (|=) (p+ ˜&b. f)

• The postfix usagep|= is equivalent to the solo usage(|=) p becausep+ ˜&b.& is
equivalent top whenp is a binary predicate.

Semantics

Intuitively, the relational predicatep in a functionp|= is true of any pair of values that
belong together in the same partition. and the pointerf identifies a field within each list
item to be compared byp.

The relation should be an equivalence relation, which by definition is reflexive, transi-
tive and symmetric, but if the latter two properties are lacking, the operator can be invoked
in such a way as to compensate. An example of an equivalence relation is that of two
words being equivalent if they begin with the same letter. Usually any rule associating two
things that share a common property induces an equivalence relation.

226

meaning illustration

* map f * <a,b> ≡ <f a,f b>
˜ * map to both f˜ * (x,y) ≡ (f * x,f * y)

* = flattening map f * = <a,b> ≡ ˜&L <f a,f b>
|\ triangle combinator f|\ <a,b,c> ≡ <a,f b,f f c>

ˆ coupling ˆ(f,g) x ≡ (f x,g x)
˜˜ apply to both f˜˜ (x,y) ≡ (f x,f y)
ˆ˜ couple and apply to both fˆ˜(g,h) x ≡ (f g x,f h x)
ˆ * mapped coupling fˆ * (g,h) ≡ f * + ˆ(g,h)
ˆ| apply one to each ˆ|(f,g) (x,y) ≡ (f x,g y)

$ record lifter rec$[a: f,b: g] ≡ ˆ(f,g)

Table 6.10: concurrent forms

This explanation can be made more rigorous in the following way. For the postfix arity,
the |= operator satisfies this recurrence up to a re-ordering.

(p|=) <> = <>

(p|=) h: t = :ˆ(:/ h+ ˜&lL,˜&r) p˜| * |/ h (p|=) t

The semantics for other arities follows from the algebraic properties above. The coupling
operator,̂ , is introduced subsequently in this chapter. The subexpression p˜| * |/ h is
parsed as((p˜|) * |)/ h to use a distributing filter within a distributing bipartition as the
left operand of a binary to unary operator.

• If there is a suffix that includes the= character (e.g. if the operator is of the form
|==), the symmetric closure of the predicatep is implied, and the above recurrence
holds with-! p, p+˜&rlX!-˜| in place ofp˜| .

• A function of the formp|= s, p|== s, p|= * s, or p|= * =s, wheres is a literal pointer
or pseudo-pointer constant, is semantically equivalent toa function˜& s+ g, where
g is of the formp|= , p|== , p|= * , or p|= * = respectively.

• If there isnota suffix containing the* , the above recurrence accurately describes the
semantics only ifp is transitive (i.e., ifp(x, y) andp(y, z) impliesp(x, z)). If there is
a suffix containing* , the recurrence holds regardless of transitivity.

A more efficient algorithm is used for partitioning when the relationp is transitive, but
unspecified results are obtained if this algorithm is used whenp is not transitive. Ifp is
not transitive, it is the user’s responsibility to specify the * in a suffix. An example of a
relation that is not transitive is intersection between sets.

6.10 Concurrent forms

Whatever the merits of functional programming for concurrent applications, the operators
in Table 6.10 are variations on the theme of computations with obvious parallel evaluation

227

strategies. Although the virtual machine makes no use of parallelism in its present imple-
mentation, these operators are convenient as programming constructs for their own sake.
They fall broadly into the classifications of mapping operators and coupling operators,
which are considered separately in this section.

6.10.1 Mapping operators

The first four operators in Table 6.10 involve making a list ofoutputs from a function by
applying the function to every item of an input list. They canbe used either in solo arity, or
as a postfix operator with a function as an operand, and they share the algebraic property
f* ≡ (*) f . They also have suffixes usable in various ways.

Map The simplest and most frequently used mapping operator,* , satisfies this recurrence
when used without a suffix.

(f*) <> = <>

(f*) h: t = (f h): ((f*) t)

That is, the map off appliesf to every item of its input list and returns a list of the results.
Mapping can also be used on sets but the result should be regarded as a list unless unique-
ness and lexical ordering of the items in the result are maintained, which are necessary
invariants for the set representation.

The * operator allows a literal pointer constant as a suffix, and the suffix serves as
a preprocessor to the mapping function (not a postprocessoras it does for most other
operators allowing pointer suffixes). For a literal pointers, the relationship is

f* s ≡ f* + ˜& s

Pseudo-pointers as suffixes for the map operator can be very expressive. For example,
a matrix multiplication function can be defined in one line as

mmult = (plus:-0.+ times * p) * rlD * rK7lD

using eitherplus and times from the flo library with floating point 0, or whatever
equivalents are appropriate for matrices over some other field.

Map to both The˜ * operator works like the* operator except that it constructs a function
that applies to a pair of lists rather than a single list. The exact relationship is

(f* ˜) (x, y) ≡ ((f*) x, (f*) y)

wheref is a function andx andy are lists. This operator also allows a pointer suffix, that
serves as a preprocessor That is,

f* ˜ s ≡ ˜& s; f* ˜

wheres is a literal pointer constant.

228

Flattening map The * = operator behaves like the* with a list flattening postprocessor.
The functionf in an expressionf* = should return a list. After making a list of the results,
which will be a list of lists, the flattening map operation forms their cumulative concate-
nation. Formally, the relationship is

f* = ≡ ˜&L+ f*

in terms of the list flattening pseudo-pointer˜&L explained on page 65, which could also
be defined as--:-<> with operators introduced in this chapter.

The flattening map operator allows arbitrarily many more* and = characters to be
appended as suffixes.

• Each* character in a suffix indicates a nested map. That is,f* =* is equivalent to
(f* =)* , where the latter* is parsed as the map operator,f* =** is equivalent to
((f* =)*)* , and so on.

• Each= character in a suffix indicates another iteration of flattening. Hencef* ==
is equivalent tõ&L+ f* =, andf* === is equivalent tõ&L+ ˜&L+ f* =, and so
on.

• Combinations of these characters within the same suffix are allowed but the order
matters.f* =* = is equivalent tõ&L+ (f* =) * , which is also equivalent to a pair
of nested flattening maps(f* =) * =, butf* ==* is equivalent to(˜&L+ f* =) * .

A pointer expression may also appear in a suffix, and it will act as a preprocessor similarly
to a pointer suffix for the map operator.

Triangulation An operator that is less frequently used but elegant when appropriate is
the |\ operator for triangulation. This operator should not be confused with/| or \| ,
the binary to unary combinators with a suffix of| , although the meanings are related
(page 202). See also theK9 pseudo-pointer on page 87.

The intuitive description of the triangle combinator is that it takes a functionf as an
operand and constructs a function that transforms a list as follows.

(f |\) <x0, x1, x2, . . . xn> = <x0, f(x1), f(f(x2)), . . .

n times

f(. . . f(
︸ ︷︷ ︸

xn) . . .)>

That is, the functionf is appliedi times to thei-th item of the list. A more formal descrip-
tion would be that it satisfies the following recurrence.

(f |\) <> = <>

(f |\) h: t = h: ((f |\) (f*) t)

The triangle combinator also allows a literal pointer or pseudo-pointer constants as a
suffix, which serves as a postprocessor.

f |\ s ≡ ˜& s+ f |\

229

6.10.2 Coupling operators

Whereas the mapping operators are concerned with applying the same function to multiple
arguments, most of the remaining operators in Table 6.10 involve concurrently applying
multiple functions to the same argument.

Apply to both

The ˜˜ operator allows postfix and solo arities with no suffixes. In the postfix arity, its
operand is a function, and the solo arity satisfies(˜˜) f ≡ f ˜˜ .

This operator corresponds to what is called thefan combinator in theavram reference
manual. Given a functionf , it constructs a function that applies to a pair of values and
returns a pair of values. Each side of the output pair is computed by applyingf to the
corresponding side of the input pair.

(f ˜˜) (x, y) ≡ (f x, f y)

Normally a function of the formf ˜˜ will raise an exception with a diagnostic mes-
sage of “invalid deconstruction ” when applied to an empty argument, but if the
functionf is of the form˜& p andp is a pointer, certain code optimizations might apply.

$ fun --main="˜&˜˜" --decompile
main = field &
$ fun --m="˜&rlX˜˜" --d
main = field((((0,&),(&,0)),0),(0,((0,&),(&,0))))

The optimization in the first example is a refinement rather than an equivalent semantics,
whereby the function will map an empty input to an empty output rather than raising an
exception. The optimization in the second example uses a single pointer instead of the
fan combinator.

This operator also allows a pointer suffix, that serves as a preprocessor That is,

f ˜˜ s ≡ ˜& s; f ˜˜

wheres is a literal pointer constant.

Couple

The most frequently used coupling combinator isˆ , which allows infix, postfix, and solo
arities, and a pointer suffix as a postprocessor.

• In the solo arity,̂ is a function that takes a pair of functions as an argument and
returns a function as a result.

• In the infix arity, theˆ operator takes a function as its left operand and a pair of
functions as its right operand, with the algebraic propertyf ˆ (g, h) ≡ f+ (ˆ)(g, h).

• The operator is postfix dyadic, so the postfix usage is impliedby the infix.

230

The semantics for the solo arity, which implies the other two, is given by

((ˆ) (f, g)) x ≡ (f x, g x)

wheref andg are functions. That is, a function̂(f, g) returns a pair whose left side is
computed by applyingf to the argument, and whose right side is computed by applyingg
to the argument. This operation corresponds to the virtual machine’scouple combinator.

The interpretation of a pointer suffixs varies depending on the arity.

• In the solo arity, the suffix acts as a postprocessor to the function that is constructed.

ˆ s(f, g) ≡ ˜& s+ ˆ (f, g)

• In the infix arity, the suffix is composed between the left operand and the function
constructed from the right operands.

f ˆ s(f, g) ≡ f+ ˜& s+ ˆ (f, g)

• Suffixes in the postfix arity function consistently with the infix arity.

(hˆ s) (f, g) ≡ hˆ s(f, g)

Compound coupling

The two operatorŝ̃ andˆ * perform a combination of thêwith the˜˜ and* operations,
respectively. They allow infix, postfix, and solo arities, and have these algebraic properties.

• The infix usage of̂˜ causes the left operand to be applied to both results returned
by the function constructed from the right operand.

f ˆ˜ (g, h) ≡ f ˜˜+ ˆ (g, h)

• The infix usage of̂ * has the analogous property, but is not well typed unless a
pseudo-pointer suffix transforms the intermediate result to a list (see below).

f ˆ * (g, h) ≡ f* + ˆ (g, h)

• Both operators are postfix dyadic.

(f ˆ˜) (g, h) ≡ f ˆ˜ (g, h)

(f ˆ *) (g, h) ≡ f ˆ * (g, h)

• The solo usage takes a function as an argument and returns a function that takes a
pair of functions as an argument.

(ˆ˜ f) (g, h) ≡ f ˆ˜ (g, h)

(ˆ * f) (g, h) ≡ f ˆ * (g, h)

231

If a pointer constants is used as a suffix, it is composed between thefan or map of the
left operand and the functions constructed from the right operand.

f ˆ˜ s(g, h) ≡ f ˜˜+ ˜& s+ ˆ (g, h)

f ˆ * s(g, h) ≡ f* ˆ+ ˜& s+ ˆ (g, h)

The semantics of pointer suffixes in the other arities of these operators is analogous to
those of thê operator.

One to each

A further variation on the couple operator is|̂ . The semantics in the infix arity with a
pointer suffixs is

(f |̂ s(g, h)) (x, y) ≡ f &̃ s (g x, h y)

wheref , g, andh are functions. The solo arity satisfies

((|̂ s) (g, h)) (x, y) ≡ &̃ s (g x, h y)

and the operator is postfix dyadic.
If a function of the formf |̂ s(g, h) is applied to an empty value instead of a pair

(x, y), an exception will be raised with “invalid deconstruction ” reported as
a diagnostic. Otherwise, one function is applied to each side of the pair, as the above
equivalence indicates.

In addition to a pointer suffixs, this operator may be used with any combination of
suffixes* , =, and˜ . The simplest way of understanding and remembering their effects is
by these identities,

f |̂ * s(g, h) ≡ (f*) |̂ s(g, h)

f |̂̃ s(g, h) ≡ (f ˜̃) |̂ s(g, h)

f |̂ * =s(g, h) ≡ (f* =) |̂ s(g, h)

which is to say that they can be envisioned as making the left function mapped, fanned,
or flat mapped. These suffixes may also be used in the solo form,wherein they act on the
implied identity function instead of a left operand. The flattening suffix,=, can be used by
itself, and will have the effect of composing the list flattening function˜&L with the left
operand. Arbitrarily long sequences of these suffixes are also allowed, and are applied in
order, as in this example.

f |̂ * ˜= * s(g, h) ≡ (* &̃L+ ˜̃ * f) |̂ s(g, h)

Record lifting

For records to be useful as abstract data types, the capability to manipulate them without
recourse to the concrete representation is essential. Thisrequirement is partly filled by the
means documented in Section 4.2 for declarations and deconstruction of record types and
instances, but further support is needed for their dynamic creation and transformation.

232

The$ operator is used to express functions returning records in an abstract style, while
preserving any invariants stipulated in the record’s declaration. It allows postfix and solo
arities, with the propertyf$ ≡ ($) f . Nested$ operators in expressions such asf$$
andf$$$ are meaningful as higher order functions. The operandf can be any function,
but only functions defined by record declarations are likelyto be useful (i.e., defined as
the initializing function denoted by the record mnemonic).The$ operator also allows a
pointer constant as a suffix, which is used in an unusual way explained presently.

Usage A function of the formf$ with a record mnemonicf is analogous to a function
gˆ for a functiong operating on a pair of values. Whereas the latter is meaningful when
applied to a pair of functions (as explained in connection with theˆ operator), the former
applies to a record of functions. Hence, the typical usage isin an expression of the form

〈record mnemonic〉$[

〈field identifier〉: 〈function〉,
...

〈field identifier〉: 〈function〉]

which is parsed as(〈record mnemonic〉$)[. . .] . The record mnemonic and field iden-
tifiers should match those of a record type previously declared with the:: operator, as
explained in Section 4.2.

• The fields in a record valued function can be specified in any order or omitted, but at
least one must be included.

• The effect of repeating a field in the same expression is unspecified, but in the current
implementation one or another will take precedence.

• The technique of associating a tuple of values with a tuple offields isnot valid for
record valued functions, even though it ordinarily can be used to express record in-
stances. For example, the subexpression[a: fa,b: fb] should not be abbrevi-
ated to[(a,b): (fa,fb)] in a record valued function.

Semantics The$ operator can be understood by this equivalence.

((f$)[a0: g0, . . . an: gn]) x ≡ f [a0: g0(x), . . . an: gn(x)]

That is,(f$)[a0: g0, . . . an: gn] represents a function that can be applied to an ar-
gumentx to return a record of the type indicated byf . To compute this function, eachgi
is applied to the argument, and its result is stored in the field with addressai in the manner
portrayed in Figure 5.3 (page 189). The record of function results is then initialized by
the record initializing functionf . At this stage, any user defined verification or initializa-
tion specified in the record declaration is automatically performed, even if it overrules the
function results.

233

Nested use of the operator denotes a higher order function.

((f$$)[a0: g0, . . . an: gn]) x ≡ (f$)[a0: g0(x), . . . an: gn(x)]

((f$$$)[a0: g0, . . . an: gn]) x ≡ (f$$)[a0: g0(x), . . . an: gn(x)]
...

Although the semantics in higher orders is formally straightforward, lambda abstraction
may be a more readable alternative in practice (page 207).

Suffixes Not every field defined when the record is declared has to be specified in a record
valued function. This feature reduces clutter and allows easier code maintenance if more
fields are added to a record in the course of an upgrade.8 The handling of omitted fields
depends on the optional pointer suffix to the$ operator.

With no suffix, the default behavior of the$ is to assign an empty value to an omitted
field, but for a typed or smart record, the empty fields are automatically initialized by the
record initializing functionf .

If there is a pointer or pseudo-pointer suffixs appended to the$ operator, then any
omitted fieldai is assigned a value of˜ s. ai x, wherex is the argument to the function.
Intuitively that means that the unspecified fields in a resultcan be copied or inherited
automatically from a record in the argument. This value may still be subject to change by
the record initializing function.

By way of an example, a function taking a record of type_foo to a modified record
of the same type with most of the fields other thanbar unchanged could be expressed
as foo$i[bar: g] . This function is almost equivalent tobar:= g using the assign-
ment operator (page 203) except that it provides for the record to be reinitialized after the
change. Other common usages are$l and$r , for functions that take a pair of a record
and something else to a new record by copying mostly from the input record.

6.11 Pattern matching

A set of operators relevant to the general theme of pattern matching or transformation is
shown in Table 6.11. They are classified in this section as random variate generators, type
expression constructors, finite maps, and string handling operators.

6.11.1 Random variate generators

An operator in a class by itself is%˜, which is useful for constructing programs with
non-deterministic outputs. It can be used in postfix or solo arities, and has the property
n%˜ ≡ (%˜) n. Its operandn is either a natural or a floating point number.

8If the declaration and use of a record are in separate modules, both may require recompilation even if no source level changes are
made to the latter.

234

meaning illustration

%˜ bernoulli variable 50%˜ x ≡ & or 0
% literal type expressions (%s,%t)%dlwrX ≡ %stX

%- symbolic type expressions%-u x ≡ x%u
-$ unzipped finite map <a,b>-$<x,y> a ≡ x
-: defaultable finite map <a: x,b: y>-:d c ≡ d
=: address map <a: x,b: y>=: b ≡ y
%= string replacement ’b’%=’d’ ’abc’ ≡ ’adc’
=] startswith combinator =]’ab’ ’abc’ ≡ true
[= prefix combinator [=’abc’ ’ab’ ≡ true

Table 6.11: Pattern matching

Semantics

A program of the formn%˜ can be used in place of a function but does not have a func-
tional semantics. Rather, it ignores its argument and returns a boolean value, either0 or
&. The value it returns is obtained by simulating a draw from a random distribution. The
operandn allows a distribution to be specified.

• If n is a floating point number, it should be between 0 and 1. Thenn%˜ will return a
true value with probabilityn.

• If n is a natural number, it should range from 0 to 100, andn%˜ will return a true
value with probabilityn/100.

• A default probability of0.5 is inferred for the usage0%˜.

The above probability should be understood as that of the simulated distribution. The
results are actually obtained deterministically by the Mersenne Twister algorithm for ran-
dom number generation provided by the virtual machine. In operational terms, ifn%˜ is
applied to members of a population (i.e., items of a list), the percentage of true values
returned will approachn as the number of applications increases.

Applications

This operator can be used for generating pseudo-random dataof general types and sta-
tistical properties by using it in programs of the formn%˜?(f , g) , wheref andg can
be functions returning any type and can involve further usesof %˜. However, a better
organized approach for serious simulation work might involve the combinatorsarc and
stochasm defined in the standard library. A more convenient method when the distribu-
tion parameters aren’t critical is to use type instance generators (page 170).

Becausen%˜ is not a function, certain code optimizations based on the assumption
of referential transparency are not applicable to it. The code optimization features of the
compiler handle it properly without any user intervention required. However, developers
of applications involving automated program transformation may need to be aware of it.
See page 82 for a related discussion.

235

6.11.2 Type expression constructors

Two operators concerned with type expressions are topical for this section because type
instance recognizers are an effective pattern recognitionmechanism. Type expressions are
a significant topic in themselves, being thoroughly documented in Chapters 3 and 4, but
the operators%- and%are included here for completeness and because they have some
previously unexplained features.

The % operator

The type operator%allows postfix and solo arities, with different meanings depending
mainly on the suffix.

• If there is a suffix containing alphabetic characters, the operator represents a type
expression or type induced function in either arity as documented in Chapters 3 and 4.

• If there is a suffix containing only numeric characters, thenthe operator represents
an exception handler in the solo arity but is undefined in the postfix arity.

• If there is no suffix, it represents an exception generator ineither arity, and has the
propertyf%≡ (%) f .

The latter two alternatives require further explanation.

Exception handlers An expression of the form%n, wheren is a sequence of digits, is a
higher order function meant to be applied to a functionf . It will return a functiong that
behaves identically tof unlessg is applied to an argument that would causef to raise an
exception. In that case,g will also raise an exception, but the content of the diagnostic
message will differ from that which would be reported byf , in that the numbern will be
appended to it. A simple illustration is given by the following examples.

$ fun --m="˜&h <>" --c
fun:command-line: invalid deconstruction
$ fun --m="(%52 ˜&h) <>" --c
fun:command-line: invalid deconstruction
52
$ fun --m="˜&h <’x’>" --c
’x’
$ fun --m="(%52 ˜&h) <’x’>" --c
’x’

This usage of the operator is intended mainly for debugging applications that are termi-
nating ungracefully, by helping to locate the problem. See Section 4.1.2 and particularly
page 143 for background and motivation about exception handling.

236

Exception generators Although exceptions are usually associated with ungraceful termi-
nation, there could also be reasons for raising them deliberately in production code. The
default case in a-? . . .?- cumulative conditional expression wherein the other casesare
thought to be exhaustive is one example (page 191). Failure of an assertion is another.

An expression of the form% f or f%, wheref is a function, represents a function that
unconditionally raises an exception. The functionf is applied to the argument, execution
is either immediately terminated or dropped into an enclosing exception handler, and the
result fromf is reported in a diagnostic message.

Because diagnostic messages are written to the standard error console by the virtual
machine, they should normally be lists of character strings(type%sL).

• If the functionf returns something other than a list of character strings andthe excep-
tion is raised during compilation, the compiler will substitute a diagnostic message
of “undiagnosed error ”.

• If a badly typed diagnostic is reported in a free standing executable application, the
virtual machine may report a diagnostic of “invalid text format ” or attempt
to display unprintable characters.

• Users who think it’s worth the effort can throw diagnostics of arbitrary types and
catch them using the virtual machine’sguard combinator, provided the latter con-
verts them to lists of character strings. This combinator isdocumented in theavram
reference manual.

A frequently used idiom is an exception generator made from afunctionf returning
a constant list of a single character string, as in<’game over’>!% . A more helpful
alternative if possible is an exception handler that gives some indication of the input that
caused the exception, such as% :/’bad input was’+ %xP , preferably with a more
specific printing function than%xP.

Confusing effects can occur if the functionf in an expressionf%raises an exception it-
self either because of a programming error or because of a nested%operator. The reported
diagnostic will then refer to the exception generator itself rather than the program contain-
ing it. Moreover, interaction between the exception generator and exception handlers or
guard combinators will be affected because exceptions form a hierarchy of segregated
levels. See theavram reference manual for more information.

The %- operator

This operator is unusual insofar as it allows only a solo arity, but may have a literal type
expression as a suffix. It has the property

%-t x ≡ x%t

wheret is a literal type expression constant or type induced function. It exists to pro-
vide a convenient means for general purpose functions to construct type expressions. For
example, a user preferring a more verbose programming stylemight define

list_of = %-L

237

Listing 6.1 decompilation of optimal code generated by<0,1,2,3,4,5,6,7>-$’01234567’

digitize = # takes a number 0..7 to the corresponding digit

conditional(
field &,
conditional(

field(&,0),
conditional(

field(0,&),
conditional(

field(0,(&,0)),
conditional(field(0,(0,&)),constant ‘7,constant ‘3),
constant ‘5),

constant ‘1),
conditional(

field(0,(&,0)),
conditional(field(0,(0,&)),constant ‘6,constant ‘2),
constant ‘4)),

constant ‘0)

and thereafter writelist_of(my_type) instead ofmy_type%L . A more practical
example is theenum function, which the standard library defines as

enum = ˜&ddvDlrdPErvPrNCQSL2Vo+ %-U:-0+ %-u *

taking any non-empty set to an enumerated type thereof. The pseudo-pointer postproces-
sor is a low level optimization to the type expression’s concrete representation, and not
presently relevant. See page 173 for motivation.

6.11.3 Reification

A finite map is a function whose inputs are expected only to be members of a fixed finite
set, usually something small enough to enumerate exhaustively like a set of mnemonics or
numerical instruction codes. In some applications, a finitemap turns out to be a “hot spot”
that can improve performance if optimized.

There are three operators provided in support of finite maps.They generate code that
is optimal in the sense of requiring minimally many interrogations on an amortized basis.9

This effect is achieved by detecting differences between the concrete representations of
the possible input values without regard for their types.

For example, the quickest function to convert natural numbers in the range0 through7
to the corresponding characters‘0 through‘7 would be the the one shown in Listing 6.1.
In the worst case, five conditionals testing individual bitsof the argument are evaluated,
but in the best case, only one.10 In any case, it would be irritating to develop or maintain

9I.e., the quick ones make up for the slow ones, but they’re allpretty quick.
10Recall from page 115 that natural numbers are represented asarbitrary length lists of booleans lsb first, so both the length and the

content must be established.

238

this code by hand, which is the motivation for reification operators.

Algebraic properties

The three reification operators are-: , -$, and=: , for zipped finite maps, unzipped finite
maps, and address maps.

• The-$ operator can be used in any arity and is fully dyadic.

• The-: operator can also be used in any arity. It is prefix and postfix dyadic, but has
the solo semantics described below.

• The=: operator can be used in postfix or solo arities, and satisfiesm=: ≡ (=:) m.

There are no suffixes for the=: operator, but suffixes for the other two as described below
allow some control over the tradeoff among code size, speed of execution, and compilation
time.

Semantics

These operators have related meanings. The semantics for the arities not mentioned below
follows from the algebraic properties above.

• An expression of the form<x0 . . . xn>-$< y0 . . . yn> with the left and right operand
being lists of equal length, evaluates to a functionf such thatf(xi) = yi for all 0 ≤
i ≤ n. The effect of applyingf to other arguments than those listed is unspecified
and can cause an exception.

• An expression of the form<(x0, y0) . . . (xn, yn)>-: d, whered is a function, eval-
uates to a functionf such thatf(xi) = yi for all 0 ≤ i ≤ n, andf(z) = d(z) for all
z not in{x0 . . . xn}.
• An expression of the form-: <(x0, y0) . . . (xn, yn)> evaluates to a functionf

such thatf(xi) = yi for all 0 ≤ i ≤ n, andf(z) is undefined for allz not in
{x0 . . . xn}.
• An expression of the form<(x0, y0) . . . (xn, yn)>=: (with no right operand) evalu-

ates to a functionf such thatf(xi) = yi for all 0 ≤ i ≤ n but otherwise is undefined,
provided thatxi is an address (of type%a) for all i, and allxi have the same weight.

The address map operator=: generates faster code than the others where applicable by
exploiting the concrete representation of pointers, provided that the pointers are distinct
and non-overlapping.

All of these operators require mutually distinctx values or the results are undefined.
However, they values need not be mutually distinct. If there are many casesof multi-
ple x values mapping to the samey, the code may be optimized automatically to avoid
containing redundant copies ofy values if doing so results in a net improvement.

239

Listing 6.2 nested conditional equivalent to Listing 6.1

digitize =

conditional(
compose(compare,couple(constant 0,field &)),
constant ‘0,
conditional(

compose(compare,couple(constant 1,field &)),
constant ‘1,
conditional(

compose(compare,couple(constant 2,field &)),
constant ‘2,
conditional(

compose(compare,couple(constant 3,field &)),
constant ‘3,
conditional(

compose(compare,couple(constant 4,field &)),
constant ‘4,
conditional(

compose(compare,couple(constant 5,field &)),
constant ‘5,
conditional(

compose(compare,couple(constant 6,field &)),
constant ‘6,
constant ‘7)))))))

Tradeoffs

Reifications of large data sets can be time consuming to construct. The time to construct
them might outweigh the time saved over a less efficient equivalent. For example, building
a cumulative conditional on the fly can be very easily done by afunction like this one,

h = @p =>0 ˜&r?\!@lr ?ˆ(@ll //==,ˆ/!@lr ˜&r)

which can applied to the pair((<0,1,2,3,4,5,6,7>,’01234567’) to generate
the code shown in Listing 6.2. The resulting function requires an average of 27.2 re-
ductions11 each time it is evaluated (assuming uniformly distributed inputs), whereas the
code in Listing 6.1 requires only 8.2. However, the code in Listing 6.2 requires only 325
reductions to construct from the given data, whereas the alternative requires 11,971.

If the reification is performed only at compile time and the function is used only at
run time, there is no issue, but otherwise some experimentation may be needed to find the
optimum tradeoff.

11A primitive virtual machine operation as measured by theprofile combinator or compiler directive is called a reduction. Re-
ductions are not quite constant time operations but are close enough for this sort of analysis.

240

Listing 6.3 a space-optimized reification semantically equivalent to Listings 6.1 and 6.2.

$ fun --m="-:=@p (<0,1,2,3,4,5,6,7>,’01234567’)" --deco mpile
main = couple(

couple(
constant 0,
conditional(

field &,
conditional(

field(0,&),
conditional(

field(0,(&,0)),
couple(

conditional(field(0,(0,&)),constant ‘Q,constant -1),
field(&,0)),

couple(
constant -1,
conditional(field(&,0),constant 1,constant <0,0>))),

constant(1,<<0,0>>)),
constant(1,-1)))

Suffixes

The default behavior of the-: and-$ operators without a suffix is to generate the code
as quickly as possible, by limiting the results to functionsthat can be constructed from
conditional , field , andconstant virtual machine combinators. Alternative be-
haviors can be specified using suffixes of- and=. The suffixes are mutually exclusive,
and have these interpretations.

• - requests code that may have better run time performance (in real time rather than
number of virtual machine reductions) by factoring out common compositions where
possible

• = requests code that is as small as possible, by considering more general forms and
searching exhaustively

The = suffix will incur exponential compilation time, making it infeasible except in
special circumstances, but the result will be tighter than humanly possible to write manu-
ally. For example, we can obtain a result like Listing 6.3 rather than the code in Listing 6.1
with an improvement in size to 77 quits (down from 106), but the number of reductions
required to generate it is 226,355,162 (as opposed to 11,971).

6.11.4 String handlers

The last three operators listed in Table 6.11 are useful for string manipulation, but they
also generalize to lists of any type. The%=operator is suitable for string substitution, and
the=] and[= operators are for detecting prefixes of strings, which is relevant to parsing
and file handling applications.

241

String substitution

The %=operator can be used in all four arities and is fully dyadic. An expression of
the form s%=t, wheres and t are strings (or lists of any type) denotes a function that
searches its argument for occurrences ofs as a substring and returns a modified copy of
the argument in which the occurrences ofs have been replaced byt.

Suffixes This operator allows a suffix consisting of any sequence of the characters* ,
=, and - . The effects of these characters in a suffix can be specified interms of other
operators described in this chapter. When a suffix contains more than one of them, they
apply cumulatively in the order they’re written.

• The* used as a suffix makes the result apply to all items of a list.

s%=* t ≡ (s%=t) *

• The= as a suffix calls for a postprocessor to flatten the result to its cumulative con-
catenation.

s%==t ≡ --:-<>+ s%=t

• The - suffix makes the function iterate as many times as necessary to replace new
occurrences of the patterns that may be created as a consequence of substitutions.

s%=-t ≡ (s%=t)ˆ=

Prefix recognition

The two remaining operators are[= and=] , called “prefix” and “startswith”, respectively
(despite other uses of the word “prefix” in this manual). Bothof these operators can be
used in any arity, and are postfix dyadic. The left operand, ifany, is a function, and the
right operand, if any, is a string or a list. They share the algebraic property

[= x ≡ ˜&[= x

which is to say that the prefix arity is equivalent to the infix arity with an implied left
operand of the identity function. Their algebraic properties differ with regard to the solo
arity, in that(=]) x ≡ =] x whereas([=) (x, y) ≡ ([= y) x. Neither operator has any
suffixes. Their semantics can be summarized as follows.

• The expression(f [= x) y is true whenf(y) is a prefix ofx.

• The expression(f=] x) y is true when x is a prefix off(y).

The prefixes of a stringy are the solutionsx to y = x-- z with z unconstrained.

242

meaning illustration

ˆ coupling ˆ(f,g) x ≡ (f x,g x)
+ composition f+g x ≡ f g x
˜ deconstructor functional ˜p ≡ field p
/ binary to unary combinator f/k x ≡ f(k,x)
\ reverse binary to unary combinatorf\k x ≡ f(x,k)
! constant functional x! y ≡ x
? conditional ˜&w?(˜&x,˜&r) ≡ ˜&wxrQ
. composition or lambda abstraction˜&h.&l ≡ ˜&hl

* map f * <a,b> ≡ <f a,f b>

* ˜ filter ˜=‘x * ˜ ’axbxc’ ≡ ’abc’
-= membership f-= s ≡ ˜&wˆ(f,s!)
== comparison f== x ≡ ˜&Eˆ(f,x!)

; reverse composition g;f x ≡ f g x
: list or assignment construction a: ≡ <a,b>

-- concatenation of lists <a,b>--<c,d> ≡ <a,b,c,d>
$ record lifter rec$[a: f,b: g] ≡ ˆ(f,g)

-> iteration p->f ≡ p?(p->f+ f,˜&)
-< sort nleq-< <2,1,3> ≡ <1,2,3>

Table 6.12: operator survival kit

6.12 Remarks

The best way to proceed after a first reading of this chapter isto select a subset of the
operators such as the one shown in Table 6.12 for use in your initial coding efforts. As the
work progresses, you might gradually add to your repertoirewhen a new challenge can be
met most effectively by deploying a new operator.

Despite the importance of this material, attempting to commit it to memory is not rec-
ommended.12 Subtle lapses about semantics or algebraic properties willinvariably occur
that become persistent habits and code maintenance problems.

The recommended way of staying on top of this material is to make full use of the
interactive help facilities of the compiler. Brief reminders of the information in this chapter
are at your fingertips during development by way of various interactive commands. For
example, to see a complete list of all infix operators with a short reminder about how they
work, execute the command

$ fun --help infix

Similar commands can be used for prefix, postfix, and solo operators. To get help for an
individual operator, use a command like this.

$ fun --help infix,"->"

12If the evil day should ever arrive that a job seeker is asked picky questions about this language in an interview, he or she should
feel free to quote chapter and verse from this section.

243

infix operators

-> p->f iterates f while p is true

If an operator contains the= character, it may be necessary to invoke the command with
this syntax to avoid misleading the command line option parser in the virtual machine.

$ fun --help=prefix,"-="

Finally, summary information about operator suffixes can beretrieved interactively by the
command

$ fun --help suffixes

This command can also be used for specific operators in the manner described above.

244

Let’s get this freak show on the road.

Sheriff Wydell inThe Devil’s Rejects

7
Compiler directives

A sequential reading of this manual imparts a knowledge of the language from the bottom
up, starting with the major components of pointers, types, and operators. Some features
remain to be discussed at this point with a view to assemblingthem into complete appli-
cations. This chapter gives a systematic account of the large scale organization of a source
text, and is concerned mainly with the use of compiler directives.

7.1 Source file organization

A file containing source code suitable for compilation, usually named with a suffix.fun ,
follows a pattern of sequences of declarations nested within matched pairs of compiler
directives. A partial EBNF (Extended Backus-Nauer form) syntactic specification may be
useful as a road map.

〈source file〉 ::= 〈directive〉(+ | 〈expression〉)
[〈declaration〉 | 〈source file〉] ∗
〈directive〉−

〈directive〉 ::= #〈identifier〉
〈declaration〉 ::= 〈handle〉 = 〈expression〉 | 〈record declaration〉
〈expression〉 ::= 〈identifier〉 |

[〈expression〉] 〈operator〉 [〈expression〉] |
〈left aggregator〉[〈expression〉[, 〈expression〉]∗]〈right aggregator〉

In keeping with EBNF conventions, most of the punctuation above is metasyntax. Square
brackets contain optional content, vertical bars indicatechoice, the∗ indicates zero or
more repetitions, and::= defines a rewrite rule. Only the characters set in typewriterfont

245

are meant to be taken literally, namely the comma, plus, minus, =, and hash characters
above.

• Expressions consist of operators and operands as documented in Chapter 6.

• Aggregators are things like parentheses and braces as documented in Chapter 5.

• Handles appearing on the left of a declaration are a restricted form of expression to
be explained shortly.

7.1.1 Comments

Comments can be interspersed with this file format. There arefive kinds of comments.
New users need to learn only the first one.

• The delimiters(# and#) may be used in matched pairs to indicate a comment any-
where in a source file (other than within a quoted string or other atomic lexeme, of
course), and may be nested.

• A hash character# followed by white space or a non-alphabetic character otherthan
a hash designates the remainder of the line as a comment. A backslash at the end of
the line may be used as a comment continuation character.

• Four consecutive dashes designate the remainder of the lineas a comment, and it may
also have a backslash as a comment continuation character atthe end.

• Three consecutive hashes,### , indicate that the remainder of the file is a comment.

• A pair of hashes,## , followed by anything other than a third hash indicates a smart
comment, which may be used to “comment out” a section of syntactically correct
code.

– A smart comment between declarations comments out the next declaration.

– A smart comment appearing anywhere within a pair of aggregate operators com-
ments out the remainder of the expression in which it appearsup to the next
comma or closing aggregator at the same nesting level.

There used to be a textbook argument against nested commentsbased on a contrived ex-
ample, but the consensus may have shifted in recent years. Readers will have to use their
own judgment.

These features are intended to make debugging less tedious when it involves frequently
commenting and uncommenting sections of code. Smart comments are a particular inno-
vation of the language that can be demonstrated briefly as follows.

$ fun --main="<1,2,3>" --cast %nL
<1,2,3>
$ fun --m="<1,2,## 3>" --c
<1,2>

246

task directives effects

visibility #hide+ make enclosed declarations invisible outside unless exported
#import make a given list of symbols visible in the current scope
#export+ allow declarations to be visible outside the current scope

binary #comment insert a given string or list of strings into output files
file #binary+ dump each symbol in the current scope to a binary file
output #executable write an executable file for each function in the current scope

#library+ write a library file of the symbols defined in the current scope

text #cast display values to standard output formatted as a given type
file #output write output files generated by a given function
output #show+ display text valued symbols to standard output

#text+ write printable symbols in the current scope to text files

code #fix specify a fixed point combinator for solving circular definitions
generation #optimize+ perform extra first order functional optimizations

#pessimize+ inhibit default functional optimizations
#profile+ add run time profiling annotations to functions

reflection #preprocess filter parse trees through a given function before evaluating
#postprocess filter output files through a given function before writing
#depend specify build dependences for external development tools

Table 7.1: compiler directives by task classification; non-parameterized directives are shown with a+ sign

When smart comments are used in a large expression, there is no need to fish for the other
end of it to insert the matching comment delimiter, or to be too concerned about whether
the commas and the right number of nesting aggregate operators are inside or outside the
comment.

7.1.2 Directives

Compiler directives give instructions to the compiler about what should be done with the
code it generates from the declarations. Directives can be nested in matched pairs like
parentheses, and their effect is confined to the declarations appearing between them. Every
source text needs at least some directives in order for its compilation to have any useful
effect, but sometimes the directives are implicit or are stipulated by command line options.

Syntactically, a directive begins with a hash character, followed by an identifier. The
opening directive of a matched pair is followed either by a plus sign (with no interven-
ing space) or an expression. The closing directive in a pair contains the same identifier
terminated by a minus sign. An expression is supplied only for so called parameterized
directives.

Some examples of directives noted previously in passing arethe#library+ directive
for creating a library file, and the#executable directive for creating an executable file.
The latter is a parameterized directive and the former isn’t. These and the other directives
shown in Table 7.1 are documented more specifically in this chapter.

247

7.1.3 Declarations

Other than compiler directives and comments, the main things occupying a source file
are declarations. There are two kinds of declarations, one for records and the other for
general data or functions using the= operator. Record declarations are documented com-
prehensively in Section 4.2 and need not be revisited here. The= operator is used in many
previous examples but may benefit from further explanation below.

Motivation

The purpose of declarations is to effect compile-time bindings of values to identifiers,
thereby associating a symbolic name with the value. When a declaration of the form
〈name〉=〈value〉 appears in a source text, the name on the left may be used in place of the
value on the right in any expression with the same effect (subject to rules of scope to be
explained presently). There are several reasons declarations are important.

• Descriptive names are universally lauded as good programming practice. Compli-
cated code is made more meaningful to a human reader when a large expression is
encapsulated by a well chosen name.

• Code maintenance is easier and more reliable when a value used throughout the
source text needs to be revised and only its declaration is affected.

• The expression on the right of a declaration is evaluated only once during a compila-
tion, regardless of how many times the name is used. Declaring it thereby improves
efficiency if it is used in several places.

• Sometimes the names given to values are needed by output generating directives, for
example as file names or as names of symbols in a library.

Declaration Syntax

The right side of the= operator in a declaration of the form

〈handle〉 = 〈expression〉

is an expression composed of operators and operands as documented in Chapters 5 and 6.
Usually the left side is a single identifier, but in general itmay follow this syntax,

〈handle〉 ::= 〈identifier〉 | (〈handle〉) | 〈handle〉 〈params〉
〈params〉 ::= 〈variable〉 | (〈params〉[, 〈params〉]∗) | <〈params〉[, 〈params〉]∗>

where a variable is a double quoted string like"x" or "y" . That is, the identifier may
appear with arbitrarily many dummy variable parameters in lists or tuples nested to any
depth. This syntax is the same as the part of a record declaration to the left of the::
operator. (See Section 4.2.4, page 162.) Note that no terminators or separators other than
white space are required between declarations.

248

Interpretation of dummy variables

If dummy variables appear in the handle, the declaration is that of a function and the
variables are part of a syntactically sugared form of lambdaabstraction (pages 24 and 207).
The declaration(f x) = y is transformed tof = x. y. More generally, a declaration
of the form

(. . . (f x0) . . . xn) = y

is transformed to
(. . . (f x0) . . . xn−1) = xn. y

(and so on). Free occurrences of the variables may appear in the expressiony.

Identifier syntax

Identifiers abide by the following syntactic rules.

• An identifier may consist of upper and lower case letters and underscores, but not
digits. This convention allows functions and numerical arguments to be juxtaposed
without spaces or parentheses, with an expression likeh1 being parsed ash(1) .

• The letters in an identifier are case sensitive, sofoobar is a different identifier from
FooBar .

• Identifiers beginning with underscores may not be declared,because they are reserved
either for record type expression identifiers or for a very few predeclared identifiers.

• Identifiers for compiler directives and standard library functions are not reserved,
making it acceptable to redefine words likelibrary andconditional .

Predeclared identifiers

Predeclared identifiers begin with two underscores, and there are currently only a small
number of them. They are provided as predeclared identifiersrather than library functions
for obvious reasons demanded by their semantics.

• __switches evaluates to a list of strings given by the command line parameters to
the--switches option when the compiler is invoked.

• __ursala_version evaluates to a character string giving the version number of
the compiler.

• __source_time_stamp evaluates to a character string containing the modifica-
tion date and time of the source file in which it appears.

The__switches feature allows the code to be dependent in arbitrary ways on user-
defined compile-time flags. Typical applications would be toenable or disable profiling or
assertions, and for conditional compilation of platform dependent code.

249

For example, a development version of an application may need to use theprofile
combinator to generate run time statistics so that the hot spots can be identified and opti-
mized, but the production version can exclude it. (See theavram reference manual for
more information about profiling.) This declaration appearing in the source

profile = -=/’profile’?(std-profile!,˜&l!) __switches

will redefined theprofile combinator as a no-op unless

--switches=profile

is used as a command line option during compilation. Note that the choice of the word
“profile ” as a switch is arbitrary and independent of the standard function by the same
name (or for that matter, the compiler directive with the same name).

7.2 Scope

Rules of scope are rarely a matter of concern for a user of thislanguage, because the
conventions are intuitive. Normally an identifier declaredin a source file can be used
anywhere else in the same file, before or after the declaration. Multiple declarations of
the same identifier are an error and will cause compile time exception. Identifiers declared
in separately compiled files are stored in libraries that maybe imported. Applications for
which these arrangements are insufficient are probably overdesigned.

Nevertheless, there are ways of deliberately controlling the scope and visibility of dec-
larations using the first three compiler directives listed in Table 7.1, which are documented
in this section.

7.2.1 The#import directive

Almost every source file contains#import directives in order to make use of standard or
user defined libraries.

• The #import directive is parameterized by an expression whose value is alist of
assignments of strings to values, that may optionally be compressed (i.e., type%om
or %omQin terms of type expressions documented in Chapter 3).

• The effect of the#import directive on an expression<’foo’: bar, . . .> is
similar to inserting the sequence of declarationsfoo = bar . . . at the point in the
file where the directive is invoked.

• A matching#import- directive may appear subsequently in the file, but has no
effect.

Usage

Many previous examples have featured the directives

250

#import std
#import nat

for importing the standard library and natural number library. This practice is effective
because external libraries are stored in binary files as instances of%omor %omQ, and any
binary file name mentioned on the command line during compilation is accessible as an
identifier in the source. However, nothing prevents arbitrary user defined expressions of
these types from being “imported”. (Thestd andnat libraries don’t have to be named on
the command line because they are automatically supplied bythe shell script that invokes
the compiler.)

Semantics

The effect of an#import directive is similar but not identical to inserting declarations.
Although it is normally an error to have multiple declarations of the same identifier, it is
acceptable to have a locally declared identifier with the same name as one that is imported.
In this case, the local declaration takes precedence, but the precedence can be overridden
by the dash operator.

It is also acceptable to import multiple libraries with someidentifiers in common. In
this case, it is best to use fully qualified names with the dashoperator (Section 6.7.1,
page 215). For example, if two librariesfoo and bar both need to be imported and
both include an identifierx , then uses ofx in the source should be qualified asfoo-x or
bar-x as the case may be.

Name clashes Although relying on it would be asking for maintenance problems, there is
a rule for name clash resolution when multiple libraries containing the same symbol name
are imported.

• The library whose importation most recently precedes the use of an identifier in the
text takes precedence.

• If all relevant importations follow the use of an identifier in the text, the last one takes
precedence.

Type expressions The compiler uses a compressed format for the concrete representations
of type expressions in library modules that differs from their run-time representations.
The#import directive treats the value of an identifier beginning with anunderscore as a
type expression and transparently effects the transformation, based on the assumption that
these identifiers are reserved for type expressions. If a type expression is invalid, an excep-
tion occurs with the diagnostic message “bad #imported type expression ”. A
deliberate effort would be required to cause this exception.

251

7.2.2 The#export+ directive

The main use for this directive is in a situation where dependences exist in both directions
between declarations in separate source files. This situation makes it impossible to compile
one of them first into a library and then import it by the other.

Motivation

This situation is avoidable. Assuming no dependence cyclesexist between declarations,
the problem could be solved by merging or reorganizing the files. (For coping with cyclic
dependences, see the#fix directive later in this chapter.) However, if design preferences
are otherwise, the user can also arrange to compile both source files simultaneously with-
out merging them just by naming both on the command line when invoking the compiler.

Simultaneous compilation does not fully resolve the issue in itself. When multiple
files are compiled simultaneously, the declarations in one file are not normally visible in
another. (I.e., an attempt to use an identifier declared in another file will cause a compile-
time exception with an “unrecognized identifier ” diagnostic message.) How-
ever, the#export+ directive can make declarations visible outside the file where they
are written.

Usage

The usage of the#export directives is very simple. To make all declarations in a source
file visible, place#export+ near the beginning of the file before any declarations. To
make declarations visible only selectively, insert#export+ and#export- anywhere
between declarations in the file. Only the declarations thatare more recently preceded by
#export+ than#export- will then be visible.

Semantics

A couple of points of semantics should be noted.

• The effect of#export+ is orthogonal to directives that generate output files, such
as#binary+ or #library+ , which can cause declarations to be written to files
whether they are visible or not.

• The#export directive can be overridden by the#hide directive, and vice versa,
as explained in the next section.

• Name clashes are possible when multiple files compiled simultaneously export sym-
bols with the same names.

– Local declarations take precedence over external declarations.
– Further rules of name clash priority are given in the next section.
– An expression likefilename-symbol can be used similarly to the dash op-

erator to qualify a symbol unambiguously, unless not even the file names are
unique.

252

The last point pertains to an idiom of the language rather than a legitimate use of the dash
operator, because the file name is not meaningful as an operand in itself.

7.2.3 The#hide+ directive

Even further removed from common use is the#hide+ directive, which can create sep-
arate local name spaces within a single source file. Althoughit is unlikely to be needed
by a real user, this directive is used internally by the compiler, making it a feature of the
language calling for documentation. In particular, the name clash priority rules for si-
multaneously compiled files are implied by its specification, with a matched pair of these
directives implicitly bracketing each source file and another bracketing their ensemble.

Usage

The #hide+ and#hide- directives can be used as follows. Readers who find these
matters perfectly lucid probably have been thinking about programming languages too
long.

• Unlike other directives, these directives can occur only inproperly nested matched
pairs, or else an exception is raised.

• The declarations between a pair of#hide+ and#hide- directives are not normally
visible outside them, even within the same file.

• The #export directives can be used in conjunction with the#hide directives to
make declarations selectively visible outside their immediate name space.

– The visibility extends only one level outward by default.

– A symbol can be exported another level outward by a further#export+ di-
rective that textually precedes the symbol’s enclosing#hide+ directive at the
same level (and so on).

• If no #export directives are used within a given name space, then by default the
last symbol declared (textually) is visible one level outward.

• If a symbol exported from a nested space (or visible by default) has the same name as
a symbol that is exported from a space containing it, only thelatter is visible outside
the enclosing space.

Name clashes

To complete the picture, a name clash resolution policy is needed when multiple declara-
tions of the same identifier are visible. For this purpose, wecan regard name spaces as
forming a tree, with nested spaces as the descendents of those enclosing them. The least
common ancestor of any two nodes is the smallest subtree containing them.

253

• The name clash resolution policy favors the declaration of an identifier whose least
common ancestor with the declaration using it is the minimum.

• If multiple declarations meet the above criterion, preference is given to the one that
textually precedes the use of the identifier most closely, ifany.

• If the there are multiple minima and none of them precedes theuse, the one closest
to the end of the file takes precedence.

The ordering of textual precedence is generalized to multiple files based on their order in
the command line invocation of the compiler.

7.3 Binary file output

There are four directives that are relevant to the output of binary files. Library files, exe-
cutable files, and binary data files are each written by way of aseparate directive, and the
remaining directive inserts comments into any of these file types.

7.3.1 Binary data files

Any data of any type generated in the course of a compilation can be saved in a file for
future use by the#binary+ directive. The file format is standardized by the compiler
and the virtual machine so that no printing or parsing needs to be specified by the user.
Although they are called binary files in this manual, they actually contain only printable
characters as a matter of convenience. The use of printable characters does not restrict the
types of their contents.

Usage

The usual way to generate binary data files is by having a#binary+ directive preceding
any number of declarations, optionally followed by a#binary- directive.

#binary+

〈identifier〉1 = 〈expression〉1
...

〈identifier〉n = 〈expression〉n
#binary-

Compilation of this code will causen binary files to be written to the current directory,
with file names given by the identifiers and contents given by the expressions. If the
#binary- directive is omitted, then all declarations up to the end of the file or the next
#hide- directive are involved.

Other forms of declarations can also be used to generate binary files, such as records,
lambda abstractions, and imported libraries.

254

• In the case of a record declaration, a separate file will be written for each field iden-
tifier, for the record type expression, and for the record initializing function.

• If the left side of a declaration is parameterized with dummyvariables, the file is
named after the identifier without the parameters, and it contains the virtual machine
code for the function determined by the lambda abstraction (page 249).

• If an #import directive (Section 7.2.1) appears within the scope of a#binary+
directive, one file is written for each imported symbol.

It is an error to attempt to cause multiple binary files with the same name to be written in
the same directory. There is no provision for name clash resolution, and an exception is
raised.

Example

A short example shows how a numerical value can be written to abinary file and then used
in a subsequent compilation.

$ fun --m="#binary+ x=1"
fun: writing ‘x’
$ fun x --m=x --c
1

The value in a binary file is used by passing the file name as a command line parameter to
the compiler, and using the name of the file as an identifier in the source text.

7.3.2 Library files

The #library+ and#library- directives may be used to bracket any sequence of
declarations in a source text to store them in a library file, as shown below.

#library+

〈identifier〉1 = 〈expression〉1
...

〈identifier〉n = 〈expression〉n
#library-

If the #library- directive is omitted, the scope of the#library+ directives extends
to the end of the file or current name space. The declarations can also be for imported
modules or records.

Usage

The binary file written in the case of the#library+ directive is named after the source
file in which it appears, with a suffix of.avm . At most one library file is written for each

255

Listing 7.1 a library source file

#library+

rec :: x y

foo = ‘a
bar = ‘b
baz = ‘c

Listing 7.2 excerpt of the binary file from Listing 7.1

rec (9)
- x
- y
bar (6)
baz (7)
foo (5)
#
{w{yZKk‘{AsMU{r[yU[sx\Mz[MAnkczDqmAac\AlZ[_[ra<MeUx KbKYopˆD‘Et[?JxPQ...
Sh{ˆ‘wKtuzD]ZozD]Z\=XJ[ˆDS_ctcd<S?cv<Ar]ˆZ\=XEt=VBE z]d=VB<L\@ˆ<

source file. If multiple pairs of#library+ and#library- directives appear in a file,
all of the declarations between each pair are collected together into the same file.

The normal way to use a library file is by the#import directive, which will cause
the symbols stored in the library to be declared in the current name space, as explained in
Section 7.2.1. A library file can also be used directly as a list of assignments of strings to
values (type%om) or as a compressed list of assignments of strings to values (type%omQ).
A library will be compressed if the command line option--archive is used when it is
compiled.

Example

An example of a library file is shown in Listing 7.1, and part ofthe binary file is shown in
Listing 7.2.

File formats The binary file for a library contains an automatically generated preamble
listing the symbols alphabetically and their sizes measured in two bit units (quits). If any
records are declared in the library, they are listed first with the field identifiers as shown.
This format makes it easy to find the file containing a known symbol in a directory of
library files by a command such as the following.

$ grep foo * .avm
libdem.avm:# foo (5)

256

Compilation The library source file is compiled by the command

$ fun libdem.fun
fun: writing ‘libdem.avm’

It can be tested as follows.

$ fun libdem --main="<foo,bar,baz>" --cast
’abc’

The suffix .avm on the file name may be omitted when the file name is given as a
command line parameter. When library symbols are referenced in a --main expres-
sion, no#import directive is necessary, but if the library were used in a source file, the
#import libdem directive would be needed in the file.

7.3.3 Executable files

An executable file is one that can be invoked as a shell commandto perform a computa-
tion. The compiler can be used to generate executable files from specifications in Ursala,
which are implemented as wrapper scripts that launch the virtual machine (avram) loaded
with the necessary code. These scripts appear to execute natively to the end user, but are
portable to any platform on which the virtual machine is installed.

Usage

The#executable directive is used to generate executable files. It is normally appears
in a source text as shown.

#executable (〈options〉, 〈configuration files〉)
〈identifier〉1 = 〈expression〉1

...
〈identifier〉n = 〈expression〉n
#executable-

The options and configuration files are lists of strings, which may be empty.

• The idiomatic usage#executable& pertains to an executable with no options and
no configuration files.

• Each enclosed declaration should represent a function thatis meaningful to invoke as
a free standing application.

• If the #executable- directive is omitted, all declarations up to the end of the
current name space are included.

• A separate executable file is written for each declaration, named after the identifier.

257

Execution models

The run time behavior of an executable file is specified partlyby the function it contains
and partly by the way the virtual machine is invoked. The latter is determined by the
options given in the left side of the parameter to the#executable directive, which are
supplied automatically to the virtual machine as command line options.

A complete list of command line options for the virtual machine with brief explanations
can be viewed by executing the command

$ avram --help

All options are documented extensively in theavram reference manual. Some of them
are less frequently used because they are applicable only inspecial circumstances, such as
infinite stream processing, but the two that suffice for most applications are the following.

• A directive of the form

#executable (<’parameterized’>, 〈configuration files〉)

will cause the virtual machine to pass a data structure containing the environment
variables, file parameters, and command line options as an argument to the function
declared under it. The function will be required to return a list of data structures rep-
resenting files, which will be written to the host’s file system by the virtual machine.

• A directive of the form

#executable (<’unparameterized’>,<>)

will cause the virtual machine to pass a list of character strings to the function de-
clared under it, which are read from the standard input stream at run time, up to the
end of the file. The function will be required to return a list of character strings,
which the virtual machine will write to standard output. Configuration files are not
applicable to this usage.

These options may be recognizably truncated, for example as’p’ , and’u’ . The latter
is assumed by default if no options are specified and the executable is invoked at run time
with no command line parameters. Nothing more needs to be said about unparameterized
execution, but the alternative is documented below.

Parameterized execution

The main argument to a function compiled to an executable fileusing the’par’ option
is a record of type_invocation , as defined by the standard library distributed with the
compiler and excerpted in Listing 7.3. This record is initialized by the virtual machine at
run time depending on how the executable is invoked. Familiarity with the conventions
pertaining to record declarations and usage documented in previous chapters would be
helpful for understanding this section.

258

Listing 7.3 data structures used by parameterized executable files

command_line :: files _file%L options _option%L
file :: stamp %sbU path %sL preamble %sL contents %sLxU
option :: position %n longform %b keyword %s parameters %sL
invocation :: command _command_line environs %sm

Listing 7.4 a utility to display the command line record

#import std

#comment -[
Invoked with any combination of parameters or options,
this program pretty prints a representation of the command l ine
record to standard output.]-

#executable (’parameterized’,<>)

#optimize+

crec = ˜&iNC+ file$[contents: --<’’>+ _command_line%P+ ˜c ommand]

Invocation records There are two fields in aninvocation record, one for the environ-
ment variables, and the other for the command line parameters and options.

• The environment variables are represented in theenvirons field as a list of assign-
ments of environment variable identifiers to strings, such as

<’DISPLAY’: ’:0.0’,’VISUAL’: ’xemacs’ . . .>

These are the usual environment variables familiar to Unix and GNU/Linux develop-
ers and users, which are initialized by theset or export shell commands prior to
execution.

• The command field is a record of type_command_line , with two fields, one
containing a list of the file parameters and the other containing a list of the command
line options.

Some applications might not depend on the environment variables and will be expressed
as something likemy_app = ˜command; The rest of the code in an expression
of this form accesses only the command line record.

Command line records The data structures used to represent files and command line options
are designed to allow convenient access with mnemonic field identifiers. As an example,
a short text file

$ cat mary.txt
Mary had a little lamb.

259

passed as a command line argument to the application shown inListing 7.4 with some
other parameters will have the output below.

$ crec mary.txt --foo --bar=baz
command_line[

files: <
file[

stamp: ’Sun Apr 29 13:48:48 2007’,
path: <’mary.txt’>,
contents: <’Mary had a little lamb.’,’’>]>,

options: <
option[position: 1,longform: true,keyword: ’foo’],
option[

position: 2,
longform: true,
keyword: ’bar’,
parameters: <’baz’>]>]

The application in Listing 7.4 is distributed with the compiler under thecontrib subdi-
rectory.

• The files field in a command line record contains the list of files separately from
theoptions field in the order the files are named on the command line.

• If any configuration file names are supplied to the#executable directive when
the application is compiled, their files will appear at the beginning of the list without
the end user having to specify them.

• The application aborts if any file parameters or configuration files don’t exist or aren’t
readable.

File records The records in the list of files stored in the command line record passed to an
application are organized with four fields.

• Thestamp field contains the modification time of an input file expressedas a string,
if available.

• Thepath field is a list of strings whose first item is the file name. Following strings,
if any, are parent directory names in ascending order. If thelast string in the list is
empty, the path is absolute, but otherwise it is relative to the current directory. An
empty path refers to the standard input stream.

• The preamble is a list of character strings that is empty for text files an non-
empty for binary files. Any comments or other front matter stored in a binary file
are recorded here.

• Thecontents field is a list of character strings for text files and any type for binary
files.

260

As mentioned previously, file records are also used for output. When an application
returns a list of files for output, similar conventions applyexcept as follows.

• Thestamp field is treated as a boolean value. If it is non-empty, any existing file at
the given path is overwritten, but if it is empty, the file is appended.

• An empty path in an output file record refers to standard output rather than standard
input.

There is no direct control over the attributes of output files, but any binary file whose
preamble’s first line begins with! will be detected by the virtual machine and marked as
executable.

Option records The other field in a command line record contains a list of records rep-
resenting the command line options. This field is initialized by the virtual machine to
contain the command line options passed to the application when it is invoked. Although
command line options are parsed automatically by the virtual machine, it is the application
developer’s responsibility to validate them.

An option record contains four fields and their interpretations are straightforward.

• Theposition field is a natural number whose value implies the relative ordering
of the options and file parameters. This information is useful only to applications
whose options have position dependent semantics. Positions are numbered from the
left starting at zero. Non-consecutive position numbers between consecutive options
indicate intervening file parameters.

• The longform field is true if the option is specified with two dashes, and false
otherwise.

• Thekeyword field contains the literal name of the option as given on the command
line in a character string.

• The parameters field contains any associated parameters following the option
with an optional= in a comma separated list.

Some experimentation with thecrec application (Listing 7.4) may be helpful for demon-
strating these conventions.

Interactive applications

Applications that perform interactive user input are not unmanageable in Ursala but they
may constitute a duplication of effort. The major classes ofapplications that need to
be interactive, such as editors, browsers, image manipulation programs,etcetera, contain
mature representatives with robust, extensible designs allowing new modules or plugins.
One of them undoubtedly would be the best choice for the frontend to any interactive
application implemented in this language. It should also bementioned that functional

261

Listing 7.5 An application to perform interactive user input

#import std
#import cli

#executable (<’par’>,<>)

grab =

˜&iNC+ file$[
stamp: &!,
path: <’transcript’>!,
contents: --<’’>+ ˜&zm+ ask(bash)/<>+ <’zenity --entry’> !]

languages are notoriously awkward at user interaction despite long years of effort by the
community to put the best face on it.

With this disclaimer, one small example of an interactive application is shown in List-
ing 7.5. This application opens a dialog window in which the user can type some text.
When the user clicks on the “ok” button, the window closes, and the application writes the
text to the a file namedtranscript in the current directory.

The application can be compiled and run as shown below. Although the dialog window
isn’t shown, that’s where the text was entered.

$ fun cli grab.fun
fun: writing ‘grab’
$ grab
grab: writing ‘transcript’
$ cat transcript
this text was entered

The real work is done by thezenity utility, which needs to be installed on the host
system. It is invoked in a shell spawned by theask function defined in thecli library, as
documented in Part III of this manual.

7.3.4 Comments

The #comment directive adds user supplied front matter to binary data files, libraries,
and executable files without altering their semantics. It requires a parameter that is either
a character string or a list of character strings.

The text of the comment can be anything at all, and is normallysomething to doc-
ument the file for the benefit of an end user. Instructions for an executable or calling
conventions for a library file are appropriate. Comments arealso good places to include
version information obtained by the pre-declared identifiers __source_time_stamp
or __ursala_version (page 249).

A pair of comment directives must bracket the directives that generate the files in which
comments are desired. The closing#comment- directive may be omitted, in which

262

case the effect extends to the end of the enclosing name space(normally the end of the
source file unless#hide directives are in use). A general outline of a source file using
#comment directives would be the following.

#comment 〈text〉

〈directive〉(+|〈expression〉)
〈declaration〉
...
〈declaration〉
〈directive〉-
...
〈directive〉(+|〈expression〉)
〈declaration〉
...
〈declaration〉
〈directive〉-

#comment-

As the above syntax suggests, a single comment directive mayapply to multiple binary
file generating directives, each of which may apply to multiple declarations. The same
comment will be inserted into every file that is generated.

More complicated variations on this usage are possible by having nested pairs of com-
ment directives. The outer comment will be written to every output file, and the inner ones
will be written in addition only to files generated by the particular directives they bracket.

Although it is intended primarily for binary files, the#comment directive can also be
used in conjunction with the#text and#output directives documented in the next
section. In these cases, it is the user’s responsibility to ensure that the comment does not
interfere with the semantic content of the files.

7.4 Text file output

There are four directives pertaining to the output of text files, as shown in Table 7.1. The
#cast and#output are parameterized, whereas#show+ and#text+ directives are
not. All of them may be used in matched pairs to bracket a sequence of declarations, and
will apply only to those they enclose. If the matching memberof the pair is omitted, their
scope extends to the end of the file or current name space. The specific features of each
directive are documented in the remainder of this section.

263

7.4.1 The#cast directive

The#cast directive requires a type expression as a parameter, and applies to declarations
of values that are instances of the type. It ignores all but the last declaration within the
sequence it brackets, and causes the value of the last one to be displayed on standard
output. The display follows the concrete syntax implied by the type expression.

This directive therefore performs the same operation as the--cast command line
option used in many previous examples, except that it occurswithin the file instead of on
the command line, and the type expression is not optional.

7.4.2 The#show+ directive

The#show+ directive performs a similar operation to the#cast , explained above, ex-
cept that no type expression or any other parameter is required. It ignores all but the last
declaration in the sequence it brackets, and causes the lastone to be written to standard
output. The type of the value that is written must be a list of character strings, or else an
exception is raised. No formatting of the data is performed.

The #show+ directive performs the same operation as the--show command line
option, except that it occurs within the source text insteadof on the command line.

7.4.3 The#text+ directive

This directive causes a text file to be written for each declaration within its scope. The text
file is named after the identifier on the left side of the declaration, with a suffix of.txt
appended. The value of the expression on the right is required to be a list of character
strings, but if the value is of a different type, the declaration is silently ignored and no
exception is raised. A short example using this directive isthe following.

$ fun --m="#text+ foo = <’bar’,’’>"
fun: writing ‘foo.txt’
$ cat foo.txt
bar

7.4.4 The#output directive

This directive allows more control over the names and contents of output files than is
possible with other directives. It is parameterized by a function whose input is a list of
assignments of character strings to values, and whose output is a list of file records as
documented on page 260.

Interface

The input to the function parameterizing the#output directive contains the values and
identifiers of the declarations in its scope, as this exampledemonstrates.

264

$ fun --m="#output %nmM foo=1 bar=2"
fun:command-line: <’foo’: 1,’bar’: 2>

The error messenger%nmMreports its argument in a diagnostic message when control
passes to it, as documented on page 145. The argument of<’foo’: 1,’bar’: 2> is
derived from the declarations following the directive.

The output from the function may make any use at all of the input or ignore it entirely
when generating the list of files to be written, as the next example shows.1

$ fun --m="#output <file[contents: <’done’,’’>]>! foo=1"
done

• There is the option of defining a non-empty preamble field to generate a binary file
rather than a text file.

• A non-empty path will cause the output to be written to a file rather than to standard
output.

• Arbitrary binary data can be written in text files by using non-printing characters. A
byte value ofn is written for then-th item instd-characters .

Alternative interface

It is often more convenient to use the#output directive with the functiondot , which
the standard library defines as follows.

"s". "f". * file$[
stamp: &!,
path: ˜&iNC+ --(:/‘. "s")+ ˜&n,
contents: "f"+ ˜&m]

Thedot function is used in a directive of the form

#output dot 〈suffix〉 〈function〉

which causes a separate file to be written for each declaration within the scope of the
directive. The file is named after the identifier in the declaration with the suffix appended,
and the contents of the file are computed by applying the function to the value of the
declaration. The function is required to return a list of character strings.

7.5 Code generation

Several directives modify the code generated by the compiler with regard to optimization,
profiling, and handling of cyclic dependences. The last requires some discussion at length,
but the others are easily understood.

1The shell commandset +H may be needed in advance to suppress interpretation of the exclamation point.

265

7.5.1 Profiling

The virtual machine provides the means to profile an application by making a record of
its run time statistics. For any profiled function, the number of times it is evaluated is
tabulated, along with the total and average number of virtual machine instructions (a.k.a.
reductions) required to evaluate it, and their percentage of the total. This information
may be useful for a developer to identify performance bottlenecks and potential areas for
performance tuning.

Profiling a function does not alter its semantics or behaviorin any way. The run time
statistics are recorded in a file namedprofile.txt in the current directory, without
affecting any other file operations.

One way of profiling a functionf is to substitute the functionprofile(f,s) for
it, wheres is a character string used to identifyf in the table of profile statistics, and
profile is a function provided by the standard library. However, it may sometimes be
more convenient to use the#profile+ directive.

Usage

When a sequence of declarations is enclosed within a pair of#profile directives, pro-
filing is enabled for all of them. A simple example demonstrates the effect.

$ fun --m="#profile+ f=˜& #profile- x = f * ’abc’" --c
’abc’
$ cat profile.txt

invocations reductions average percentage

3 3 1.0 0.000 f
1 18522430 18522430.0 100.000

18522433 reductions in total

The table shows thatf was invoked three times, each invocation required one reduction,
and these three reductions were approximately zero percentof the total number of reduc-
tions performed in the course of compilation and evaluation. These statistics are consistent
with the fact thatf was mapped over a three item list, and its definition as the identity func-
tion makes it the simplest possible function.

Hazards

The #profile directives are simple to use, but care must be taken to apply them se-
lectively only to functions and not to general data declarations, which they might alter
in unpredictable ways. In the above example, profiling is specifically switched off so as
not to affect the declaration ofx , which is not a function. Otherwise we would have this
anomalous result.

266

$ fun --m="#profile+ f=˜& g=f * ’abc’" --c
(&,&,0,<(’abc’,’g’)>)

As one might imagine, overlooking this requirement can leadto mysterious bugs.
Another hazard of the#profile directives is their use in combination with higher

order functions. Although it is not incorrect to profile a higher order function, it might not
be very informative. In this code fragment,

#profile+
(h "n") "x" = ...
#profile-
t = h1 x
u = h2 x

only the functionh is profiled, which is a higher order function taking a naturalnumber to
one of a family of functions. However, the statistics of interest are likely to be those ofh1
andh2 , which are not profiled. Extending the scope of the#profile directives would
not address the issue and in fact may cause further problems as described above. This
situation calls for using theprofile function mentioned previously for more specific
control than the#profile directives.

7.5.2 Optimization directives

A tradeoff exists between the speed of code generation and the quality of the code based
on its size and efficiency. For production code, the quality is more important than the
time needed to generate it. For code that exists only during the development cycle, the
speed of generating the code is advantageous. By default, a middle ground between these
alternatives is taken, but it is possible to direct the compiler to make the code more optimal
than usual, or to make it less optimal but more quickly generated.

Examples

The directive to improve the quality of the code is#optimize+ , and the directive to
improve the speed of generating it is#pessimize+ . The first can be demonstrated as
follows.

$ fun --m="f=%bP" --decompile
f = compose(

couple(
conditional(

field(0,&),
constant ’true’,
constant ’false’),

constant 0),
couple(constant 0,field &))

267

The above code is compiled without optimization, but an improved version is obtained
when optimization is requested.

$ fun --m="#optimize+ f=%bP" --decompile
f = couple(

conditional(field &,constant ’true’,constant ’false’),
constant 0)

Some understanding of the virtual machine semantics may be needed to recognize that
these two programs are equivalent, but it should be clear that the latter is smaller and
faster. The#pessimize+ directive is demonstrated on a different example.

$ fun --m="f = ˜&x+˜&y" --decompile
f = compose(field(0,&),reverse)
$ fun --m="#pessimize+ f = ˜&x+˜&y" --decompile
f = compose(

reverse,
compose(reverse,compose(field(0,&),reverse)))

Although there is no reason to use the#pessimize directives in cases like the one above,
it often occurs during the development cycle that a short test program takes several minutes
to compile because a large library function used in the program is being optimized every
time. These delays can be mitigated considerably by the#pessimize directives.

Hazards

The same care is needed with the#optimize directives as with the#profile direc-
tives to avoid using them on declarations other than functions, for the reasons discussed
above. It is sometimes possible to detect a non-function during optimization, and in such
cases a warning is issued, but the detection is not completely reliable.

Pessimization can safely be applied to anything with no anomalous effects. However,
it is probably never a good idea to have pessimized code in a library function or exe-
cutable, so a warning is issued when the#library or #executable directives detect
a #pessimize directive within their scope.

7.5.3 Fixed point combinators

The #fix directive is an unusual feature of the language making it possible to solve
systems of recurrences over any semantic domain to any order. It is necessary only for the
user to nominate a fixed point combinator specific to the domain of interest, or a hierarchy
of fixed point combinators if solutions to systems in higher orders are desired. Systems of
recurrences involving multiple semantic domains are also manageable.

First order recurrences

Recurrences involving functions are the most familiar example, because in most languages
there is no alternative for expressing recursively defined functions. Listing 7.6 shows an

268

Listing 7.6 a naive first order functional fixed point combinator

#import std

#fix "h". refer ˆH("h"+ refer+ ˜&f,˜&a)

rev = ˜&?\˜& ˆlrNCT\˜&h rev+ ˜&t

example of a recursively defined list reversal function expressed in this style. To see that
it really works, we can save it in a file namedfffx.fun and test it as follows.

$ fun fffx.fun --m="rev ’abc’" --c
’cba’

Normally a declaration of a functionrev defined in terms ofrev would be circular and
compilation would fail, but the fixed point combinator

"h". refer ˆH("h"+ refer+ ˜&f,˜&a)

tells the compiler how to resolve the dependence.

Calling conventions The calling convention for a first order fixed point combinator (i.e., the
function supplied by the user as a parameter to the#fix directive) is that given a function
h, it must return an argumentx such thatx = h(x). Intuitively, h can be envisioned as
a function that plugs something into an expression to arriveat the right hand side of a
declaration. In this example, the functionh would be

h(x) = ˜&?\˜& ˆlrNCT\˜&h x+ ˜&t

In particular,h(rev) would yield exactly the right hand side of the declaration inList-
ing 7.6. Since the right hand side is equal torev by definition, the value ofrev satisfying
rev = h(rev) is the solution, if it can be found. The job of the fixed point combinator is
to find it, hence the calling convention above.

Semantic note The rich and beautiful theory of this subject is beyond the scope of this
manual, but it should be noted that the most natural definition of a fixed point for most
functionsh of interest generally turns out to be an infinite structure insome form. In
practice, a finitely describable approximation to it must befound. It is this requirement
that calls on the developer’s ingenuity. The fixed point combinator in the above example
works by creating self modifying code that unrolls as far as necessary at run time, but this
method is only the most naive approach.

The construction of fixed point combinators varies widely with the application domain,
thereby precluding any standard recipe. For example, thesetechniques have been used
successfully for solving recurrences over asynchronous process networks in an electronic
circuit CAD system, where the fixed point combinator takes a considerably different form.
Specific applications are not discussed further here.

269

Listing 7.7 a better first order functional fixed point combinator

#import std
#import sol

#fix function_fixer

rev = ˜&?\˜& ˆlrNCT\˜&h rev+ ˜&t

Practical functional recurrences There are of course better ways of expressing list rever-
sal and recursively defined functions in general. Even for recurrences in this style, the
fixed point combinator in Listing 7.6 should never be used in practice because it gen-
erates bloated code, albeit semantically correct. Users who are nevertheless partial to
this style, perhaps due to prior experience with other languages, are advised to use the
function_fixer as a fixed point combinator, as shown in Listing 7.7, from thesol
library distributed with the compiler.

$ fun sol bffx.fun --decompile
rev = refer conditional(

field(0,&),
compose(

cat,
couple(

recur((&,0),(0,(0,&))),
couple(field(0,(&,0)),constant 0))),

field(0,&))

The results are seen to be comparable in quality to hand written code, although not as good
as using the virtual machine’s built inreverse function or˜&x pseudo-pointer.

Higher order recurrences

The recurrences considered up to this point are of the formt = h(t), but there may also be
a need to solve higher order recurrences in these forms,

t = "x0". h(t, "x0")

t = "x0". "x1". h(t, "x0" , "x1")

t = "x0". "x1". "x2". h(t, "x0" , "x1" , "x2")
...

and their equivalents,t("x0") = h(t, "x0"), or variable-free formst = h/ t, and so on.
In these recurrences,t has a higher order functional semantics regardless of the domain.
The order is at least the number of nested lambda abstractions, but could be greater if the
expressions are written in a variable-free style. It can be defined as the numbern in the

270

Listing 7.8 different fixed point combinators for different orders of recurrences

#import std
#import nat
#import sol
#import tag

#fix general_type_fixer 0

ntre = ntre%WZnwAZ # a zero order recurrence

#fix general_type_fixer 1

xtre "s" = ("s",xtre "s")%drWZwlwAZ # first order

#fix fix_lifter1 general_type_fixer 0

stre "s" = ("s",stre)%drWZwlwAZ # zero order lifted by 1

minimum expression(. . . (t x1) . . . xn) whereby the solutiont yields an element of the
semantic domain of interest.

All of these recurrences can be accommodated by the#fix directive, but an appropri-
ate fixed point combinator must be supplied by the user, whichdepends in general on the
order.

Calling conventions For ann-th order recurrence of the form

t = "x1". . . . "xn". h(t, "x1" , . . . , "xn")

or of the equivalent form

(. . . (t "x1") . . . "xn") = h(t, "x1" , . . . , "xn")

or any combination, or for a recurrence that is semanticallyequivalent to one of these but
expressed in a variable-free form, the argument to the fixed point combinator supplied by
the user as a parameter to the#fix directive is the function

h′ = "t". "x1". . . . "xn". h("t" , "x1" , . . . , "xn")

The fixed point combinator is required to return an argumenty satisfyingy = h′(y).

Type expression recurrences Although a distinct fixed point combinator is required for ev-
ery order, it may be possible to construct an ensemble of themfrom a single definition
parameterized by a natural number, as a developer exploringthese facilities will discover.
Two ready made examples of semantic domains with complete hierarchies of fixed point
combinators are functions and type expressions. For the sake of variety, the latter is illus-
trated in Listing 7.8.

271

The ensemble of fixed point combinators for type expressionsis given by the function
general_type_fixer defined in thetag library, which takes a numbern to then-th
order fixed point combinator for type expressions. An example of a zero order recurrence
is simply the recursive type expression for binary trees of natural numbers,ntre .

$ fun sol tag nxs.fun --m="1: (2: (),3: ())" --c ntre
1: (2: (),3: ())

A first order recurrence,xtre , defines the function that takes a type expression to a type
of binary trees containing instances of the given type.

$ fun sol tag nxs.fun --m="1: (2: (),3: ())" --c "xtre %bL"
<true>: (<false,true>: (),<true,true>: ())

Becausextre is a function requiring a type expression as an argument, it is applied to the
dummy variable in the recurrence. A similar function is implemented bystre .

$ fun sol tag nxs.fun --m="1: (2: (),3: ())" --c "stre %tL"
<&>: (<0,&>: (),<&,&>: ())

This recurrence is solved without recourse to higher order fixed point combinators, as
explained below.

Lifting the order If a function p returning elements of a semantic domainP having a
family of fixed point combinatorsFn is the solution to a first order recurrence of the form

p = "v". h(p "v" , "v")

then one way to get it would be by evaluating

p = F1 "f". "v". h("f" "v" , "v")

but another way would be

p = "v". F0 "f". h("f" , "v")

becausep occurs only by being applied to the dummy variable"v" in the recurrence. Most
non-pathological recurrences satisfy this condition, andthis transformation generalizes to
higher orders.

The latter form may be advantageous because it depends only on the zero order fixed
point combinatorF0, especially when higher orders are less efficient or unknown. All
that’s needed is to put the equation in the form

p = H "f". "v". h("f" , "v")

so that it conforms to the calling conventions for the#fix directive (i.e., withH as the
parameter), for someH depending only onF0 and not higher orders ofF .

272

This effect is achieved by takingH = Ln Fm, with a transformationLn shifting n
variables"v" , in this case 1.

L1 = "g". "h". "v". "g" "f". ("h" "f") "v"

This transformation is valid for any fixed point combinatorFm and any orderm. The
family of transformationsLn is implemented by thefix_lifter function defined in
thesol library distributed with the compiler, takingn as an argument.

Heterogeneous recurrences

Although this section begins with small contrived examplesof functions and type expres-
sions that could be expressed easily without recurrences, the difficulty of a manual solu-
tion quickly escalates in realistic situations involving mutual dependences among multiple
declarations. It is compounded when the system involves multiple semantic domains and
various orders of recurrences, to the point where a methodical approach may be needed.

In the most general case, each ofm declarations can be associated with a separate fixed
point combinatorFi for i ranging from 1 tom, in a source text organized as shown below.

#fix F1

x1 = v11. . . . v1n. h1(x1 . . . xm, v11 . . . v1n)
...
#fix Fm

xm = vm1. . . . vmn. hm(x1 . . . xm, vm1 . . . vmn)

Although the declarations are shown here as lambda abstractions, any semantically equiv-
alent form is acceptable, as noted previously.

• Each declared identifierxi is defined by an expressionhi(. . .) that may depend on
itself and any or all of the otherx’s.

• Dummy variablesvij , if any, are not shared among declarations, and their names need
not be unique across them.

• There is no requirement for any solutionsxi to belong to the same semantic domain
as any others, only that the corresponding fixed point combinatorFi is consistent
with its type and the order of its declaration.

• A single#fix directive can apply to multiple declarations following it up to the next
one.

In other respects, solving a system of recurrences automatically is no more difficult
from the developer’s point of view than solving a single one as in previous examples. In
particular, there is no need for the developer to give any special consideration to hetero-
geneous or mutual recurrences when designing the fixed pointcombinator hierarchy for
a particular semantic domain. It can be designed as if it weregoing to be used only to
solve simple individual recurrences. Similar use may also be made of lifted fixed point
combinators using thefix_lifter function.

273

7.6 Reflection

Most of the remaining compiler directives in Table 7.1 are hooks that can be made to per-
form any user defined operations not covered by the others. They come under the heading
of reflection because they can access and inform the compiler’s run-time data structures
describing the application being compiled. Because this access permits unrestricted mod-
ifications, there is a possibility of disruption to the compiler’s correct operation. Fortu-
nately, safety is ensured by the user’s capable judgment andintentions.

There is also a directive to interface with external development tools (e.g., “make”
file generators and similar utilities) by providing a standardized access to user specified
metadata.

7.6.1 The#depend directive

This directive takes any syntactically correct expressionas a parameter, or at least an ex-
pression that can be parsed without causing an exception. The expression is never eval-
uated and is ignored during normal use. However, if the compiler is invoked with the
--depend command line option, then the expression is written to standard output along
with the source file name, and the rest of the file is ignored.

The reason this directive might be useful is that it allows any user defined metadata
embedded in the source file to be extracted automatically by ashell script or other devel-
opment tool without it having to lex the file.

For example, the directive can be used to list the names of thefiles on which a source
file depends, so that a “make” utility can determine when it requires recompilation.

#import foo
#import bar

#depend foo bar
...

If a file baz.fun containing the above code fragment is compiled with the--depend
command line option, the effect will be as follows.

$ fun baz.fun --depend
baz.fun:
foo bar

The script or development tool will need to parse this output, but that’s easier than scanning
the source file for#import directives. It’s also more reliable if the directive is properly
used because a file may depend on other files without importingthem.

7.6.2 The#preprocess directive

This directive takes a function as a parameter that performsa parse tree transformation.
The parse tree contains the declarations within the scope ofthe directive. When the tree is

274

passed to the function during compilation, the function is required to return a tree of the
same type.

The parse trees used by the compiler are of type_token%T , where thetoken record
is defined in thelag library. For example, compilation of a file namedfoobar.fun
containing the code fragment

#preprocess lag-_token%TM
x=y

would result in diagnostic message similar to the following.

fun:foobar.fun:1:1: ˆ: (
token[

lexeme: ’#preprocess’,
filename: ’foobar.fun’,
filenumber: 3,
location: (1,1),
preprocessor: 399394%fOi&,
semantics: 33568%fOi&],

<
ˆ: (

token[
lexeme: ’=’,
filename: ’foobar.fun’,
filenumber: 3,
location: (3,2),
preprocessor: 4677323%fOi&,
semantics: 13%fOi&],

<
ˆ:<> token[

lexeme: ’x’,
filename: ’foobar.fun’,
filenumber: 3,
location: (3,1),
semantics: 12%fOi&],

ˆ:<> token[
lexeme: ’y’,
filename: ’foobar.fun’,
filenumber: 3,
location: (3,3)]>)>)

Of course, in practice the function parameter to the#preprocess directive should
do something more useful than dumping the parse tree as a diagnostic message. Effective
use of this directive requires a knowledge of compiler internals as documented in Part IV
of this manual. Possibly an even less useful example would bethe following,

#preprocess * ˆ0 &d.semantics:= ˜&d.semantics|| 0!!!

275

which implements something like the infamous Fortran-style implicit declaration by giving
every undeclared identifier used in any expression a defaultvalue of 0 rather than letting it
cause a compile-time exception.

7.6.3 The#postprocess directive

This directive gives the user one last shot at any files generated by directives in its scope
before they are written to external storage by the virtual machine. It is parameterized by a
function that takes a list of files as input, and returns a listof files as a result. The files are
represented as records in the form documented on page 260.

The following simple example will cause all output files in its scope to be written to
the /tmp directory instead of being written relative to the current working directory or at
absolute paths.

#postprocess * path:= ˜path; ˜&i&& :\<’tmp’,’’>+ ˜&h

This directive can be used intelligently without any further knowledge of compiler inter-
nals beyond the file record format documented in this chapter(unless of course it is used
to modify the content of libraries or executable files significantly).

7.7 Command line options

An alternative way to use most of the directives documented in this chapter is by naming
them on the command line when the compiler is invoked rather than by including them in
the source text.

• An unparameterized directive like#binary+ is expressed on the command line as
--binary or -binary .

• A parameterized directive like#cast is written as--cast " t" on the command
line for a parametert, with quotes and escapes as required by the shell.

A directive given on the command line applies by default to every declaration in every
source file as if it were inserted at the beginning of each. Unlike a directive in a file, there
isn’t the capability of switching it off selectively from the command line, even if applying
it to every declaration is inappropriate, with two exceptions.

• Any directive selected on the command line can be made to apply to just one dec-
laration by supplying an optional parameter stating the identifier of the declaration
to which it applies. For example,--cast foo, bar specifies that the value of the
identifierbar should be cast to the typefooand displayed as such.

• Some directives, such as#cast and#show , apply only to the last declaration within
their scope in any case, so applying them to a whole file is the same as applying them
only to the last declaration.

276

There are two other general differences between directiveson the command line and di-
rectives in a file.

• Command line options other than--trace can be recognizably truncated, whereas
directives in files must be spelled out in full.

• Command line options can also be ambiguously truncated if the ambiguity can be
resolved by giving precedence to the options--optimize , --show , --cast ,
--help , --archive , --parse , and--decompile .

There are also some differences pertaining to specific directives.

• For the--cast command line option, the parameter is optional, but when used in a
file as the#cast directive, the parameter is required.

• The#hide directives can be given only in a file and not on the command line.

• The #depend directive has a different effect from the--depend command line
option, as noted in the Section 7.6.1.

Several other settings are selected only by command line options and not by direc-
tives in files. A complete list of command line options other than those corresponding to
the directives documented previously is shown in Table 7.2.Those under the heading of
customization allow normally fixed features of the languageto be changed, such as the
definitions of operators and type constructors. Effective use of these command line op-
tions requires a knowledge of the compiler internals, so their full discussion is deferred
until Part IV. The remaining command line options in Table 7.2 are documented in the rest
of this section.

7.7.1 Documentation

The two command line options--version and--warranty have the conventional
effects of displaying short messages containing the compiler version number and non-
warranty information. The--help option provides a variety of brief documentation
interactively, and is intended as the first point of reference for real users.

The --help option by itself shows some general usage information and a list of all
options with an indication of their parameters. It can also show more specific information
when used with one of the following parameters. These parameters can be recognizably
truncated.

• The options parameter shows a listing similar to table 7.2 that also includes the
compiler directives accessible by the command line.

• The directives parameter shows a list of all compiler directives with shortex-
planations.

• The types parameter shows a list of the mnemonics of all primitive types and type
constructors with explanations (see Listing 4.10, page 175).

277

documentation

--help . . . show information about options and features
--version show the main compiler version number
--warranty show a reminder about the lack of a warranty

verbosity

--alias . . . use a specified command name in error messages
--no-core-dumps suppress all core dump files
--no-warnings suppress all warning messages
--phase . . . disgorge the compiler’s run-time data structures
--trace echo dialogs of theinteract combinator

data display

--decompile . . . suppress output files but display formatted virtual code
--depend display data from#depend directives
--parse . . . parse and display code in fully parenthesized form

file handling

--archive . . . compress binary output files and executables
--data . . . treat an input file as data instead of compiling it
--gpl . . . include GPL notification in executables and libraries
--implicit-imports infer #import directives for command line libraries
--main . . . include the given declaration among those to be compiled
--switches . . . set application-specific compile-time switches

customization

--help-topics . . . load interactive help topics from a file
--pointers . . . load pointer expression semantics from a file
--precedence . . . load operator precedence rules from a file
--directives . . . load directive semantics from a file
--formulators . . . load command line semantics from a file
--operators . . . load operator semantics from a file
--types . . . load type expression semantics from a file

Table 7.2: command line options; ellipses indicate an optional or mandatory parameter

278

– The usage--help types, t gives specific information about the type opera-
tor with the mnemonict.

– The usages--help types, n, wheren is 0, 1, or 2, shows information only
about primitive, unary, or binary type constructors, respectively.

• Thepointers parameter lists the mnemonics for pointers and pseudo-pointers as
documented in Chapter 2.

– The usage--help pointers, p gives specific information about the pointer
constructor with the mnemonicp.

– The usages--help pointers, n, wheren is 0, 1, 2, or 3, shows informa-
tion only about pointers with those respective arities.

• Information about operators is displayed by the--help option with any of the pa-
rametersprefix , postfix , infix , solo , or outfix . The information is spe-
cific to the arity requested by the parameter.

– Information about a specific known operator is requested by ausage such as
--help infix,"->" .

– If an operator contains the= character, the syntax is--help=solo,"==" .

• Information about operator suffixes for all operators of anyarity is requested by
--help suffixes . This parameter can also be used as above for information
about a particular operator.

• A site-specific list of the virtual machine’s libraries is requested by thelibrary
parameter, which shows a list of library names and function names (see Listing 1.10,
page 46). This output is the same as that ofavram --e .

– A list of all functions in any library with a name beginning with the stringfoo is
obtained by the usage--help library, foo.

– A list of functions with names beginning withbar in libraries with names begin-
ning with foo is obtained by--help library, foo, bar.

• The usage of--help s, wheres is any string not matching any of those above,
shows a listing of available options beginning withs, or shows the list of all options
if there are none.

7.7.2 Verbosity

Several command line options can control the amount of diagnostic information reported
by the compiler.

279

Warnings and core dumps

The --no-warnings and --no-core-dumps options have the obvious interpreta-
tions of suppressing warning messages and core dump files.

$ fun --main=0 --c %c
fun: writing ‘core’
warning: can’t display as indicated type; core dumped
$ fun --main=0 --c %c --no-core-dumps
$ fun --main=0 --c %c --no-warnings
fun: writing ‘core’

Aliases

The--alias option changes the name of the application reported in diagnostic messages
from fun to something else.

$ fun --m="˜&h 0"
fun:command-line: invalid deconstruction
$ fun --alias serious --m="˜&h 0"
serious:command-line: invalid deconstruction

This option is provided for the benefit of developers of application specific languages who
want to use the compiler as a starting point and customize it.2 Thealias option would
be hard coded into the shell script that invokes the compiler, so that end users need never
suspect that they’re using a functional programming language, even when something goes
wrong. This effect can also be achieved simply by renaming the script.

Troubleshooting the compiler

The--phase option is of interest only to compiler developers. It takes aparameter of0,
1, 2, or 3, and writes a binary file with the namephase0 throughphase3 , respectively.
The file contains a data structure of a self describing type (%y), expressing the program
state at a particular phase of the operation. Normal compilation is not performed when
this option is selected, but this operation may be time consuming due to the compression
required for large data structures.

A useful technique to avoid including thestd andnat libraries in the binary output
file, thereby saving time and space, is to invoke the compilerby

$ avram --par 〈full path〉/fun 〈command line〉 --phase n

assuming the troublesome code in the source files in the command line has been narrowed
down enough not to depend on the standard libraries.

2or simplify it for a user base they consider less clever than themselves

280

Debugging client/server interactions

The --trace option is passed through to the virtual machine, requestingall characters
exchanged between an application using theinteract combinator and an external com-
mand line interpreter to be displayed on the console along with some verbose diagnostic
information. Unlike most command line options,--trace must be written out in full
and may not be truncated. This option is useful mainly for debugging. See theavram
reference manual for further information. Here is an example using a function from the
cli library.

$ fun cli --m=now0 --c --trace
opening bash
waiting for 36 32
...

-> $ 36
-> 32
matched
<- e 101
<- x 120
<- i 105
<- t 116
<- 10
waiting for nothing
matched
closing bash
’Tue, 19 Jun 2007 23:44:30 +0100’

7.7.3 Data display

A small selection of command line options can be used to display information specific to a
given program source text or expression. The--cast command line option, seen in many
previous examples, is derived from the#cast directive documented in Section 7.4.1,
hence not repeated here. The same goes for the--show option, which is also frequently
used (Section 7.4.2). The others are summarized below.

• The --decompile option shows the virtual machine code for the last expression
compiled, assuming it is a function. The expression can comefrom either the source
text or from a--main option. The code is expressed using the mnemonics from
thecor library, (Listing 3.1, page 113) and documented extensively in theavram
reference manual. This option is similar to--cast %f , except that it displays the
full declaration.

• The--depend option displays the expression used as a parameter to any#depend
directives in the source texts on standard output, prefacedby the name of the source
file. See Section 7.6.1 for more information and motivation.

281

• The --parse option causes an expression to be displayed in fully parenthesized
form, thereby settling questions of operator precedence and associativity. (See page
179 for motivation.) The expression is not evaluated and maycontain undefined
identifiers.

– If a parameter is supplied with the--parse option, as in--parse x , then
the expression declared with the identifier of the parameterx is parsed.

– If the optional parameter is the literal character string “all ”, then every decla-
ration in every source file is parsed and displayed.

– If a --main option is used at the same time as a--parse option with no
parameter, then expression in the--main parameter is parsed.

– If no --main option is present, and the--parse option has no parameter, the
last declaration in the last file is parsed.

7.7.4 File handling

The remaining command line options in Table 7.2 pertain to the handling of input and
output files.

Output files

The --archive and --gpl options are specific to library files and executables (i.e.,
those generated by the#library or #executable directives). Each takes an optional
numerical parameter.

--archive This option causes a library file to be compressed, or an executable code file
to be stored in a compressed self-extracting form. The optional parameter is the granularity
of compression, which has the same interpretation as the granularity of compressed types
explained on page 169. The default behavior without a parameter is maximum compres-
sion, which is usually the best choice. Compression is usually a matter of necessity for any
non-trivial application, without which the file size explodes, and the memory requirements
even more so.

• Compressed libraries are indistinguishable from uncompressed libraries when im-
ported by the#import directive or dereferenced with the dash operator.

• Compressed executables are indistinguishable from uncompressed executables, be-
cause they are automatically made self-extracting. There may be a small run-time
overhead incurred by the extraction when the application islaunched.

--gpl This option causes a notification to be inserted into the preamble of every library
or executable file generated in the course of a compilation tothe effect that its distribution
terms are given by the General Public License as published bythe Free Software Founda-
tion. The optional parameter is the version number of the license, with versions 2 and 3

282

character spelling

0 zero
1 one
2 two
3 three
4 four
5 five
6 six
7 seven
8 eight
9 nine
(paren
) thesis
. dot
, comma
- dash
; semi
@ at
% percent

space

Table 7.3: rewrite rules for special characters in file names

being the only valid choices at this writing. The default is version 3. Only the specified
version is applicable, as the text does not include the provision for “any later version”.

Needless to say, this option is optional. It should not be selected unless the author
intends to distribute the software on these terms. One alternative is to keep it only for
personal use. Another is to distribute it subject to a non-free license. In the latter case,
the software must not depend on any code from the standard libraries distributed with the
compiler, which would ordinarily be copied into it as a consequence of compilation. The
specifications in Part III of this manual will enable a clean-room re-implementation of
these libraries for proprietary redistribution if necessary.

Input files

When the compiler is invoked with multiple input files, the default behavior is to treat
the binary files as data and to compile the text files as source code. For this purpose,
binary files are those that conform to the format used in files generated by the directives
#library , #binary , and#executable , and text files are any other files, even if

they contain unprintable characters.
No explicit i/o operations are required in the source files toaccess the contents of the

data files. Instead, the contents of the data files are accessible in the source files as the
values of pre-declared identifiers derived from the file names.

• If a data file name contains only alphabetic characters, the identifier associated with
it is the file name.

283

• If the name of a data file contains any characters that are not valid in identifiers, these
characters are rewritten according to Table 7.3.

• The rewritten character are bracketed by underscores in theidentifier. For example,
a data file namedfoo.bar would be accessed as the identifierfoo_dot_bar .

• The default file suffix for library files,.avm , is ignored, so that identifiers ending
with _dot_avm are not needed.

The remaining command line options in Table 7.2 affect the way input files are treated.

--data This option can be used to override the default behavior for text files by causing
them to be treated as data files instead of being compiled. Thevalue of the identifier
associated with a text file will be a list of character stringsstoring the contents of the file.

The--data option is unusual in that its placement on the command line issignificant.
It must immediately precede the name of the file that is to be treated as data. It pertains
only to that file and not to any files given subsequently on the command line. If there
are multiple text files to be treated as data files, each one must be preceded by a separate
--data option.

--implicit-imports When this option is selected, all files with suffixes of.avm on
the command line are detected. These files are required to be valid library files generated
by the#library directive during a previous compilation. An#import directive is
constructed with the name of each library file, and this sequence of#import directives
is inserted at the beginning of each source file. The resulting effect is that the code in the
source files may refer to symbols within the library files as ifthey were locally declared,
without having to import them.

--switches This option takes a comma separated sequences of parameters, and causes
the predeclared identifier__switches to evaluate to them in any source text being com-
piled, as this example shows.

$ fun --m=__switches --switches=foo,bar,baz --c
<’foo’,’bar’,’baz’>

The type of the predeclared identifier__switches is always a list of character strings.
See page 249 for more information and motivation.

--main This option is used in many previous examples. Its purpose isto allow for easy
interactive compilation of short expressions directly from the command line without re-
quiring them to be stored in a file.

• The parameter to the--main option contains the text be compiled, which can be
either a single expression or a sequence of one or more declarations.

284

• In the case of a single expression,x, the text of the parameter is compiled as if it
contained the declarationmain = x.

• The language syntax is the same for--main expressions as for ordinary source text,
but it may need to be quoted or escaped to prevent interpretation by the shell.

• The --main expression may use identifiers declared in any libraries mentioned
on the command line, as well as thestd and nat libraries, without need of an
#import directive.

• The--main expression may use identifiers declared in the last source file named on
the command line, if any, without need of an#export directive.

7.8 Remarks

This chapter concludes Part II of this manual on Language Elements. These specifications
are expected to remain fairly stable for the forseeable future, with most new development
work concentrating on the standard libraries documented inPart III.

Readers with a good grasp of this material are well posed to begin developing practical
applications with Ursala. Please use your powers wisely andonly for the benefit of all
mankind.

285

Part III

Standard Libraries

286

I require the exclusive use of this room, as well as that drafty
sewer you call the library.

Sheridan Whiteside,The man who came to dinner

8
A general purpose library

Most applications in this language as in others are not developedab initio but from a
reusable code base of tried and tested components. A growingcollection of library mod-
ules packaged and maintained along with the compiler provides a variety of helpful utilities
in the way of functions, combining forms, and data structurespecifications.

8.1 Overview of packaged libraries

There are three subdirectories in the main distribution package populated with.avm vir-
tual code library files, these being thesrc/ , lib/ , andcontrib/ directories.

• Thecontrib/ directory contains libraries for experimental, illustrative, or archival
purposes, that are not necessarily maintained and are not documented in this manual.

• Thesrc/ directory contains libraries necessary to bootstrap the compiler. They are
maintained but are unlikely to be of any independent interest except for thestd
andnat libraries. Somead hocdocumentation about them suitable for compiler
developers is provided in Part IV.

• Thelib/ directory contains the libraries that are considered important complements
to the core functionality of the language. These are maintained and meticulously
documented in this chapter and the succeeding ones in Part III.

8.1.1 Installation assumptions

In the recommended installation, all.avm files in src/ andlib/ are stored in the host
filesystem under/usr/lib/avm/ or /usr/local/lib/avm/ , where they are auto-
matically detected by the virtual machine with no path specification required.

287

• These files are architecture independent and therefore could be exported on a network
filesystem for use by multiple clients without binary code compatibility issues.

• Non-standard installations may require the the user or system administrator make
arrangements for specifying the library file paths when invoking the compiler. See
Section 1.3.1 on page 51 for a related discussion.

8.1.2 Documentation conventions

Each library is documented in a separate chapter, even though some chapters may be very
short. The style is that of a reference manual, often with little more than a catalog of
descriptions of the library functions and data structures.The emphasis is more on accuracy
and completeness than motivation or literary merit, and this style is most conducive to
maintaining current information about an evolving code base. These chapters need not be
read sequentially, but they take a working knowledge of the material in Part II for granted.

Thestd andnat libraries are under thesrc/ directory in the packaged distribution
because they are necessary for bootstrapping the compiler,but they are also suitable for
more general use so they are documented in Part III.

The remainder of this chapter documents thestd library. Unlike most other libraries,
this one can be imported into any source text without being given as a command line
parameter to the compiler, because it is automatically supplied by the shell script that
invokes the compiler.

8.2 Constants

The standard library defines three constants that are usefulfor input parsing and validation.

characters

the list of 256 characters (type%c) ordered by their ISO codes

letters

the list of 52 upper and lower case alphabetic characters,a. . . zA. . .Z, with the lower
case characters first

digits

the list of ten decimal digits0. . .9

A predicate that tests whether its argument is a digit could be coded as-=digits , as an
example.

Other constants, such astrue and false , are also defined by the standard library,
because all symbols in thecor library (Listing 3.1, page 113) are included in it.

288

8.3 Enumeration

Two functions tangentially related to the idea of enumeration are the following.

upto

Given a natural numbern, this function returns a list containing every possible datum
of any type whose binary representation size measured in quits doesn’t exceedn

For example, there are 9 data with a size up to three.

$ fun --m=upto3 --c %tL
<

0,
&,
(0,&),
(&,0),
(0,(0,&)),
(0,(&,0)),
(&,&),
((0,&),0),
((&,0),0)>

This function is useful for exhaustively testing code that operates on small data structures
or pointers. However, it should be used with caution becausethe number of results in-
creases exponentially with the sizen, being given by

∑n

i=0 f(i), wheref(0) = 1 and

f(i) =

i−1∑

j=0

f(j)f(i− j)

for i > 0.

enum

This function takes a set of data and returns a type expression for the type whose
instances are the data. See page 173 for an example.

8.4 File Handling

Executable applications that have a command line interfaceor that generate output files
are expressed as functions that observe consistent callingconventions. The standard li-
brary provides a small set of data structure declarations and functions in support of these
conventions.

289

8.4.1 Data Structures

The following four identifiers are record mnemonics. Their usage is explained with exam-
ples starting on page 258, but they are briefly recounted herefor reference.

invocation

A record of this form passed to any command line application generated by the
#executable directive with a parameterized interface. The record consists of two
fields,commandandenvirons . The latter contains a module of character strings
specifying the environment variables.

command line

A record of this form makes up thecommandfield of an invocation record. It has two
fields,files andoptions .

file

A list of records of this form is stored in thefiles field in acommand line record.
It has four fields describing a file, which are calledstamp , path , preamble and
contents . The interpretation of these fields is explained on Page 260.

option

A list of these records is stored in theoptions field of acommand line record. Its
four fields are calledposition , longform , keyword , andparameters . Their
interpretations are explained on page 261.

8.4.2 Functions

Two further functions are intended to facilitate generating output files or other possible
uses.

gpl

This function takes a version number as a character string (usually ’2’ or ’3’),
and returns a list of character strings containing the standard General Public License
notification for the corresponding version, “This program is free software. . . ”. If an
empty string is supplied as an argument, the version number defaults to 3.

dot

This function is meant to be used in an output file generating directive of the form
#output dot 〈suffix〉 〈function〉 as explained on page 265.

290

8.5 Control Structures

A small group of control structures comparable to those in other languages is specified by
the combining forms documented in this section. These are not built into the language but
defined as library functions.

8.5.1 Conditional

An idea originated by Tony Hoare, case statements are usefulas a structured form of nested
conditionals whose predicates test the argument against a constant. (This construct is more
restrictive than the cumulative conditional combinator, which allows general predicates as
explained on page 191.) In typical usage, a functionH of the form

H = (case f) (
<

k0: g0,
...
kn: gn>,

h)

applied to an argumentx first computes the valuek = f(x), and then testsk against each
possibleki in sequence. For the first matchingki, the corresponding functiongi(x) is
evaluated and its result is returned. If no match is found,h(x) is returned. Note thatgi
or h is applied to the original argument,x, not tok, which is only an intermediate result
that is not returned. Evaluation is non-strict insofar as only the gi for the matchingki is
evaluated, if any, andh is not evaluated unless no match is found.

Two forms ofcase statement defined in the standard library differ in the nature of the
test, and the third generalizes both of these.

case

This function takes a functionf as an argument and returns a function that maps a pair
(< k0: g0, . . . kn: gn>, h) to a functionH as above. In terms of the foregoing
notation, a match betweenk andki occurs precisely when they are equal in the sense
described on page 78.

cases

This function follows the same calling convention as thecase function, above, but
differs in the semantics of the resultingH. In order for a match to occur between the
temporary valuek and a constantki, the constantki must be a list or a set of whichk
is a member.

A short example of thecases function is the following, which takes a character or any-
thing else as an argument and returns a string describing itsclassification, if recognized.

291

classifier = cases˜&\’unrecognized’! <
’aeiouAEIOU’: ’vowel’!,
letters: ’consonant’!,
digits: ’digit’!>

Note that because the order in which the cases are listed is significant, the patterns may
overlap without ambiguity. If the patterns are mutually disjoint, use of braces is preferable
to angle brackets as a matter of style and clarity.

The concept of a case statement generalizes to arbitrary matching criteria beyond equal-
ity and membership.

gcase

Given a any functionp computing a predicate, this function returns a case statement
constructor in which a match betweenk andki is deemed to occur whenp(k, ki) holds,
wherek andki are as in the preceding explanations.

For example, the firstcase function can be defined asgcase == , and the second one,
cases , can be defined asgcase -= . A case statement based membership in numerical
intervals would be another obvious example.

lesser

This function takes a binary relational predicate to the corresponding binary mini-
mization function. For any funcitonp, the functionlesser p takes an argument
(x, y) to x if p(x, y) is non-empty, and toy otherwise.

8.5.2 Unconditional

Most of the basic functional combining forms in the languageare provided by the operators
documented in Chapter 6, but several are expressible as follows.

gang

This function takes a list of functions to a function returning a list. The function
gang< f0, . . . , fn> applied to an argumentx returns the list.<f0 x, . . . , fn x>
This function is equivalent to<. f0, . . . , fn>. (See page 194 for an example.)

associate left

This function takes any function operating on a pair to a function that operates on
a list. The functionassociate left f returns<> for an empty list and returns
the head of list with only one item. For lists with more than one item, it satisfies the
recurrence

(associate left f) a : b : x = (associate left f) (f(a, b)) : x

292

A simple example of this function would be

$ fun --m="associate_left˜& ’abcdef’" --c
(((((‘a,‘b),‘c),‘d),‘e),‘f)

fused

The argument to this function should be a record initializing functionr (i.e., something
declared with the:: operator as explained in Section 4.2). The result is a function
that takes a pair of records(x, y) each of type r and returns a recordz also of type
r. The resultz consists of the non-empty fields fromx and the remaining fields, if

any, fromy, followed with initialization by the functionr.

A short example of this function is as follows.

$ fun --m="r::a %n b %n x=fused(r)/r[a: 1] r[b: 2]" --c _r
r[a: 1,b: 2]

8.5.3 Iterative

A couple of functions useful mainly for debugging can be usedto iterate a function a fixed
number of times.

rep

This function takes a natural numbern as an argument, and returns a function that
maps a given functionf to the composition off with itself n times (or equivalent). If
n = 0, the result of(rep n) f is the identity function.

The following example demonstrates therep function by inserting a zero at the head of a
list five times.

$ fun --m="rep5˜&NiC <1>" --c %nL
<0,0,0,0,0,1>

next

This function takes a natural numbern and returns a function that takes a given func-
tion f to the equivalent of<.rep0 f , . . . ,rep (n− 1) f>. That is, the result of
(next n) f is a function returning a list of lengthn whosei-th item is the result of
i iterations off on the argument, starting from zero.

An example of thenext function following on from the previous example is as shown.

$ fun --m="next5˜&NiC <1>" --c %nLL
<<1>,<0,1>,<0,0,1>,<0,0,0,1>,<0,0,0,0,1>>

293

8.5.4 Random

Three functions are defined in the standard library for generating pseudo-random data
according to some specified distribution. The underlying random number generator is
the Mersenne Twister algorithm provided by the virtual machine’s mtwist library, as
documented in theavram reference manual.

arc

This function, mnemonic for “arbitrary constant”, takes any set as an argument, and
constructs a program that ignores its input but returns a pseudo-randomly chosen
member of the set. The value returned by the program may be different for each
execution, with all members of the set being equally probable.

An example of thearc function is given by the following expression.

$ fun --m="arc<0,1,2> * ’--------’" --c
<0,2,1,1,0,1,2,1>

choice

This function takes a set of functions as an argument and constructs a program that
chooses one to apply to its input each time it is invoked. A simulated non-deterministic
choice is made, with all choices being equally probable.

This example shows a choice of three functions applied to a string, with a different choice
made for each execution.

$ fun --m="choice{˜&,˜&x,˜&iiT} ’foo’" --c %s
’foofoo’
$ fun --m="choice{˜&,˜&x,˜&iiT} ’foo’" --c %s
’foo’
$ fun --m="choice{˜&,˜&x,˜&iiT} ’foo’" --c %s
’oof’

stochasm

This function takes a set{p0: f0 . . . pn: fn} of assignments of probabilities to func-
tions, and constructs a program that simulates a non-deterministic choice among the
functions each time it is invoked. Preference is given to each function in proportion
to its probability. Probabilitiespi needn’t sum to unity but they must be non-negative.
They may be either floating point or natural numbers (type%eor %n).

Two examples of thestochasm function demonstrate filters that lose twenty and seventy
percent of their input on average.

$ fun --m="stochasm{0.8: ˜&iNC,0.2: ’’!} * = letters" --c

294

’abcdhijkmopqrsvwxzADEGHIJKLMNOPQRSTVXZ’
$ fun --m="stochasm{0.3: ˜&iNC,0.7: ’’!} * = letters" --c
’dehilnosDFLMNOSVY’

8.6 List rearrangement

A collection of functions defined in the standard library foroperating on lists supplements
the operators and pseudo-pointers in the core language.

8.6.1 Binary functions

These functions take a pair of lists to a list.

zip

Given a pair of list(〈x0 . . . xn〉, 〈y0 . . . yn〉) of the same length, this function returns
the list of pairs〈(x0, y0) . . . (xn, yn)〉. If the lists are of unequal lengths, the function
raises an exception with the diagnostic message “bad zip ”.

Thezip function is equivalent to thẽ&p pseudo-pointer (page 75).

zipt

This function performs a truncating zip operation. It follows a similar calling conven-
tion to thezip function, above, but does not require the lists to be of equallength. If
the lengths are unequal, the shorter list is zipped to a prefixof the longer one.

Thezipt function is equivalent to the one used in an example on Page 73.

gcp

This function returns the greatest common prefix of a pair of lists, which is the longest
list that is a prefix of both of them.

An example of an application of thegcp function is the following.

$ fun --m="gcp/’abc’ ’abd’" --c %s
’ab’

8.6.2 Numerical

The function in this section perform operations on lists that are parameterized by natural
numbers.

295

iol

Given any list, this function returns a list of consecutive natural numbers starting with
zero that has the same length as its argument.

This function is exemplified in the following expression.

$ fun --m="iol ’catabolic’" --c
<0,1,2,3,4,5,6,7,8>

num

This function takes any list as an argument and returns a listof pairs in which the
left sides form a consecutive sequence of natural numbers starting from zero, and the
right sides are the items of the argument in their original order. It is equivalent to the
functionˆp/iol ˜& .

Thenum function numbers the items of a given list as shown.

$ fun --m="num ’abcde’" --c %ncXL
<(0,‘a),(1,‘b),(2,‘c),(3,‘d),(4,‘e)>

skip

Given a pair(n, x), wheren is a natural number andx is a list, this function returns a
copy of the listx with the firstn items deleted. Ifx does not have more thann items,
the empty list is returned.

take

Given a pair(n, x), wheren is natural number andx is a list, this function returns a
copy of the listx with all but the firstn items deleted. Ifx does not have more thann
items, the whole list is returned.

block

Given a numbern, this function returns a function that maps any listx into a list of
listsy such that̃&L y = x, and every item ofy has a length ofn except possibly the
last, which may have a length less thann.

An example of theblock function is the following.

$ fun --m="block3 ’abcdefghijkl’" --c %sL
<’abc’,’def’,’ghi’,’jkl’>

296

swin

Given a numbern, this function returns a function that maps any listx into a list of
listsy whosei-th item is the lengthn substring ofx beginning at positioni.

The function name is mnemonic for “sliding window”. An example of theswin function
is the following.

$ fun --m="swin3 ’abcdef’" --c %sL
<’abc’,’bcd’,’cde’,’def’>

8.6.3 General

Some further list editing operations parameterized by functions or constants are docu-
mented in this section. These include functions for padded zips, variations on flattening
and unflattening, sorting, and conditional truncation.

zipp

This function takes a constantk to a function that zips two lists together of arbitrary
length by padding the shorter one with copies ofk if necessary. It satisfies the follow-
ing recurrences.

(zipp k) (<>,<>) = <>

(zipp k) (a : x,<>) = (a, k) : ((zipp k) (x,<>))

(zipp k) (<>, b : y) = (k, b) : ((zipp k) (<>, y))

(zipp k) (a : x, b : y) = (a, b) : ((zipp k) (x, y))

This example shows thezipp function zipping two lists of natural numbers by padding
the shorter one with zeros.

$ fun --m="zipp0/<1,2,3> <4,5,6,7,8>" --c %nWL
<(1,4),(2,5),(3,6),(0,7),(0,8)>

pad

This function takes a constantk to a function that takes a list of lists of differing
lengths to a list of lists of the same length by appending copies ofk to those that are
shorter than the maximum. It is defined as follows.

pad "k" = ˜&i&& ˜&rSS+ zipp"k"ˆ * D\˜& leql$ˆ

This example shows how a list of lists of lengths 2, 1, and 3 is transformed to a list of three
lists of length three by padding the shorter lists.

$ fun --m="pad1 <<0,1>,<2>,<3,4,5>>" --c %nLL
<<0,1,1>,<2,1,1>,<3,4,5>>

297

mat

This function takes a constantk of typet to a function that flattens a list of typet%LL
to a list of typet%Lafter inserting a copy of<k> between consecutive items. It can
be defined as:-0+ ˆ|T/˜&+ //: , among other ways.

The following example shows how a ten is inserted after everythree numbers in the list of
natural numbers from 0 to 9.

$ fun --m="mat10 block3 <0,1,2,3,4,5,6,7,8,9>" --c %nL
<0,1,2,10,3,4,5,10,6,7,8,10,9>

sep

This function serves as something like an inverse to themat function, in that
(mat k)+ sep k is equivalent to the identity function. For a given separator k,
the functionsep k scans a list for occurrences ofk, and returns the list of lists of
intervening items.

Thesep function can be used in text processing applications to implement a simple lexical
analyzer. In this example, a path name containing forward slashes is separated into its
component directory names.

$ fun --m="sep\‘/ ’usr/share/doc/texlive-common’" --c %s L
<’usr’,’share’,’doc’,’texlive-common’>

Note that the backslash is there to suppress interpretationof the backquote character by
the shell, and would not be used if this code fragment were in asource file.

psort

This function, mnemonic for “priority sort”, takes a list ofrelational predicates
<p0 . . . pn> to a function that sorts a listx by the members ofp in order of decreas-
ing priority. That is, the ordering of any two items ofx is determined by the firstpi
whereby they are not mutually related.

The psort function is useful for things like sorting a list of time stamps by the year,
sorting the times within each year by the month, sorting the times within each month by
the day, and so on. This example shows how a list of strings is lexically sorted with higher
priority to the second character.

$ fun --m="psort<lleq+˜&bth,lleq+˜&bh> <’za’,’ab’,’aa’ >" -c
<’aa’,’za’,’ab’>

The lexical order relational predicatelleq is documented subsequently in this chapter.

298

rlc

This function, mnemonic for “run length code”, takes a relational predicate as an
argument and returns a function that separates a list into sublists. The predicate is
applied to every pair of consecutive items, and any two related items are classed in the
same sublist. The cumulative concatenation of the sublistsrecovers the original list.

An example of therlc function that collects runs of identical list items is the following.

$ fun --m="rlc˜&E <0,0,1,0,1,1,1,0,1,0,0>" --c %nLL
<<0,0>,<1>,<0>,<1,1,1>,<0>,<1>,<0,0>>

This function could be carried a step further to compute the conventional run length encod-
ing of a sequence bŷ(length,˜&h) * + rlc˜&E , which would return a list of pairs
with the length of each run on the left and its content on the right.

takewhile

This function takes a predicate as an argument, and returns afunction that truncates a
list starting from the first item to falsify the predicate.

In this example, the remainder of a list following the first run of odd numbers is deleted.

$ fun --m="takewhile˜&h <1,3,5,2,4,7,9>" --c %nL
<1,3,5>

skipwhile

This function takes a predicate as an argument, and returns afunction that deletes the
maximum prefix of a list whose items all falsify the predicate.

In this example, the odd numbers at the beginning of a list aredeleted.

$ fun --m="skipwhile˜&h <1,3,5,2,4,7,9>" --c %nL
<2,4,7,9>

Recall that̃ &h tests the least significant bit of the binary representationof a natural num-
ber.

8.6.4 Combinatorics

Various functions relevant to combinatorial problems are defined in the standard library.
These include functions for computing transitive closuresand cross products, permuta-
tions, combinations, and powersets.

299

closure

Given a relation represented as a set of pairs, this functioncomputes the transitive
closure of the relation. The transitive closure of a relation R is defined as the min-
imum relation containingR for which membership of any(x, y) and(y, z) implies
membership of(x, z).

A simple example of theclosure function is the following.

$ fun --m="closure{(’x’,’y’),(’y’,’z’)}" --c %sWS
{(’x’,’y’),(’x’,’z’),(’y’,’z’)}

cross

This function takes a pair of sets to their cartesian product. The cartesian product of
a pair of sets(S, T) is defined as the set of all pairs(x, y) for whichx ∈ S andy ∈ T .
This function is equivalent to thẽ&K0 pseudo-pointer (page 91).

permutations

Given a listx of lengthn, this function returns a list of lists containing all possible
orderings of the members inx. The result will have a length ofn! (that is,1 ·2 · · · · ·n),
and will contain repetitions ifx does.

An example of thepermutations function for a three item list is the following.

$ fun --m="permutations ’abc’" --c %sL
<’abc’,’bac’,’bca’,’acb’,’cab’,’cba’>

powerset

This function takes any set to the set of all of its subsets. The cardinality of the
powerset of a set ofn elements is necessarily2n.

This example shows the powerset of a set of three natural numbers.

$ fun --m="powerset {0,1,2}" --c %nSS
{{},{0},{0,2},{0,2,1},{0,1},{2},{2,1},{1}}

choices

Given a pair(s, k), wheres is a set andk is a natural number, this function returns the
set of all subsets ofs having cardinalityk. For a sets of cardinalityn, the number of
subsets will be (

n
k

)

=
n!

k!(n− k)!

300

For a very small example, the set of all three element subsetsfrom a universe of cardinality
4 is illustrated as shown.

$ fun --m="choices/’abcd’ 3" --c %sL
<’abc’,’abd’,’acd’,’bcd’>

cuts

Given a pair(s, k), wheres is a list andk is a natural number, this function finds every
possible way of separatings into k+1 non-empty consecutive parts. Each alternative
is encoded as a list of sublists whose concatenation yieldss. A list containing all such
encodings is returned.

This example shows all possible subdivisions of a nine item lists into three consecutive
parts.

$ fun --m="cuts(’abcdefghi’,2)" --c %sLL
<

<’a’,’b’,’cdefghi’>,
<’a’,’bc’,’defghi’>,
<’a’,’bcd’,’efghi’>,
<’a’,’bcde’,’fghi’>,
<’a’,’bcdef’,’ghi’>,
<’a’,’bcdefg’,’hi’>,
<’a’,’bcdefgh’,’i’>,
<’ab’,’c’,’defghi’>,
<’ab’,’cd’,’efghi’>,
<’ab’,’cde’,’fghi’>,
<’ab’,’cdef’,’ghi’>,
<’ab’,’cdefg’,’hi’>,
<’ab’,’cdefgh’,’i’>,
<’abc’,’d’,’efghi’>,
<’abc’,’de’,’fghi’>,
<’abc’,’def’,’ghi’>,
<’abc’,’defg’,’hi’>,
<’abc’,’defgh’,’i’>,
<’abcd’,’e’,’fghi’>,
<’abcd’,’ef’,’ghi’>,
<’abcd’,’efg’,’hi’>,
<’abcd’,’efgh’,’i’>,
<’abcde’,’f’,’ghi’>,
<’abcde’,’fg’,’hi’>,
<’abcde’,’fgh’,’i’>,
<’abcdef’,’g’,’hi’>,

301

<’abcdef’,’gh’,’i’>,
<’abcdefg’,’h’,’i’>>

The result is ordered by length of the first sublists with different lengths.

words

This function takes a natural numbern to a function that takes an alphabeta to an
enumeration of all lengthn sequences of members ofa.

The words function differs from thechoices function described previously insofar
as order is significant and repetitions are allowed. Hence, an expression of the form
words(n) a will evaluate to a list of length|a|n, where|a| is the cardinality ofa. Here
is an example usage.

$ fun --m="words5 ’01’" --c
<

’00000’,
’00001’,
’00010’,
’00011’,
’00100’,
’00101’,
’00110’,
’00111’,
’01000’,
’01001’,
’01010’,
’01011’,
’01100’,
’01101’,
’01110’,
’01111’,
’10000’,
’10001’,
’10010’,
’10011’,
’10100’,
’10101’,
’10110’,
’10111’,
’11000’,
’11001’,
’11010’,
’11011’,

302

’11100’,
’11101’,
’11110’,
’11111’>

8.7 Predicates

Various primitive functions and combinators are defined in the standard library to assist in
applications needing to compute truth values or decision procedures.

8.7.1 Primitive

A number of predicates that are mostly binary relations are provided by the definitions
documented in this section.

• As a matter of convention, predicates may return any non-empty value when said to
hold or to be true, and will return the empty value() when false.

• These predicates are false in all cases where the descriptions do not stipulate that they
are true.

• Equality is in the sense described on page 78.

• Read “if” as “if and only if”.

eql

This predicate holds for any pair of lists(x, y) in which x has the same number of
items asy, counting repeated items as distinct.

leql

This predicate holds for any pair of lists(x, y) in whichx has no more items thany,
counting repeated items as distinct.

intersecting

This predicate is true of any pair of lists or sets(x, y) for which there exists an item
that is a member of bothx andy. It is logically equivalent to thẽ&c pseudo-pointer
but faster (page 77).

subset

This predicate is true of pairs of sets or lists(s, t) wherein every element ofs is also
an element oft. If s is empty, then it is vacuously satisfied.

303

substring

This predicate is true of any pair of lists(s, t) for which there exist listsx andy such
thatx-- s-- y is equal tot.

suffix

This predicate is true of any pair of strings or lists(s, t) for which there exists a listx
such thatx-- s is equal tot.

lleq

This function computes the lexical partial order relation on characters, strings, lists of
strings, and so on. Given a pair of strings(s, t), the predicate is true ifs alphabetically
precedest. For a pair of characters(s, t), the predicate holds if the ISO code ofs is
not greater than that oft.

indexable

This predicate is true of any pair(p, x) for which p̃ x can be evaluated without caus-
ing an exception. This relationship is best understood by envisioning bothx andp as
transparent types and considering it recursively.

• If p is a pair that is non-empty on both sides, then it is indexablewith x only if
both sides are individually indexable with it.

• If p is empty on one side and not the other, then it is indexable with x only if the
non-empty side is indexable with the corresponding side ofx.

• If p is empty on both sides, then it is always indexable withx.

singly branched

This predicate is true of the empty pair() , and of any pair that is empty on one side
and singly branched on the other.

8.7.2 Boolean combinators

The boolean operations are most conveniently obtained by combinators taking predicates
to predicates rather than by first order functions. Predicates used as arguments to the
functions in this section could be any of those documented inthe previous section, as well
as any user defined predicates.

304

Each of these predicate combinators is unary in the sense that it takes a single predicate
as an argument and returns a single predicate as a result. However, the predicate it returns
may operate on a pair of values. In that case, evaluation is non-strict in that only the left
value is considered where it suffices to determine the result.

Similar conventions to those of the previous section regarding truth values apply here
as well.

not

Given a predicatep, this function constructs a predicate that is true wheneverp is
false, and vice versa.

both

Given a predicatep, this function constructs a predicate that appliesp to both sides of
a pair, and is true only if the result is true in both cases.

neither

Given a predicatep, this function constructs a predicate that appliesp to both sides of
a pair, and returns a true value if the result of both applications is false.

either

Given a predicatep, this function constructs a predicate that appliesp to both sides of
a pair, and returns a true value if the result of at least one application is true.

8.7.3 Predicates on lists

These combinators take an arbitrary predicate as an argument and return a predicate that
operates on a list.

ordered

Given a relational predicatep, this function constructs a predicate that is true if its
argument is a list whose items form a non-descending sequence with respect top.
That is,(ordered p) x is true ifx is equal top-< x. If p is a partial order relation,
thenordered p may also be more generally true, because the sorted listp-< x
could be only one of many alternatives.

all

This function takes a predicatep to a predicate that holds ifp is is true of every item
of its argument. It is similar to theg pseudo-pointer (page 70).

305

all same

This function takes any functionf as an argument, not necessarily a predicate, and
constructs a predicate that is true iff yields the same value when applied to every
item of the input list. Note that this condition is stronger than logical equivalence,
which implies only that two values are both empty or both non-empty, so care must
be taken iff is a predicate whose true results may vary. This function is similar to the
K1 pseudo-pointer (page 84).

any

This function takes a predicatep as an argument, and returns a predicate that holds
wheneverp is true of at least one member of its input list. It is similar to thek pseudo-
pointer (page 70).

8.8 Generalized set operations

The combinators documented in this section generalize the concepts of intersection, dif-
ference, and membership for lists and sets by parameterizing them with an arbitrary binary
relational predicate.

gdif

This function takes a relational predicatep and returns a function that maps a pair of
sets({x0 . . . xn}, {y0 . . . ym}) to a copy of the left one with allxi deleted for which
there exists ayj satisfyingp(xi, yj). The standard set difference operation is obtained
with p as equality.

gint

This function takes a relational predicatep and returns a function that maps a pair of
sets({x0 . . . xn}, {y0 . . . ym}) to a copy of the left one with allxi deleted for which
there exists noyj satisfyingp(xi, yj). The standard set intersection operation is ob-
tained withp as equality.

gldif

This function follows the same calling convention asgdif , but constructs a function
that operates on pairs of lists rather than pairs of sets by taking the order and multi-
plicity of the items into account. For each deletedxi, a distinctyj satisfiesp(xi, yj).
A unique result is obtained by choosing the assignment of matchingy’s to deletable
x’s in the order they are detected by scanning forward throughthey’s for eachx.

306

A short example using this function is the following.

$ fun --m="gldif˜&E/’aaabbbcccaaa’ ’aaccccd’" --c %s
’abbbaaa’

glint

This function performs an analogous operation to the generalized list difference com-
binatorgldif , but pertains to intersection rather than difference.

The generalized set operations above are related to theK10 throughK13 pseudo-pointers,
whereas the remaining one is similar to thewpseudo-pointer or-= operator.

lsm

Given a sets, this function, mnemonic for “large set membership”, constructs a pred-
icate that is true for all members ofs and false otherwise.

Although it would be trivial to implementlsm as\/-= , the implementation in the stan-
dard library attempts to construct the optimal decision procedure for a large set, which
may be more efficient than the default set membership algorithm of sequential search. The
crossover point between the speed of the two algorithms for membership testing occurs
around a cardinality of 8, not including the time required bylsm to construct the predicate.
Best performance is achieved when the set members have most dissimilar representations.

307

I’m your number one fan.

Kathy Bates inMisery

9
Natural numbers

The natural numbers0, 1, 2 . . . , are a primitive type in the language, with the type expres-
sion mnemonic%n, as explained in Chapter 3. Any application involving natural numbers
may elect to manipulate them directly on the bit level. Alternatively, thenat module
presents an interface to them as an abstract type.

Similarly to thestd library documented in the previous chapter, thenat library is
automatically loaded by the compiler’s wrapper script, andneed not be specified on the
command line. This chapter documents its functions.

9.1 Predicates

A couple of functions take natural numbers as input and return a truth value.

nleq

This function computes the partial order relational predicate. Given a pair of numbers
(n,m), it returns a non-empty value if and only ifn ≤ m.

An example using this function is the following.

$ fun --m="nleq * <(1,2),(4,3),(5,5)>" --c %bL
<true,false,true>

odd

This function returns a true value if and only if its argumentis an odd number (i.e.,
1, 3, 5 . . .).

308

9.2 Unary

The following functions take a natural number as an argumentand return a natural number
as a result.

• Standard mathematical notation is used in the descriptions(e.g.,n+1) as opposed to
language syntax in the examples (e.g.,double+ half).

• Natural numbers in Ursala have unlimited precision, so overflow is not an issue for
any of these functions unless the whole host machine runs outof memory.

half

This function performs truncating division by two. That is,given a numbern, it
returnsn/2 if n is even, and returns(n− 1)/2 if n is odd.

Half of the first six natural numbers are computed as follows.

$ fun --m="half * <0,1,2,3,4,5>" --c %nL
<0,0,1,1,2,2>

factorial

This function returns the factorial of an argumentn, which is defined as
∏n

i=1 i, and
has applications in combinatorial problems as the number ofpossible orderings of a
sequence ofn distinct items.

The factorial of a numbern is conventionally denotedn!, but the exclamation point has an
unrelated meaning in the language as the constant combinator.

double

Given a numbern, this function returns the number2n.

Thedouble function is a partial inverse tohalf , becausehalf+ double is equivalent
to the identity function. The functiondouble+ half is equivalent to rounding down to
the nearest even number.

predecessor

Given a numbern, this function returnsn − 1 if n > 0, and raises an exception if
n = 0. The diagnostic message in the latter case is “natural out of range ”.

successor

Given a numbern, this function returnsn + 1.

309

tenfold

Given a numbern, this function returns10n by a fast bit manipulation algorithm.

9.3 Binary

All of the functions documented in this section take a pair ofnatural numbers as input.
Thedivision function returns a pair of natural numbers as a result, and the rest return
a single natural number.

sum

This function takes a pair(n,m) to its sumn +m.

difference

This function takes a pair(n,m) ton−m if n ≥ m, but raises an exception ifn < m.
The diagnostic message in the latter case is “natural out of range ”.

quotient

This function takes a pair(n,m) and returns the quotient rounded down to the nearest
natural number,⌊n/m⌋ unlessm = 0. In that case, it raises an exception with the
diagnostic message “natural out of range ”.

This example shows an exact and a truncated quotient.

$ fun --m="quotient * <(21,3),(100,8)>" --c %nL
<7,12>

remainder

This function takes a pair(n,m) and returns their residual, customarily denotedn
mod m. This number is the remainder left over whenn is divided bym, i.e.,((n/m)−
⌊n/m⌋)×m.

The standard relationships between truncated quotients and residuals holds exactly.

ˆ\˜&r sumˆ/remainder productˆ/˜&r quotient

This expression is equivalent to the identity function for apair of natural numbers(n,m)
providedm 6= 0.

310

product

This function multiplies a pair of numbers(n,m) to obtain their productnm.

division

The quotient and remainder can be obtained at the same time bythis function more
efficiently than computing them separately. Given a pair of number(n,m) with m 6=
0, this function returns a pair(q, r) whereq is the quotient andr is the remainder.

The following identities hold.

division ≡ ˆ/quotient remainder

quotient ≡ ˜&l+ division

remainder ≡ ˜&r+ division

choose

Given a pair of natural numbers(n,m), this function returns the number of waysm
elements can be selected from a set ofn. This quantity is customarily denoted and
defined as shown. (

n
m

)

=
n!

m!(n−m)!

gcd

This function takes a pair(n,m) and returns their greatest common divisor, as ob-
tained by Euclid’s algorithm. The greatest common divisor is defined as the largest
numberk for which (n mod k) = (m mod k) = 0.

root

This function takes a pair(y, n) to the truncatedn-th root of y, or ⌊ n

√
y⌋, using an

iterative interval halving algorithm. Ifn = 0, y must be1, or else an exception is
raised with the diagnostic message “zeroth root of non-unity ”.

power

Given a pair of numbers(n,m) this function returnsnm, i.e., the product ofn with
itselfm times.

This example shows the size of a conventional DES key space.

$ fun --m="power/2 56" --c

311

72057594037927936

However, powers of two are more efficiently obtained by bit shifting.

9.4 Lists

A couple of other functions in thenat library are useful for converting between numbers
and lists.

iota

This function takes a natural numbern and returns the list ofn numbers from0 to
n− 1 in ascending order.

This example shows how to generate the list of numbers from zero to fifteen.

$ fun --m=iota16 --c
<0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15>

nrange

This function takes a pair of natural numbers(a, b) and returns the list of natural
numbers froma to b inclusive. Ifb > a, the list is given in descending order.

$ fun --m="nrange(3,19)" --c %nL
<3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19>
$ fun --m="nrange(19,3)" --c %nL
<19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3>

length

Given any list or set, this function returns its length or cardinality, respectively.

The following equivalence holds for any natural numbern.

n = length iota n

Because natural numbers are represented as lists of booleans, they also have a length.
Although there is no logarithm function defined in thenat library, a tight upper bound on
the logarithm of a natural number to the base 2 can be found by taking its length.

$ fun --m="length factorial 52" --c %n
226

This result is confirmed by a more precise calculation using floating point arithmetic.

$ fun --m="..log2 ..nat2mp factorial 52" --c %E
2.255810E+02

312

He is you, your opposite, your negative, the result of the
equation trying to balance itself out.

The Oracle inThe Matrix Revolutions

10
Integers

Numbers like· · · − 2,−1, 0, 1, 2 . . . of type %zare supported by operations in theint
library documented in this chapter. Non-negative integersare binary compatible with nat-
ural numbers (type%n), and any of the functions described in this chapter will also work
on natural numbers, albeit with the unnecessary overhead ofchecking their signs, which
is not a constant time operation due to the representation used.

10.1 Notes on usage

Many functions in this chapter have the same names as similarfunctions in thenat library
documented in the previous chapter. Using both in the same source text is possible by
methods described in Section 7.2 to control the scope and visibility of imported symbols.
For example, a file containing the directives

#import nat
#import int

in that order preceding any declarations will use integer functions by default, reverting
to natural functions such asiota only when there is no integer equivalent, or when it
is specifically requested using the dash operator, as innat-successor . The opposite
order will cause natural functions to be used by default unless otherwise indicated. Al-
ternatively, integer operations can be used exclusively byusing only the#import int
directive and omitting#import nat from the source text.

10.2 Predicates

This section is for functions that return a boolean value when operating on integers.

313

zleq

This function computes the partial order relational predicate. Given a pair of numbers
(n,m), it returns a non-empty (i.e., true) value if and only ifn ≤ m.

10.3 Unary Operations

The functions documented in this section take a single integer argument to an integer
result.

abs

This function returns the absolute value of its argument. Ifthe argument is non-
negative, the result is the same as the argument. Otherwise,the result is its additive
inverse. Hence, the result is always non-negative.

sgn

This function returns−1, 0, or1, depending on whether its argument is negative, zero,
or positive, respectively.

negation

This function returns the additive inverse of its argument.Negative numbers map to
positive results, positives map to negatives, and zero to itself.

successor

Given any integern, this function returnsn + 1.

predecessor

Given any integern, this function returnsn− 1.

Unlike thenat-predecessor function, this one is defined for all integers.

10.4 Binary Operations

The functions documented in this section take a pair of integers as an argument and return
an integer as a result.

314

sum

Given a pair(n,m) this function returns their sum,n +m.

difference

Given a pair(n,m) this function returns their difference,n−m.

Unlike thenat-difference function, this one is defined for all integers.

product

Given a pair(n,m) this function returns their product,nm.

quotient

Given a pair(n,m) with m 6= 0, this function returns⌊n/m⌋ if n/m ≥ 0, and⌈n/m⌉
otherwise (i.e., the truncation toward zero ofn/m).

The quotient rounding convention has been chosen to satisfythis identity.

abs (quotient (n,m)) ≡ quotient (abs (n), abs (m))

remainder

Given a pair of integers(n,m) with m 6= 0 this function returns an integerr satisfying
sum(product (quotient (n,m), m), r) = n.

10.5 Multivalued

Function documented in this section return something otherthan a boolean or integer
value.

division

This function maps a pair(n,m) of integers withm 6= 0 to the pair of integers
(quotient (n,m), remainder (n,m)).

The same relationship among thedivision , quotient , andremainder functions
holds for integers as for natural numbers. If both the quotient and remainder are required,
it is more efficient to compute them using the division function than individually.

315

zrange

Given a pair of integers(n,m), this function returns the list of|n − m + 1| integers
beginning withn, ending withm and differing by 1 between consecutive items. If
n > m, the numbers are listed in descending order.

316

For him, it’s as if there were thousands of bars and behind
the thousands of bars no world.

Robin Williams inAwakenings

11
Binary converted decimal

The type%vrepresents integers sequences of decimal digits, along with a boolean sign, as
described on page 119, which may be more efficient than the usual binary representation in
applications needing to manipulate and display numbers with thousands of digits or more.
Literal numerical constants in this representation are written as sequences of decimal digits
with a trailing underscore, and an optional leading negative sign.

A small set of functions for operating on numbers in this representation with a similar
API to the int library described in the previous chapter is provided by thebcd library
documented in this chapter. Because many of the functions are similarly named, the dis-
cussion of name clash resolution in Section 10.1 is relevanthere as well.

11.1 Predicates

A partial order relational predicate on BCD integers is provided as follows.

bleq

This function computes the partial order relational predicate. Given a pair of numbers
(n,m) in BCD format, it returns a non-empty (i.e., true) value if and only if n ≤ m.

Here is an example usage.

$ fun bcd --m="ˆA(˜&,bleq) * p 50%vi˜ * iiX 15" --c %vWbAL
<

(-693480964_,6180548644_): true,
(6597127700_,-532915486_): false,
(-855627074_,-166599056_): true,
(913347791_,8147630828_): true>

317

odd

This function returns a true value if its argument is not a multiple of 2, and a false
value otherwise.

11.2 Unary Operations

The functions documented in this section take a single BCD argument to an BCD result.

abs

This function returns the absolute value of its argument. Ifthe argument is non-
negative, the result is the same as the argument. Otherwise,the result is its additive
inverse. Hence, the result is always non-negative.

sgn

This function returns−1 , 0 , or1 , depending on whether its argument is negative,
zero, or positive, respectively.

Here are some examples.

$ fun bcd --m="ˆA(˜&,sgn) * :/0_ 50%vi * 7" --c %vvAL
<

0_: 0_,
-3741541087_: -1_,
306278996_: 1_,
-12120849714_: -1_>

negation

This function returns the additive inverse of its argument.Negative numbers map to
positive results, positives map to negatives, and zero to itself.

successor

Given any BCD integern, this function returnsn+ 1.

predecessor

Given any BCD integern, this function returnsn− 1.

318

tenfold

This function returns its argument multiplied by ten, obtained using the obvious opti-
mization in place of multiplication.

factorial

This function returns the factorial function a non-negative argumentn, defined as
∏n

i=1 i.

11.3 Binary Operations

The functions documented in this section take a pair of BCD integers as an argument and
return a BCD integer as a result.

sum

Given a pair(n,m) this function returns their sum,n +m.

difference

Given a pair(n,m) this function returns their difference,n−m.

product

Given a pair(n,m) this function returns their product,nm.

quotient

Given a pair(n,m) with m 6= 0, this function returns⌊n/m⌋ if n/m ≥ 0, and⌈n/m⌉
otherwise (i.e., the truncation toward zero ofn/m).

The quotient rounding convention has been chosen to satisfythis identity.

abs (quotient (n,m)) ≡ quotient (abs (n), abs (m))

remainder

Given a pair of integers(n,m) with m 6= 0 this function returns an integerr satisfying
sum(product (quotient (n,m), m), r) = n.

319

power

Given a pair of BCD integers(n,m) with m ≥ 0, this function returns the exponen-
tiationnm. Negative values ofn are allowed, and will imply a negative result ifm is
odd. Zero raised to the power of zero is defined as1 .

11.4 Multivalued

Function documented in this section return something otherthan a boolean or BCD value.

division

This function maps a pair(n,m) of integers withm 6= 0 to the pair of integers
(quotient (n,m), remainder (n,m)).

The same relationship among thedivision , quotient , andremainder functions
holds for BCD integers as for binary integers and natural numbers. If both the quotient
and remainder are required, it is more efficient to compute them using the division function
than individually.

brange

Given a pair of BCD integers(n,m), this function returns the list of|n−m+1| BCD
integers beginning withn, ending withm and differing by 1 between consecutive
items. Ifn > m, the numbers are listed in descending order.

11.5 Conversions

A couple of functions are defined provided for converting between BCD integers and other
types.

toint

Given a BCD integern, this function returns the corresponding integer in the binary
representation (i.e., type%z, or if non-negative, type%n).

fromint

Given a natural number or integer in the binary representation (i.e., type%nor %v),
this function returns the corresponding number converted to the BCD integer repre-
sentation.

320

Don’t knock rationalizations.

Jeff Goldblum inThe Big Chill

12
Rational numbers

The primitive type%qrepresents rational numbers in unlimited precision. They can be
used to perform exact numerical calculations with the functions defined in therat library
and documented in this chapter. Simultaneously their greatest strength and their greatest
weakness, their exactitude renders them prohibitively inefficient for routine work, but they
may be useful in special circumstances such as proof checking or conjecture.

12.1 Unary

The functions documented in this section take a single rational number as an argument to
a rational result.

inverse

This function takes a numberx to 1/x.

This example shows inverses of two numbers.

$ fun rat --m="inverse * <5/2,-3/8>" --c %qL
<2/5,-8/3>

negation

This function takes any numberx to−x.

In this example, a number is negated.

$ fun rat --m="negation 1/2" --c %q
-1/2

321

abs

This function returns the absolute value of its argument. That is,abs x is equal tox
if x is positive but−x if x is negative.

The following example shows absolute values of positive anda negative number.

$ fun rat --m="abs * <1/3,-2/5>" --c %qL
<1/3,2/5>

simplified

This function reduces a rational number to lowest terms. It is unnecessary for num-
bers computed by other functions in the library, but may be helpful for user defined
functions.

The rational number representation consists of a pair of integers

(〈numerator〉, 〈denominator〉)

which a user program may elect to construct directly. Following this operation with the
simplified function will ensure that the representation meets the required invariant of
being in lowest terms with a non-negative denominator.

$ fun rat --m="(2,4)" --c %q
fun: writing ‘core’
warning: can’t display as indicated type; core dumped
$ fun rat --m="%qP (2,4)" --s
2/4
$ fun rat --m="simplified (2,4)" --c %q
1/2

12.2 Binary

The functions documented in this section take a pair of rational numbers and return a
rational number, except forrleq , which returns a boolean value.

rleq

This function computes the partial order relation on rational numbers. Given a pair of
numbers(x, y), it returns a true value if and only ofx ≤ y.

sum

This function takes a pair of numbers(x, y) to their sumx+ y.

322

difference

This function takes a pair of numbers(x, y) to their differencex− y.

quotient

This function takes a pair of numbers(x, y) to the their quotientx/y.

product

This function takes a pair of numbers(x, y) to their productxy.

power

This function takes a pair of numbers(x, y) to their exponentiationxy if this number
is rational, but returns an empty value() otherwise.

Here are two examples of thepower function, the second case having an irrational result.

$ fun rat --m="rat-power(27/8,4/3)" --c %qZ
81/16
$ fun rat --m="rat-power(27/8,2/5)" --c %qZ
()

12.3 Formatting

The functions documented in this section convert rational numbers to a character string
representation compatible with the syntax of floating pointnumbers. In some cases, the
string representation may require rounding. Each functiontakes a natural number as an ar-
gument specifying the number of decimal places, and returnsa function that takes rational
numbers to lists of strings.

fixed

This function takes a natural numbern to a function that converts a rational number
to a list of strings in fixed decimal format withn places after the decimal point.

scientific

This function takes a natural numbern to a function that converts a rational number
to a list of strings in exponential notation withn places after the decimal point.

323

engineering

This function takes a natural numbern to a function that converts a rational number
to a list of strings in exponential notation withn+ 1 decimal places and the exponent
chosen to be a multiple of 3.

Here are examples of the same number in all three formats.

$ fun rat --m="engineering4 35737875/131" --s
272.80e+03
$ fun rat --m="scientific4 35737875/131" --s
2.7280e+05
$ fun rat --m="fixed4 35737875/131" --s
272808.2061

324

Logsine, clogsine, thingamabob, some bubblegum will do
the job.

The Nowhere Man inYellow Submarine

13
Floating point numbers

Ursala places substantial resources at the developer’s disposal in the way of floating point
number operations. A small library,flo , containing some of the more frequently used
functions and constants is documented in this chapter. Other libraries pertaining to more
specialized areas are documented in subsequent chapters, and these are further augmented
by the virtual machine’s interface to third party numericallibraries as documented in the
avram reference manual.

All functions described in this chapter involve floating point numbers in standard IEEE
double precision format, corresponding to the primitive type %e in the language. Users
interested in arbitrary precision numbers (type%E) are referred to the documentation of
thempfr library in theavram reference manual, whose functions are directly accessible
by the library combinators (Section 6.7.2, page 216).

13.1 Constants

The declarations documented in this section pertain to numerical constants. These are
usable as numbers in expressions, and require not much further explanation.

eps

A small number on the order of the machine precision, arbitrarily defined as5×10−16.

inf

A constant having the algebraic properties of infinity (∞), such asx/∞ = 0 for finite
x, etcetera.

325

nan

A constant representing an indeterminate result, such as∞−∞, which will propagate
automatically through any computation depending on it.

The representation of indeterminate results is not unique,so it is not valid to test a result
for indeterminacy by comparing it tonan . The predicatemath..isnan should be used
instead for that purpose.

ninf

A constant having the algebraic properties of negative infinity, −∞, analogous to the
inf constant explained above.

pi

The mathematical constant 3.14159. . . familiar from trigonometry

13.2 General

General unary and binary operations on floating point numbers are documented in this
section. Most of them are simple wrappers for the corresponding virtual machinemath..
library functions, defined as a matter of convenience.

13.2.1 Unary

The following functions take a single floating point number as an argument and return a
floating point number as a result.

abs

The absolute value function, customarily denoted|x| for an argumentx, returnsx if x
is positive or zero, and−x otherwise.

negative

This function takes an argumentx to its additive inverse,−x.

sqr

This function takes a numberx and returnsx2.

326

sqrt

This function takes a numberx and returns
√
x. The result isnan if x < 0.

sgn

This function takes any argument to a result of−1, 0, or 1, depending on whether
the argument is negative, zero, or positive, respectively.The IEEE standard admits a
notion of−0, which is considered negative by this function.

13.2.2 Binary

The usual binary operations on floating point numbers are provided by the functions docu-
mented in this section. Each of them takes a pair of numbers asinput and returns a number
as a result. Correct handling of indeterminate (nan) and infinite arguments is automatic.
Overflowing results are mapped to infinity.

plus

Given a pair(x, y), this function returns the sum,x+ y.

minus

Given a pair(x, y), this function returns the differencex− y.

times

Given a pair(x, y) this function returns the product,xy.

div

Given a pair(x, y), this function returns the quotientx/y. A result ofnan is possible
if y is 0.

pow

Given a pair(x, y), this function returns the exponentiationxy if it is representable
without overflow.

327

bus

Given a pair(x, y) this function returns the differencey − x, i.e., with the order
reversed.

vid

Given a pair(x, y), this function returns the quotienty/x.

The last two functions are often more convenient than the conventional forms of sub-
traction and division. For example, to subtract the baseline from a list of floating point
numbers, it is slightly quicker and less cluttered to write

busˆ * D\˜& fleq$-

than the alternative
subˆ * DrlXS\˜& fleq$-

13.3 Relational

The following functions involve tests or comparisons on floating point numbers.

fleq

This function computes the partial order relation on floating point numbers, returning
a true value if and only if a given pair of numbers(x, y) satisfiesx ≤ y. The predicate
does not hold if either number is indeterminate.

max

Given a pair of numbers(x, y), this function returnsy if y ≥ x, and returnsx other-
wise. Anan value isn’t greater or equal to anything.

min

Given a pair of numbers(x, y), this function returnsx if x ≤ y, and returnsy other-
wise.

zeroid

This function returns a true value if its argument is exactly0. Negative0 is also
considered zero, but small values differing from zero by representable roundoff error
are not.

328

13.4 Trigonometric

Wrappers for circular functions provided by the virtual machine’s math.. library are
defined for convenience as shown below. Each of these functions takes a floating point
argument to a floating point result. The inverse functions may return anan value for
arguments outside their domains.

sin

This function returns the sine of a given numberx.

cos

This function returns the cosine of a given numberx.

Definitions of sine and cosine functions are given by the standard construction involving
the unit circle.

tan

This function returns the tangent of a given numberx, which can be defined as
sin(x)/ cos(x).

asin

Given a numbery, this function returns anx satisfyingy = sin(x) if possible.

acos

Given a numbery, this function returns anx satisfyingy = cos(x) if possible.

atan

Given a numbery, this function returns anx satisfyingy = tan(x) if possible.

13.5 Exponential

A short selection of functions pertaining to exponents and logarithms is provided as de-
scribed below. Each of these functions takes a single floating point argument to a floating
point result.

329

exp

Given a numberx, this function returns the exponentiationex, wheree is the standard
mathematical constant2.71828

ln

For a positive numberx, this function returns the natural logarithmln x, which can be
defined as the numbery satisfyingx = ey.

tanh

This is the so called hyperbolic tangent function, which is defined as

tanh(x) =
ex − e−x

ex + e−x

atanh

Given a numbery between−1 and 1, this function returns a numberx satisfying
y = tanh(x).

13.6 Calculus

Several higher order functions supporting elementary operations from integral and differ-
ential calculus are provided as documented in this section.

derivative

Given a real valued functionf of a single real variable, this function returns another
functionf ′, which is pointwise equal to the instantaneous rate of change off .

This function works best for smooth continuous functionsf . The function is differentiated
numerically by the GNU Scientific Library numerical differentiation routine with the cen-
tral difference method. Users requiring the forward or backward difference (for example
to differentiate a function at0 that is defined only for non-negative input) can use the GSL
functions directly as documented by theavram reference manual.

A short example of this function shows howf(x) = x2 can be differentiated, and the
resulting function sampled over a range of input values, using theari function docu-
mented subsequently in this chapter to generate an arithmetic progression of eleven values
for x ranging from zero to one.

$ fun flo --m="ˆ(˜&,derivative sqr) * ari11/0. 1." --c %eWL

330

<
(0.000000e+00,0.000000e+00),
(1.000000e-01,2.000000e-01),
(2.000000e-01,4.000000e-01),
(3.000000e-01,6.000000e-01),
(4.000000e-01,8.000000e-01),
(5.000000e-01,1.000000e-00),
(6.000000e-01,1.200000e+00),
(7.000000e-01,1.400000e+00),
(8.000000e-01,1.600000e+00),
(9.000000e-01,1.800000e+00),
(1.000000e+00,2.000000e+00)>

For each value ofx, the derivative off(x) is 2x, as expected.

nth deriv

This function takes a natural numbern to a function that returns then-th derivative of
a given functionf .

The functionnth_deriv1 is equivalent to thederivative function. Ideally the func-
tion nth_deriv2 would be equivalent toderivative+ derivative , and so on,
but in practice there are problems with numerical stabilitywhen taking higher derivatives.
Thenth_deriv function attempts to obtain better results than the naive approach by us-
ing an ensemble of progressively larger tolerances for the higher derivatives when invoking
the underlying GSL differentiation routine.

integral

Given a functionf taking a real value to a real result, this function returns a function
F taking a pair of real values to a real result, such that

F (a, b) =

∫ b

x=a

f(x) dx

The following examples demonstrate theintegral function.

$ fun flo --m="integral(sqr)/0. 3." --c %e
9.000000e+00
$ fun flo --m="integral(sin)/0. pi" --c %e
2.000000e+00

The integral function is based on the GNU Scientific Library integration routines,
using the adaptive algorithm iterated over a range of tolerances if necessary. This function
will give best results in most cases, but users requiring more specific control (e.g., to
specify tolerances or discontinuities explicitly) are referred to theavram reference manual
for information on how to access these features.

331

root finder

This function takes a quadruple((a, b), (f, t)) wheref is a real valued function of a
real variable and the other parameters are real. It returns afloating point numberx
such thata ≤ x ≤ b and|x− x0| ≤ t, wheref(x0) = 0. If no suchx exists, the result
is unspecified.

The function finds a root by a simple bisection algorithm. Thealgorithm guarantees con-
vergence subject to machine precision if there is a unique root on the interval, but doesn’t
converge as fast as more sophisticated methods based on stronger assumptions. The fol-
lowing example retrieves a root of the sine function between3 and 4. The exact solution
is of courseπ.

$ fun flo --m="root_finder((3.,4.),(sin,1.e-8))" --c %e
3.141593e+00

13.7 Series

The functions documented in this section are useful for operating on vectors or time series
represented as lists of floating point numbers.

13.7.1 Accumulation

These three functions perform cumulative operations, eachtaking a list of numbers as
input to a list of numbers as output. Differences are inverses of cumulative sums.

cu prod

Given a list〈x0 . . . xn〉 this function returns the list〈y0 . . . yn〉 for which

yi =
i∏

j=0

xj

.

Here is a simple example of a cumulative product.

$ fun flo --m="cu_prod <1.,2.,3.,4.,5.>" --c
<

1.000000e+00,
2.000000e+00,
6.000000e+00,
2.400000e+01,
1.200000e+02>

332

cu sum

Given a list〈x0 . . . xn〉 this function returns the list〈y0 . . . yn〉 for which

yi =

i∑

j=0

xj

.

Here is a simple example of a cumulative sum.

$ fun flo --m="cu_sum <1.,2.,3.,4.,5.,6.,7.,8.,9.>" --c
<

1.000000e+00,
3.000000e+00,
6.000000e+00,
1.000000e+01,
1.500000e+01,
2.100000e+01,
2.800000e+01,
3.600000e+01,
4.500000e+01>

nth diff

This function takes a natural numbern to a function that computes then-th difference
of a list of numbers. For a given list of numbers〈x1 . . . xm〉, then-th difference is the
list of numbers〈yn0 . . . ynn−m〉 satisfying this recurrence.

y0i = xi

yni = yn−1
i+1 − yn−1

i

Then-th difference requires the input list to have more thann items, because it get short-
ened byn. Here are three examples.

$ fun flo --m="nth_diff1 <2.,8.,7.,1.>" --c
<6.000000e+00,-1.000000e+00,-6.000000e+00>
$ fun flo --m="nth_diff2 <2.,8.,7.,1.>" --c
<-7.000000e+00,-5.000000e+00>
$ fun flo --m="nth_diff3 <2.,8.,7.,1.>" --c
<2.000000e+00>

13.7.2 Binary vector operations

These two functions compute the standard metrics on pairs ofvectors.

333

iprod

Given a pair of lists of floating point numbers(〈x0 . . . xn〉, 〈y0 . . . yn〉) having the same
length, this function returns the inner product, which is defined as

n∑

i=0

xiyi

eudist

Given a pair of lists of floating point numbers(〈x0 . . . xn〉, 〈y0 . . . yn〉) having the same
length, this function returns the Euclidean distance between them, which is defined as

√
√
√
√

n∑

i=0

(xi − yi)2

For vectors representing Cartesian coordinates of points in a flat two or three dimensional
space, the Euclidean distance corresponds to the ordinary concept of distance between
them as measured by a ruler. In data mining or pattern recognition applications, Euclidean
distance is sometime useful as a measure of dissimilarity between a pair of time series or
feature vectors.

oprod

Given a pair of lists of floating point numbers(〈x0 . . . xn〉, 〈y0 . . . yn〉) having the same
length, this function returns a list〈z0 . . . zn〉 of that length in which this relation holds.

zi =







xny1 − x1yn if i = 0
(−1)n(xn−1y0 − x0yn−1) if i = n
(−1)i(xi−1yi+1 − xi+1yi−1) otherwise

If n < 2, the result is undefined.

This function computes the same outer product familiar fromcollege physics, but gen-
eralizes it to higher dimensions. For example, the magneticforce exerted on a moving
charged particle is proportional to the outer product of itsvelocity with the ambient mag-
netic field. In graphics applications, the outer product is an easy way to construct a vector
that is perpendicular to the plane containing two given vectors.

13.7.3 Progressions

These two functions allow arithmetic or geometric progressions to be constructed without
explicit iteration required.

334

ari

Given a natural numbern, this function returns a function that takes a pair of floating
point numbers(a, b) to a list〈x1 . . . xn〉 of lengthn, wherein

xi = a+
(i− 1)(b− a)

n− 1

That is, there aren numbers at regular intervals starting froma and ending withb.

This example shows a list of four numbers from 25 to 40.

$ fun flo --m="ari4/25. 40." --c
<

2.500000e+01,
3.000000e+01,
3.500000e+01,
4.000000e+01>

geo

Given a natural numbern this function returns a function that takes a pair of posi-
tive floating point numbers(a, b) to a list ofn floating point numbers〈x1 . . . xn〉 in
geometric progression froma to b. That is,

xi = a exp

(
i− 1

n− 1
ln

b

a

)

The following example shows a geometric progression from 10to 1000.

$ fun flo --m="geo5/10. 1000." --c
<

1.000000e+01,
3.162278e+01,
1.000000e+02,
3.162278e+02,
1.000000e+03>

13.7.4 Extrapolation

These two functions can be used to extapolate a convergent series and thereby estimate the
limit more efficiently than by direct computation.

levin limit

Given a list of floating point numbers〈x0 . . . xn〉, this function returns an estimate of
the limit ofxn asn approaches infinity, based on the Levin-u transform from the GNU
Scientific library.

335

This example shows the limit of a geometric series of numbersapproaching1.

$ fun flo --m="levin_limit <0.5,.75,.875,.9375>" --c
1.000000e-00

levin sum

Given a list of floating point numbers〈x0 . . . xn〉, this function returns an estimate of
the limit of the sum of the series

∑n

i=0 xi asn approaches infinity.

This example shows the limit of the sum of a series of whose terms approach zero.

$ fun flo --m="levin_sum <0.5,.25,.125,.0625>" --c
1.000000e+00

13.8 Statistical

A selection of functions pertaining to statistics is documented in this section. These in-
clude descriptive statistics on populations, random number generators, and probability
distributions.

13.8.1 Descriptive

The following functions compute standard moments and related parameters for data stored
in lists of floating point numbers.

mean

Given a list ofn numbers〈x1 . . . xn〉, this function returns the population mean, de-
fined as

x̄ =
1

n

n∑

i=1

xi

If the available data〈x1 . . . xn〉 are a sample of the population rather than the whole popu-
lation, a more statistically efficient estimator of the truemean hasn−1 in the denominator
rather thann. Users working with sample data may wish to define a differentversion of
this function accordingly.

variance

For a list of numbers〈x1 . . . xn〉, this function returns the variance, which is defined
as

1

n

n∑

i=1

(xi − x̄)2

wherex̄ is the mean as defined as above.

336

stdev

This function returns the standard deviation of a list of numbers, which is defined as
the square root of the variance.

covariance

Given a pair of lists of numbers(〈x1 . . . xn〉, 〈y1 . . . yn〉) of the same lengthn, this
function returns the covariance, which is defined as

1

n

n∑

i=1

(xi − x̄)(yi − ȳ)

In this expression,̄x is the mean of〈x1 . . . xn〉 andȳ is the mean of〈y1 . . . yn〉 as defined
above.

correlation

This function takes a pair of lists of numbers to their correlation, which is defined as
the covariance divided by the product of the standard deviations.

13.8.2 Generative

A couple of functions are defined for pseudo-random number generation. Strictly speaking
they are not really functions because they may map the same argument to different results
on different occasions.

rand

This function returns a pseudo-random number uniformly distributed between zero
and one.

The following example shows five uniformly distributed pseudo-random numbers.

$ fun flo --m="rand * iota5" --c
<

2.066991e-02,
9.812020e-01,
1.900977e-01,
5.668466e-01,
6.280061e-01>

The results are derived from the virtual machine’s implementation of the Mersenne Twister
algorithm, as documented in theavram reference manual.

337

Z

This function returns a pseudo-random number normally distributed with a mean of
zero and a standard deviation of one. This distribution has aprobability density func-
tion given by

ρ(x) =
1√
2π

exp

(

−x
2

2

)

Here are a few normally distributed random numbers.

$ fun flo --m="Z * iota3" --c
<7.760865e-01,2.605296e-01,-5.365909e-01>

This function depends on the virtual machine’s interface totheRmath library, which must
be installed on host system in order for it to work.

13.8.3 Distributions

The functions described in this section provide cumulativeand inverse cumulative prob-
ability densities. Currently only the standard normal distribution is supported, as defined
above.

N

Given a numberx, this function returns

1√
2π

∫ x

−∞
exp

(

−x
2

2

)

dx

which is the probability that a random draw from a standard normal population will
be less thanx.

Q

Given a numbery, this function returns a numberx satisfying

y =
1√
2π

∫ x

−∞
exp

(

−x
2

2

)

dx

It is therefore the inverse of the cumulative normal probability function defined above.

13.9 Conversion

Three functions allow conversions between floating point numbers and other types.

338

float

Given a natural numbern of type %n, this function returns the equivalent ofn in a
floating point representation.

A simple example demonstrates this function.

$ fun flo --m=float125 --c
1.250000e+02

floatz

Given an integern of type%z, this function returns the equivalent ofn in a floating
point representation.

Although natural numbers and positive integers have the same representation, thefloatz
function is necessary for coping with negative integers correctly. A negative argument to
thefloat function will have an unspecified result.

strtod

This function takes a character string as input and returns afloating point number
representation obtained by thestrtod function from the host system’s C library.
The same syntax for floating point numbers as in C is acceptable. If the syntax is not
valid, a value of floating point 0 is returned.

Here is an example of thestrtod function.

$ fun flo --m="strtod ’6.023e23’" --c
6.023000e+23

printf

This function takes a pair(f, x) as an argument. The left sidef is a character string
containing a C style format conversion for exactly one double precision floating point
number, such as’%0.4e’ , and the parameterx is a floating point number. The result
returned is a character string expressing the number in the specified format.

Here is an example of theprintf function being used to printπ in fixed decimal format
with five decimal places.

$ fun flo --m="printf/’%0.5f’ pi" --c %s
’3.14159’

339

The higher I go, the crookeder it becomes.

Al Pacino inThe Godfather, Part III

14
Curve fitting

A selection of functions in support of curve fitting or interpolation is provided in thefit
library. These include piecewise polynomial and sinusoidal interpolation methods, avail-
able in both IEEE standard floating point and arbitrary precision arithmetic by way of the
virtual machine’s interface to thempfr library. There are also functions for differentiation
and higher dimensional interpolation.

The functions in this chapter are suitable for finding exact fits for data sets associating
a unique output with each possible input. Readers requiringleast squares regression or
generalizations thereof may find thelapack library helpful, particularly the functions
dgelsd anddggglm , which are conveniently accessible by way of the virtual machine’s
lapack interface as documented in theavram reference manual.

14.1 Interpolating function generators

The functions in this section take a set of points as an argment and return a function fitting
through the points as a result.

plin

Given a set of pairs of floating point numbers{(x0, y0) . . . (xn, yn)}, this function
returns a functionf such thatf(xi) = yi for any (xi, yi) in the data set, andf(x) is
the linearly interpolatedy value for any intermediatex.

Piecewise linear interpolation is an expedient method based on approximating the given
function with connected linear functions. An illustrationis given in Figure 14.1. Note that
there is no requirement for the points to be equally spaced. The following example shows
how theplin function can be used.

340

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

Figure 14.1: piecewise linear interpolation

$ fun flo fit --m="plin<(1.,2.),(3.,4.)> * ari5/1. 3." --c
<

2.000000e+00,
2.500000e+00,
3.000000e+00,
3.500000e+00,
4.000000e+00>

sinusoid

Given a set of pairs of floating point numbers{(x0, y0) . . . (xn, yn)}, this function
returns a functionf such thatf(xi) = yi for any (xi, yi) in the data set, andf(x) is
the sinusoidally interpolatedy value for any intermediatex.

mp sinusoid

This function follows the same conventions as thesinusoid function, but uses ar-
bitrary precision numbers inmpfr format as inputs and outputs.

For the latter function, The precision of numbers used in thecalculations is determined by
the precision of the numbers in the input data set.

As the names imply, these functions use a sinusoidal interpolation method. For equally
spaced values ofxi, the function that they construct is evaluated by

f(x) =

n∑

i=0

yi
sin(ω(x− xi))

x− xi

341

for values ofx other thanxi, with a suitable choice ofω.

• A function of this form has the property of being continuous and non-vanishing in all
derivatives, and is also the minimum bandwidth solution.

• If the numbersxi are not equally spaced, the spacing is adjusted by a cubic spline
transformation to make this form applicable.

• Large variations in spacing may induce spurious high frequency oscillations or dis-
continuities in higher derivatives.

one piece polynomial

Given a set of pairs of floating point numbers{(x0, y0) . . . (xn, yn)}, this function
returns a functionf of the form

f(x) =
n∑

i=0

cix
i

with ci chosen to ensuref(xi) = yi for all (xi, yi) in the set.

mp one piece polynomial

This function is the same as the one above except that it uses arbitrary precision num-
bers inmpfr format. The precision of numbers used in the calculations isdetermined
by the input set.

With only two input points, theone_piece_polynomial degenerates to linear inter-
polation, as this example suggests.

$ fun fit -m="one_piece_polynomial{(1.,1.),(2.,2.)} 1.5 " -c
1.500000e+00

However, for linear interpolation, theplin function documented previously is more effi-
cient.

The polynomial interpolation function is obviously differentiable and arguably an aes-
thetically appealing curve shape, but it is prone to inferring extrema that are not warranted
by the data, making it too naive a choice for most curve fittingapplications.

14.2 Higher order interpolating function generators

The functions documented in this section allow for the construction of families of interpo-
lating functions parameterized by various means. There is apiecewise polynomial inter-
polation method with selectable order similar to the conventional cubic spline method, a
higher dimensional interpolation function, and a functionfor differentiation of polynomi-
als obtained by interpolation.

342

chord fit

This function takes a natural numbern as an argument, and returns a function that
takes a set of pairs of floating point numbers{(x0, y0) . . . (xm, ym)} to a functionf
satisfyingf(xi) = yi for all points in the set. For other values ofx, the functionf
returns a numbery obtained by piecewise polynomial interpolation using polynomials
of ordern+ 3 or less.

mp chord fit

This function is similar to the one above but uses arbitrary precision numbers inmpfr
format. The precision of the numbers used in the calculations is determined by the
precision of the numbers in the input data set.

Thechord_fit functions generate functionsf having the property that

f ′(xi) =
f(xi+1)− f(xi−1)

xi+1 − xi−1

for the interior data pointsxi, wheref ′ is the first derivative off . That is to say, the tangent
to the curve at any givenxi from the data set is parallel to the chord passing through the
neighboring points. Any additional degrees of freedom afforded by the ordern are used to
meet the analogous conditions for higher derivatives.

• Numerical instability imposes a practical limit ofn = 3 for the fixed precision ver-
sion.

• Higher orders are feasible for the arbitrary precision version provided that the num-
bers in the input list are of suitably high precision.

• There is unlikely to be any visually discernible differencein a plot of the curve for
orders higher than 3.

A qualitative comparison of the three interpolation methods discussed hitherto is af-
forded by Figure 14.2. The figure includes one curve made by each method for the same
randomly generated data set. The spline interpolation is made by thechord_fit func-
tion with a value ofn equal to 0. It can be seen that the piecewise interpolation fits the
data most faithfully, and is generally to be preferred for most data visualization or numer-
ical work. The sinusoidal fit has a more wave-like appearancewith symmetric peaks and
troughs, of possible interest in signal processing applications. The one piece polynomial
fit exhibits extreme fluctuations.

poly dif

This function takes a natural numbern as an argument, and returns a function that
takes a functionf as an argument to a functionf ′. The functionf is required to be
an interpolating function generated by either of theone piece polynomial or
chord fit functions. The functionf ′ will be then-th derivative off .

343

spline

0.00

0.25

0.50

0.75

1.00

0.00 0.20 0.40 0.60 0.80 1.00

b b

b

b

b

b

sinusoidal

0.00

0.25

0.50

0.75

1.00

0.00 0.20 0.40 0.60 0.80 1.00

b b

b

b

b

b

polynomial

0.00

0.25

0.50

0.75

1.00

0.00 0.20 0.40 0.60 0.80 1.00

b b

b

b

b

b

Figure 14.2: three kinds of interpolation

344

spline

-6.82

-4.47

-2.11

0.25

2.61

4.97

0.00 0.20 0.40 0.60 0.80 1.00

polynomial

-21.91

-16.46

-11.00

-5.55

-0.10

5.35

0.00 0.20 0.40 0.60 0.80 1.00

Figure 14.3: first derivatives of Figure 14.2 by thepoly dif function

Thepoly_dif function is specific to polynomial interpolating functionsbecause it de-
compiles them based on the assumption that they have a certain form. Thederivative
function from theflo library can be used for differentiation in more general cases. How-
ever, differentiation by thepoly_dif function is more accurate and efficient where pos-
sible.

Figure 14.3 shows plots of the first derivatives of the polynomial functions in Fig-
ure 14.2 as obtained by thepoly_dif function. Figure 14.4 shows the same functions
differentiated by thederivative function for comparison, as well as the first derivative
of the sinusoidal interpolation.

• It can be noted from these figures that the piecewise interpolation is continuous but
not smooth in the first derivative, and hence discontinuous in higher derivatives.

345

spline

-6.82

-4.47

-2.11

0.25

2.61

4.97

0.00 0.20 0.40 0.60 0.80 1.00

sinusoidal

-5.57

-3.54

-1.52

0.51

2.54

4.56

0.00 0.20 0.40 0.60 0.80 1.00

polynomial

-21.91

-16.46

-11.00

-5.55

-0.10

5.35

0.00 0.20 0.40 0.60 0.80 1.00

Figure 14.4: first derivatives of Figure 14.2 by theflo-derivative function

346

• The first and last intervals have linear first derivatives because only second degree
polynomials are used there.

The interpolation methods described hitherto can be generalized to functions of any
number of variables in a standard form by the higher order function described next. The
function itself is meant to be parameterized by one of the generators (that is,plin ,
sinusoid , mp sinusoid , chord fit n, or one piece polynomial). It yields
a generator taking points in a higher dimensional space specified by a lists of two or more
input values per point.

multivariate

This function takes an interpolating function generatorg for functions of one variable
and returns an interpolating function generatorG for functions of many variables.

• The input functiong should take a set of pairs{(x1, f(x1)) . . . (xn, f(xn))} as
input, and return an interpolating function̂f .

– Forxi in the given data set,̂f(xi) = f(xi).

– For other inputsz, a corresponding output is interpolated byf̂ .

• The output functionG will take a set of lists as input,

{〈x11 . . . x1n, F 〈x11 . . . x1n〉〉 . . . 〈xm1 . . . xmn, F 〈xm1 . . . xmn〉〉}

wherem =
∏

j |
⋃

i{xij}|, and return an interpolating function̂F .

– For lists of values〈xi1 . . . xin〉 in the given data set,

F̂ 〈xi1 . . . xin〉 = F 〈xi1 . . . xin〉

– For other inputs〈z1 . . . zn〉, an output value is interpolated bŷF .

Intuitively, the technical condition onm means that the interpolation function generatorG
depends on the assumption of thexij values forming a fully populated orthogonal array.
For eachj, there are

dj =
∣
∣
⋃

i

{xij}
∣
∣

distinct values forxij . The numberdj can be visualized as the number of hyperplanes
perpendicular to thej-th axis, or as thej-th dimension of the array. The product ofdj
overj is the number of points required to occupy every position, hence the total number
of points in the data set. A diagnostic message of “invalid transpose ” may be
reported if the data set does not meet this condition, or erroneous results may be obtained.

The interpolation algorithm can be explained as follows. Ifn = 1, the problem re-
duces to the one dimensional case. For interpolation in higher dimensions, it is solved
recursively.

347

x y z

0.00 0.00 0.76476544
1.00 0.91931626
2.00 -2.60410277
3.00 7.35946680

1.00 0.00 -5.05349099
1.00 -4.06599595
2.00 -1.02829526
3.00 -8.83046108

2.00 0.00 0.91525110
1.00 -4.08125924
2.00 5.54509092
3.00 5.68363915

3.00 0.00 2.60476835
1.00 1.86059152
2.00 -1.41751767
3.00 -2.46337713

Table 14.1: randomly generated discrete bivariate function with inputs(x, y) and outputz

• For eachXk ∈
⋃

i{xi1} with k ranging from1 to d1, a lower dimensional interpolat-
ing functionfk is constructed from the set of points shown below.

fk = G{〈x12 . . . x1n, F 〈Xk, x12 . . . x1n〉〉 . . . 〈xm2 . . . xmn, F 〈Xk, xm2 . . . xmn〉〉}

• To interpolate a value of̂F for an arbitrary given input〈z1 . . . zn〉, a one dimensional
interpolating functionh is constructed from this set of points

h = g{(X1, f1〈z2 . . . zn〉) . . . (Xd1 , fd1〈z2 . . . zn〉)}

andF̂ 〈z1 . . . zn〉 is taken to beh(z1).

Three small examples of two dimensional interpolation are shown in Figures 14.5
through 14.7. These surfaces are interpolated from the randomly generated data shown
in Table 14.1. Figure 14.5 is generated by the functionmultivariate chord_fit0 .
Figure 14.6 is generated bymultivariate sinusoid , and Figure 14.7 is generated
by multivariate one_piece_polynomial . Qualitative differences in the shapes
of the surfaces are commended to the reader’s attention. Note that the vertical scales differ.

348

0.00

0.60

1.20

1.80

2.40

3.00

x

0.
00

0.
60

1.
20

1.
80

2.
40

3.
00

y

-8.83

-5.59

-2.35

0.88

4.12

7.36

z

Figure 14.5: spline interpolation of Table 14.1

349

0.00

0.60

1.20

1.80

2.40

3.00

x

0.
00

0.
60

1.
20

1.
80

2.
40

3.
00

y

-8.83

-5.39

-1.94

1.51

4.95

8.40

z

Figure 14.6: sinusoidal interpolation of Table 14.1

350

0.00

0.60

1.20

1.80

2.40

3.00

x

0.
00

0.
60

1.
20

1.
80

2.
40

3.
00

y

-9.76

-5.96

-2.16

1.64

5.44

9.24

z

Figure 14.7: polynomial interpolation of Table 14.1

351

As you are undoubtedly gathering, the anomaly is systemic,
creating fluctuations in even the most simplistic equations.

The Architect inThe Matrix Reloaded

15
Continuous deformations

Several functions meant to expedite the task of mapping infinite continua to finite or semi-
infinite subsets of themselves are provided by thecop library. Aside from general math-
ematical modelling applications, the main motivation for these functions is to adapt an
unconstrained non-linear optimization solver such asminpak to constrained optimiza-
tion problems by a change of variables.

The non-linear optimizers currently supported by virtual machine interfaces,minpack
andkinsol , also allow a Jacobian matrix to be supplied by the user in either of two forms,
which can be evaluated numerically by functions in this library.

15.1 Changes of variables

The functions documented in this section pertain to continuous maps of infinite intervals
to finite or semi-infinite intervals.

half line

This function takes a floating point numberx and returns the number
(
1 + tanh(x/k)

2

)√
x2 + 4

wherek is a fixed constant equal to2.60080714.

The half_line function is plotted in Figure 15.1. Its purpose is to serve asa smooth
map of the real line to the positive half line.

• Negative numbers are mapped to the interval0 . . . 1.

352

half line x

0.00

1.00

2.00

3.00

4.00

5.00

x

-5 -4 -3 -2 -1 0 1 2 3 4 5

Figure 15.1: thehalf line function maps the real line to the positive half line

(half line x)− x

0.272

0.273

0.274

0.275

0.276

0.277

0.278

0.279

x
3.00 3.40 3.80 4.20 4.60 5.00

Figure 15.2: thehalf line function converges monotonically on the positive side

353

• Positive numbers are mapped to the interval1 . . .∞.

• For large positive values ofx, the function returns a value approximately equal tox.

• The constantk is chosen as the maximum value consistent with monotonic conver-
gence from above, as shown in Figure 15.2.

The value ofk is obtained by globally optimizing the function’s first derivative subject to
the constraint that it doesn’t exceed 1.

over

Given a floating point numberh, this function returns a functionf that maps the real
line to the intervalh . . .∞ according tof(x) = h+ half line (x− h)

under

Given a floating point numberh, this function returns a functionf that maps the real
line to the interval−∞ . . . h according tof(x) = h− half line (h− x).

Similarly to thehalf_line function, over h has a fixed point at infinity, whereas
under h has a fixed point at negative infinity.

between

This function takes a pair of floating point numbers(a, b) with a < b and returns a
functionf that maps the real line to the intervala . . . b.

• If a andb are infinite, thenf is the identity function.

• If a is infinite andb is finite, thenf = under b.

• If a is finite andb is infinite, thenf = over a.

• If a andb are both finite, then

f(x) = c+ w tanh
x− c

w

wherec = (a+ b)/2 andw = b− a.

For the finite case, the functionf has a fixed point and unit slope atx = c, the center of
the interval.

chov

This function takes a list of pairs of floating point numbers〈(a0, b0) . . . (an, bn)〉, and
returns a function that maps a list of floating point numbers〈x0 . . . xn〉 to a list of
floating point numbers〈y0 . . . yn〉 such thatyi = (between (ai, bi)) xi.

354

To solve a constrained non-linear optimization problem fora functionf : Rn → Rm with
initial guessi ∈ Rn and optimal outputo ∈ Rm an expression of the form

x = (chov c) minpack..lmdir(f+ chov c, i, o)

can be used, wherec = 〈(a1, b1) . . . (an, bn)〉 expresses constraints on each variable in the
domain off .

15.2 Partial differentiation

The functions documented in this section are suitable for obtaining partial derivatives of
real valued functions of several variables.

jacobian

Given a pair of natural numbers(m,n), this function returns a function that takes a
functionf : Rn → Rm as an input, and returns a functionJ : Rn → Rm×n as an output.
The input tof andJ is represented as a list〈x1 . . . xn〉 of floating point numbers. The
output fromf is represented as a list of floating point numbers〈y1 . . . ym〉, and the
output fromJ as a list of lists of floating point numbers

〈〈d11 . . . d1n〉 . . . 〈dm1 . . . dmn〉〉

For eachi ranging from1 tom, and for eachj ranging from1 to n, the value ofdij is
the incremental change observed in the value ofyi per unit of difference inxj whenf
is applied to the argument〈x1 . . . xn〉.

The Jacobian is customarily envisioned as a matrix of partial derivatives. If the function
f is expressed in terms of an ensemble ofm single valued functions ofn variables,

f = <. f1 . . . fm>

thenJ〈x1 . . . xn〉 contains entriesdij given by

dij =
∂fi
∂xj

〈x1 . . . xn〉

with these differences evaluated by the differentiation routines from the GNU Scientific
Library. This representation of the Jacobian matrix is consistent with calling conventions
used by the virtual machine’skinsol andminpack interfaces.

A simple example of thejacobian function is shown in Listing 15.1. When this
source text is compiled, the following results are displayed.

$ fun flo cop jac.fun --show
<

<1.000000e-00,1.000000e-00>,
<0.000000e+00,-9.040721e-01>,
<2.700000e+00,1.400000e+00>>

355

Listing 15.1 example of Jacobian function usage

#import std
#import nat
#import flo
#import cop

f = <.plus:-0.,sin+˜&th,times+˜&hthPX>

d = %eLLP (jacobian(3,2) f) <1.4,2.7>

A more complicated example of thejacobian function is shown in Listing 1.6 on
page 33.

jacobian row

Given a natural numbern, this function constructs a function that takes a function
f : Rn → Rm as an input, and returns a functionJ : ({0 . . .m − 1} × Rn) → Rn as
an output.

• The input tof is represented as a list of floating point numbers〈x1 . . . xn〉.
• The output fromf is represented as a list of floating point numbers〈y1 . . . ym〉.
• The input toJ is represented as a pair(i, 〈x1 . . . xn〉), wherei is a natural number

from 0 tom− 1, andxj is a floating point number.

• The output fromJ is represented as a list of floating point numbers〈d1 . . . dn〉.
For eachj ranging from1 to n, the value ofdj is the incremental change observed
in the value ofyi+1 per unit of difference inxj whenf is applied to the argument
〈x1 . . . xn〉.

The purpose of thejacobian_row function is to allow an individual row of the Jacobian
matrix to be computed without computing the whole matrix. The numberi in the argument
(i, 〈x1 . . . xn〉) to the function(jacobian_row n) f is the row number, starting from
zero. A definition ofjacobian in terms ofjacobian_row would be the following.

jacobian("m","n") "f" = (jacobian_row"n" "f") * + iota"m" * -

Several functions in thekinsol andminpack library interfaces allow the Jacobian to
be specified by a function with these calling conventions, soas to save time or memory
in large optimization problems. Further details are documented in theavram reference
manual.

356

Can you learn stuff that you haven’t been programmed with,
so you can be, you know, more human, and not such a dork
all the time?

John Connor inTerminator 2 – Judgment Day

16
Linear programming

The lin library contains functions and data structures in support of linear programming
problems. These features attempt to present a convenient, high level interface to the virtual
machine’s linear programming facilities, which are provided currently by the free third
party librariesglpk andlpsolve . Enhancements to the basic interface include symbolic
names for variables, positive and negative solutions, and costs proportional to magnitudes.

A few standard matrix operations are also included in this library as wrappers for the
more frequently used virtual machine library functions, such as solutions of sparse systems
and solutions in arbitrary precision arithmetic using thempfr library.

Replacement functions implemented in virtual code are automatically invoked on plat-
forms lacking interfaces to some of these libraries (lapack , umf , and lpsolve or
glpk). These allow a nominal form of cross platform compatibility, but are not com-
petitive in performance with native code implementations.

16.1 Matrix operations

The mathematical concept of ann × m matrix has a concrete representation as a list of
lists of numbers, with one list for each row of the matrix as this diagram depicts.





a11 . . . a1m
...

. . .
...

an1 . . . anm



 ⇔

<
<a11 . . . a1m>,
...
<an1 . . . anm>>

This representation is assumed by the matrix operations documented in this section except
as otherwise noted, and by the virtual machine model in general.

357

mmult

Given a pair of lists of lists of floating point numbers(a, b) representing matrices, this
function returns a list of lists of floating point numbers representing their product, the
matrix c = ab. For anm× n matrixa and ann× p matrix b, the productc is defined
as thenm× p matrix with

cij =

n∑

k=1

aikbkj

minverse

Given a list of lists of floating point numbers representing an n × n matrix a, this
function returns a matrixb satisfyingab = I if it exists, whereI is then× n identity
matrix. If no suchb exists, the result is unspecified. The identity matrix is defined as
that which hasIij = 1 for i equal toj, and zero otherwise.

Computing the inverse of a matrix may be of pedagogical interest but is less efficient for
solving systems of equations than the following function. This rule of thumb applies even
if a given matrix needs to be solved with many different vectors, and even if the inverse
can be computed at no cost (i.e., off line in advance).

msolve

Given a pair(a, b) representing ann× n matrix and ann× 1 matrix of floating point
numbers, respectively, this function returns a representation of ann × 1 matrix x
satisfyingax = b. Contrary to the usual representation of matrices as lists of lists, this
function representsb andx as lists〈b11 . . . bn1〉 and〈x11 . . . xn1〉.

The msolve function calls the correspondinglapack routine if available, but other-
wise solves the system in virtual code using a Gauss-Jordan elimination procedure with
pivoting.

mp solve

This function has the same calling conventions asmsolve , but uses arbitrary preci-
sion numbers inmpfr format (type%E).

sparso

This function solves the matrix equationax = b for x given the pair(a, b) wherea has
a sparse matrix representation, andx andb are represented as lists〈x11 . . . xn1〉 and
〈b11 . . . bn1〉. The sparse matrix representation is the list of tuples((i − 1, j − 1), aij)
wherein only the non-zero values ofaij are given, andi andj are natural numbers.

358

mp sparso

This function has the same calling conventions assparso but solves systems using
arbitrary precision numbers inmpfr format.

The sparso function will use theumf library for solving sparse systems efficiently if
the virtual machine is configured with an interface to it. If not, the system is converted
to the dense representation and solved bymsolve . There is no native code sparse ma-
trix solver formpfr numbers, somp_sparso always converts its input to dense matrix
representations and solves it bymp_solve .

16.2 Continuous linear programming

There are two linear programming solvers in this library, with one closely following the
calling convention of the virtual machine interfaces toglpk andlpsolve , and the other
allowing a higher level, symbolic specification of the problem. The latter employs a record
data structure as documented below.

16.2.1 Data structures

The linear programming problem in standard form is that of finding ann× 1 matrixX to
minimize a costCX for a known1× n matrixC, subject to the constraints thatAX = B
for given matricesA andB, and allXi1 ≥ 0.

Letting xi = Xi1, bi = Bi1, ci = C1i, andz =
∑n

i=1 cixi the constraintAX = B is
equivalent to a system of linear equations.

n∑

j=1

Aijxj = bi

In practice, mostAij values are zero. A more user-friendly formulation of this problem
than the standard form would admit the following features.

• constraints on the variablesxi having arbitrary upper and lower bounds

li ≤ xi ≤ ui

• costs allowed to depend on magnitudes

z +
n∑

i=1

ti|xi|

• an assignment of symbolic names tox values〈s1 : x1, . . . sn : xn〉
• the system of equations encoded as a list of pairs of the form(〈(Aij , sj) . . . 〉, bi) with

only the non-zero coefficientsAij enumerated

359

A record data structure is used to encode the problem specification in the latter form,
making it suitable for automatic conversion to the standardform.

linear system

This function is the mnemonic for a record having the following field identifiers,
which specifies a linear programming problem in terms of the notation introduced
above, with numeric values represented as floating point numbers andsi values as
character strings.

• lower bounds – the set of assignments{s1 : l1 . . . sn : ln}
• upper bounds – the set of assignments{s1 :u1 . . . sn :un}
• costs – the set of assignments{s1 :c1 . . . sn :cn}
• taxes – the set of assignments{s1 : t1 . . . sn : tn}
• equations – the set{({(Aij , sj) . . . }, bi) . . . }
• derivations – a field used internally by the library

The members of these sets may of course be given in any order. Any unspecified
bounds are treated as unconstrained. All costs must be specified but taxes are optional.

For performance reasons, this record structure performs novalidation or automatic initial-
ization, so the user is required to construct it consistently.

16.2.2 Functions

The following functions are used in solving linear programming problems.

standard form

This function takes a record of typelinear system and transforms it to the
standard from by defining supplementary variables and equations as needed.

• All lower bounds are transformed to zero.

• All upper bounds are transformed to infinity.

• Thetaxes are transformed tocosts .

Information allowing a solution of the original specification to be inferred from a
solution of the transformed system is stored in thederivations field.

Thestandard_form function doesn’t need to be used explicitly unless these transfor-
mations are of some independent interest, because it is invoked automatically by the next
function.

360

solution

Given a record of type linear system specifying a linear programming prob-
lem, this function returns a list of assignments〈si : xi, . . . 〉, where eachsi is a sym-
bolic name for a variable obtained from theequations field, andxi is a floating
point number giving the optimum value of the variable. Variables equal to zero are
omitted. If no feasible solution exists, the empty list is returned.

lp solver

This function solves linear programming problems by a low level, high performance
interface. The input to the function is a linear programmingproblem specified by a
triple

(〈c1 . . . cn〉, 〈((i− 1, j − 1), Aij) . . . 〉, 〈b1 . . . bm〉)
whereci andbi are as documented in Section 16.2.1, and the remaining parameter is
the sparse matrix representation of the constraint matrixA as explained in relation to
thesparso function on page 358. The result is a list of pairs〈(i− 1, xi) . . . 〉, giving
the optimum value of each non-zero variable with its index numbered from zero as a
natural number. If no feasible solution exists, the empty list is returned.

The lp_solver function is called by thesolution function, and it calls one of the
glpk or lpsolve functions to do the real work. If the virtual machine is not configured
with interfaces to these libraries, it falls through to thisreplacement function.

replacement lp solver

This function has identical semantics and calling conventions to thelp solver
function documented above.

The replacement function is implemented purely in virtual code without callinglpsolve
or glpk and can serve as a correct reference implementation of a linear programming
solver for testing purposes, but it is too slow for production use, mainly because it exhaus-
tively samples every vertex of the convex hull.

16.3 Integer programming

Integer programming problems are an additionally constrained form of linear program-
ming problems in which the solutionsxi are required to take integer values. If some but not
all xi are required to be integers, then the problem is called a mixed integer programming
problem.

Current versions of the virtual machine can be configured with an interface to the
lpsolve library providing for the solution of integer and mixed integer programming

361

problems, and this capability is accessible in Ursala by wayof the lin library.1 An inte-
ger programming problem is indicated by setting either or both of these to additional fields
in the linear system data structure.

• integers – an optional set of symbolic names{si . . . sj} identifying the integer
variables

• binaries – an optional set of symbolic names{si . . . sj} identifying the binary
variables

The binary variables not only are integers but are constrained to take values of 0 or 1.
These sets must be subsets of the names of variables appearing in theequations field.
A data structure with these fields initialized may be passed to thesolution function
as usual, and the solution, if found, will meet these constraints although it will still use
the floating point numeric representation. Solution of an integer programming problem is
considerably more time consuming than a comparable continuous case.

There is no replacement function for mixed integer programming problems, but there
is a lower level, higher performance interface suitable forapplications in which the the
standard form of the system is known.

mip solver

This function solves linear programming problems given a linear system as input in
the form

((〈bvk . . . 〉, 〈ivk . . . 〉), 〈c1 . . . cn〉, 〈((i− 1, j − 1), Aij) . . . 〉, 〈b1 . . . bm〉)

where natural numbersbv k are indices of binary variables,iv k are indices of integer
variables,ci andbi are as documented in Section 16.2.1, and the remaining parameter
is the sparse matrix representation of the constraint matrix A as explained in relation
to thesparso function on page 358. The result is a list of pairs〈(i − 1, xi) . . . 〉,
giving the optimum value of each non-zero variable with its index numbered from
zero as a natural number. If no feasible solution exists, theempty list is returned.

1The integer programming interface tolpsolve was introduced in Avram version 0.12.0, and remains backward compatible with
earlier code. The features described in this section were introduced in Ursala version 0.7.0.

362

I don’t set a fancy table, but my kitchen’s awful homey.

Anthony Perkins inPsycho

17
Tables

This chapter documents a small selection of functions intended to facilitate the construc-
tion of tables of numerical data with publication quality typesetting. These functions are
particularly useful for tables with hierarchical headingsthat might be more difficult to
typeset manually, and for tables whose contents come from the output of an application
developed in Ursala.

The tables are generated as LATEX code fragments meant to be included in a document or
presentation. They require the document that includes themto use the LATEX booktabs
package. The functions are defined in thetbl library.

17.1 Short tables

A table is viewed as having two parts, which are the headings and the body.

• The body is a list of columns, wherein each column is either a list of character strings
or a list of floating point numbers.

• The headings are a list of trees of lists of strings (type%sLTL).

– Each non-terminal node in a tree is a collective heading for the subheadings
below it.

– Each terminal node is a heading for an individual column.

– The total number of terminal nodes in the list of trees is equal to the number of
columns.

The character strings in the table headings or columns can contain any valid LATEX code.
Its validity is the user’s responsibility.

363

table

This function takes a natural numbern as an argument, and returns a function that
generates LATEX code for a tabular environment from an input(h, b) of type
%sLTLeLsLULX containing headingsh and a bodyb as described above. Any
columns in the body containing floating point numbers are typeset in fixed decimal
format withn decimal places.

A simple but complete example of a table constructed by this function is shown in List-
ing 17.1. In practice, the table contents are more likely to be generated algorithmically than
written manually in the source text, as the argument to thetable function can be any ex-
pression evaluated at compile time. The example is otherwise realistic insofar as it demon-
strates the typical way in which a table is written to a file by the#output dot’tex’
directive with the identity function as a formatter. An alternative would be the usage

#output dot’tex’ table3

atable = (headings,body)

with further variations possible. In any case, the table maythen be incorporated into a
document by a code fragment such as the following.

\usepackage{booktabs}
\begin{document}
...
\begin{table}
\begin{center}
\input{atable}
\end{center}
\caption{the tables are turning}
\label{alabel}
\end{table}

This code fragment is based on the assumption that the user intends to have the table
centered in a floating table environment, with a caption and label, but these choices are
all at the user’s option. Only the actualtabular environment is stored in the file. Also
note that the file name is the same as the identifier used in the source with the.tex suffix
appended, but the suffix is implicit in the LATEX code. See Section 7.4.4 on page 264 for
more information about the#output directive.

The result from Listing 17.1 is shown in Table 17.1. As the example shows, headings
with multiple strings are typeset on multiple lines, all headings are vertically centered, and
all columns are right justified.

A more complicated example of table heading specifications is shown on page 49 and
the result displayed in Table 1.1. These headings are generated algorithmically by the user
application in Listing 1.11.

364

Listing 17.1 simple example of thetable function usage

#import std
#import nat
#import tbl

headings = # a list of trees of lists of strings

<
<’name’>ˆ: <>, # table heading
<’foo’>ˆ: <

<’bar’,’baz’>ˆ: <>, # subheadings
<’rank’>ˆ: <>>>

body = # list of lists of either strings or numbers

<
<’x’,’y’,’z’>, # each list is a column
<1.,2.,3.>,
<4.,5.,6.>>

#output dot’tex’ ˜&

atable = table3(headings,body)

foo

name
bar
baz

rank

x 1.000 4.000
y 2.000 5.000
z 3.000 6.000

Table 17.1: table generated by Listing 17.1

365

Listing 17.2 usage of thesectioned table function

#import std
#import nat
#import tbl

headings = # a list of trees of lists of strings

<
<’name’>ˆ: <>,
<’foo’>ˆ: <<’bar’,’baz’>ˆ: <>,<’rank’>ˆ: <>>>

body = # a list of lists of columns

<
<<’u’,’v’,’w’>,<7.,8.,9.>,<0.,1.,2.>>,
<<’x’,’y’,’z’>,<1.,2.,3.>,<4.,5.,6.>>>

#output dot’tex’ ˜&

setab = sectioned_table3(headings,body)

sectioned table

This function takes a natural numbern to a function that takes a pair(h, b) to a LATEX
code fragment for a table with headingsh and bodyb. The bodyb is a list of lists
of columns (type%eLsLULL) with each list of columns to be typeset in a separate
section delimited by horizontal rules. Floating point numbers in the body are typeset
in fixed decimal format withn places.

Note that although the same headings can be used for a sectioned table as for a table, the
body of the latter is of a different type. An example of thesectioned_table function
is shown in Listing 17.2, and the table it generates is shown in Table 17.2, with horizontal
rules serving to separate the table sections.

There is no automatic provision for vertical rules, becausethe author of the LATEX
booktabs package considers vertical rules bad typographic design intables, but users
may elect to customize the output table manually or by any post processor of their design.

17.2 Long tables

A couple of functions documented in this section are useful for constructing tables that are
too long to fit on a page. These require the document that includes them to use the LATEX
longtable package.

The general approach is to construct tables normally by one of the functions described
previously (table or sectioned_table), and then to transform the result to a long

366

foo

name
bar
baz

rank

u 7.000 0.000
v 8.000 1.000
w 9.000 2.000

x 1.000 4.000
y 2.000 5.000
z 3.000 6.000

Table 17.2: the table generated by Listing 17.2

table format by way of a post processing operation. Thelongtable environment com-
bines aspects of the ordinarytable andtabular environments, precluding postpone-
ment of the choice of a caption and label as in previous examples, and hence requiring
calling conventions such as the following.

elongation

Given a character string containing LATEX code specifying a title, this function returns
a function that transforms a giventabular environment in a list of strings to the
correspondinglongtable environment having that title.

A typical usage of this function would be in an expression of the form

elongation 〈title〉 ([sectioned_]table n) (〈headings〉, 〈body〉)

label

Given a character string specifying a label, this function returns a function that trans-
forms a givenlongtable environment in a list of strings to alongtable envi-
ronment having that label.

A typical usage of this function would be in an expression of the form

label 〈name〉 elongation 〈title〉 ([sectioned_]table n) (〈headings〉, 〈body〉)

The table thus obtained can be cross referenced in the document by the usual LATEX label
features such as\ref{ 〈name〉} and\pageref{ 〈name〉} .

17.3 Utilities

A further couple of functions described in this section may be helpful in preparing the
contents of a table.

367

Listing 17.3 some uses of thevwrap function

#import std
#import nat
#import tbl

#output dot’tex’ table0

chab = # ISO codes for upper and lower case letters

vwrap5(
˜&iNCNVS <’letter’,’code’>,
<.˜&rNCS,˜&hS+ %nP * + ˜&lS> ˜&riK10\letters num characters)

pows = # first seven powers of numbers 1 to 7

vwrap7(
˜&iNCNVS <’n’,’m’,’$nˆm$’>,
˜&hSS %nP** <.˜&lS,˜&rS,power * > ˜&ttK0 iota 8)

letter code letter code letter code letter code letter code

A 65 L 76 W 87 h 104 s 115
B 66 M 77 X 88 i 105 t 116
C 67 N 78 Y 89 j 106 u 117
D 68 O 79 Z 90 k 107 v 118
E 69 P 80 a 97 l 108 w 119
F 70 Q 81 b 98 m 109 x 120
G 71 R 82 c 99 n 110 y 121
H 72 S 83 d 100 o 111 z 122
I 73 T 84 e 101 p 112
J 74 U 85 f 102 q 113

K 75 V 86 g 103 r 114

Table 17.3: character table generated by Listing 17.3

n m nm n nm n nm n nm n nm n nm n nm

1 1 1 2 2 3 3 4 4 5 5 6 6 7 7
1 2 1 2 4 3 9 4 16 5 25 6 36 7 49
1 3 1 2 8 3 27 4 64 5 125 6 216 7 343
1 4 1 2 16 3 81 4 256 5 625 6 1296 7 2401
1 5 1 2 32 3 243 4 1024 5 3125 6 7776 7 16807
1 6 1 2 64 3 729 4 4096 5 15625 6 46656 7 117649
1 7 1 2 128 3 2187 4 16384 5 78125 6 279936 7 823543

Table 17.4: table of powers generated by Listing 17.3

368

vwrap

This function takes a natural numbern as an argument, and returns a function
that transforms the headings and body of a table given as a pair (h, b) of type
%sLTLeLsLULX to a result of the same type. The transformation partitions the
columns vertically inton approximately equal parts and places them side by side,
with the headings adjusted accordingly. Repeated columns in the result are deleted.

If a table is narrow enough that most of the space beside it on apage is wasted, thevwrap
function allows a more space efficient alternative layout tobe generated with no manual
revisions to the heading and column specifications required.

Two examples of thevwrap function are shown in Listing 17.3, with the resulting
tables displayed in Table 17.3 and Table 17.4. Without thevwrap function, both tables
would have only two or three narrow columns and be too long to fit on the page.

Table 17.4 demonstrates the effect of deleting repeated columns by thevwrap func-
tion. Because the same values ofm are applicable across the table, the column form is
displayed only once. A table made from the original body in Listing 17.3 would have
included the repeatedm values.

scientific notation

This function takes a character string as an argument and detects whether it is a syntac-
tically valid decimal number in exponential notation. If not, the argument is returned
as the result. In the alternative, the result is a LATEX code fragment to typeset the
number as a product of the mantissa and a power of ten.

This function can be demonstrated as follows.

$ fun tbl --m="scientific_notation ’6.022e+23’" --c %s
’6.022$\times 10ˆ{23}$’

The result appears as 6.022×1023 in a typeset document.
The scientific_notation function need not be invoked explicitly to get this

effect in a table, because it applies automatically to any column whose entries are char-
acter strings in exponential format. Floating point numbers can be converted to strings in
exponential format by theprintf function as explained in Section 13.9.

369

The core network of the grid must be accessed.

The Keymaker inThe Matrix Reloaded

18
Lattices

Data of typet%G, using the grid type constructor explained in Chapter 3, aresupported by
a variety of operations defined in thelat library and documented in this chapter. These
include basic construction and deconstruction functions,iterators analogous to some of the
usual operations on lists, and higher order functions implementing the induction patterns
that are the main reason for using lattices.

18.1 Constructors

The first thing necessary for using a lattice is to construct one, which can be done easily
by thegrid function.

grid

This function takes a pair with a list of lists of vertices on the left and a list of adjacency
relations on the right,(〈〈v00 . . . v0n0

〉 . . . 〈vm0 . . . vmnm
〉〉, 〈e0 . . . em−1〉). It returns a

lattice populated by the vertices and connected according to the adjacency relations.

• The i-th adjacency relationei is a function taking pairs of vertices(vij , vi+1,k)
as input, with the left vertex from thei-th list and the right vertex from the
succeeding one.

• A connection is made between any pair of vertices(vij , vi+1,k) for which the
corresponding relationei returns a non-empty value.

• Any vertex not reachable by some sequence of connections originating from at
least one vertexv0j in the first list is omitted from the output lattice.

370

Thegrid function allows the input list of adjacency relations to be truncated if subsequent
relations are the same as the last one in the list.

A few small examples of lattices constructed by this function should clarify the de-
scription. In these examples, the verticies are the characters‘a , ‘b , ‘c and‘d , expressed
in strings rather than lists for brevity. The first example shows a fully connected lattice,
which is obtained by using a (truncated) list of adjacency relations that are always true.1

$ fun lat --m="grid/<’a’,’ab’,’abc’,’abcd’> <&!>" --c %cG
<

[0:0: ‘aˆ: <1:0,1:1>],
[

1:1: ‘bˆ: <2:0,2:1,2:2>,
1:0: ‘aˆ: <2:0,2:1,2:2>],

[
2:2: ‘cˆ: <2:0,2:1,2:2,2:3>,
2:1: ‘bˆ: <2:0,2:1,2:2,2:3>,
2:0: ‘aˆ: <2:0,2:1,2:2,2:3>],

[
2:3: ‘dˆ: <>,
2:2: ‘cˆ: <>,
2:1: ‘bˆ: <>,
2:0: ‘aˆ: <>]>

This example shows a lattice with each letter connected onlyto those that don’t precede it
in the alphabet.

$ fun lat --m="grid/<’a’,’ab’,’abc’,’abcd’> <lleq>" --c % cG
<

[0:0: ‘aˆ: <1:0,1:1>],
[

1:1: ‘bˆ: <2:1,2:2>,
1:0: ‘aˆ: <2:0,2:1,2:2>],

[
2:2: ‘cˆ: <2:2,2:3>,
2:1: ‘bˆ: <2:1,2:2,2:3>,
2:0: ‘aˆ: <2:0,2:1,2:2,2:3>],

[
2:3: ‘dˆ: <>,
2:2: ‘cˆ: <>,
2:1: ‘bˆ: <>,
2:0: ‘aˆ: <>]>

The next example shows the degenerate case of a lattice obtained by using equality as the
adjacency relation, resulting in most letters being unreacheable and therefore omitted.

1Remember to executeset +H before trying this example to suppress interpretation of the exclamation point by the shell.

371

$ fun lat --m="grid/<’a’,’ab’,’abc’,’abcd’> <==>" --c %cG
<

[0:0: ‘aˆ: <0:0>],
[0:0: ‘aˆ: <0:0>],
[0:0: ‘aˆ: <0:0>],
[0:0: ‘aˆ: <>]>

Finally, we have an example of a lattice generated with a branching pattern chosen at
random. Each vertex has a50% probability of being connected to each vertex in the next
level.

$ fun lat --m="grid/<’a’,’ab’,’abc’,’abcd’> <50%˜>" --c % cG
<

[0:0: ‘aˆ: <1:0,1:1>],
[1:1: ‘bˆ: <1:0,1:1>,1:0: ‘aˆ: <1:0>],
[1:1: ‘cˆ: <2:1,2:2>,1:0: ‘aˆ: <2:0>],
[2:2: ‘dˆ: <>,2:1: ‘cˆ: <>,2:0: ‘bˆ: <>]>

Along with constructing a lattice goes the need to deconstruct one in order to access its
components. Several functions for this purpose follow.

levels

Given a lattice of the formgrid(< v00>: v, e) , (i.e., with a unique root vertexv00)
this function returns the list of lists of vertices<v00>: v, subject to the removal of
unreachable vertices.

lnodes

This function is equivalent tõ&L+ levels , and useful for making a list of the
nodes in a lattice without regard for their levels.

These functions can be demonstrated as follows.

$ fun lat --m="levels grid/<’a’,’ab’,’abc’> <&!>" --c %sL
<’a’,’ab’,’abc’>
$ fun lat --m="lnodes grid/<’a’,’ab’,’abc’> <&!>" --c %s
’aababc’

A unique root vertex is a needed for these algorithms, but this restriction is not severe in
practice because a root normally can be attached to a latticeif necessary.

edges

Given a lattice with a unique root vertex, this function returns the list of lists of ad-
dresses for the vertices by levels.

372

This function may be useful in user-definedad hoclattice deconstruction functions. Here
is an example.

$ fun lat --m="edges grid/<’a’,’ab’,’abc’> <&!>" --c %aLL
<<0:0>,<1:0,1:1>,<2:0,2:1,2:2>>

sever

Given a lattice of typet%G, with a unique root vertex, this function returns a lattice
of type t%GGby substituting each vertexv with the sub-lattice containing only the
vertices reachable fromv, while preserving their adjacency relation.

The following example demonstrates this function.

$ fun lat --m="sever grid/<’a’,’ab’,’abc’> <&!>" --c %cGG
<

[
0:0: ˆ:<1:0,1:1> <

[0:0: ‘aˆ: <1:0,1:1>],
[

1:1: ‘bˆ: <2:0,2:1,2:2>,
1:0: ‘aˆ: <2:0,2:1,2:2>],

[2:2: ‘cˆ: <>,2:1: ‘bˆ: <>,2:0: ‘aˆ: <>]>],
[

1:1: ˆ:<2:0,2:1,2:2> <
[0:0: ‘bˆ: <2:0,2:1,2:2>],
[2:2: ‘cˆ: <>,2:1: ‘bˆ: <>,2:0: ‘aˆ: <>]>,

1:0: ˆ:<2:0,2:1,2:2> <
[0:0: ‘aˆ: <2:0,2:1,2:2>],
[2:2: ‘cˆ: <>,2:1: ‘bˆ: <>,2:0: ‘aˆ: <>]>],

[
2:2: (<[0:0: ‘cˆ: <>]>)ˆ: <>,
2:1: (<[0:0: ‘bˆ: <>]>)ˆ: <>,
2:0: (<[0:0: ‘aˆ: <>]>)ˆ: <>]>

18.2 Combinators

The functions documented in this section are analogues to functions and combinators nor-
mally associated with lists, such as maps, folds, zips, and distributions. All of them require
lattices with a unique root vertex.

ldis

Given a pair(x, g) whereg is a lattice, this function returns a lattice derived fromg
by substituting each vertexv in g with the pair(x, v).

373

This function is analogous to distribution on lists, and canbe demonstrated as follows.

$ fun lat -m="ldis/1 grid/<’a’,’ab’,’abc’> <&!>" -c %ncXG
<

[0:0: (1,‘a)ˆ: <1:0,1:1>],
[

1:1: (1,‘b)ˆ: <2:0,2:1,2:2>,
1:0: (1,‘a)ˆ: <2:0,2:1,2:2>],

[
2:2: (1,‘c)ˆ: <>,
2:1: (1,‘b)ˆ: <>,
2:0: (1,‘a)ˆ: <>]>

ldiz

This function takes a pair(x, g) whereg is a lattice having a unique root vertex and
x is a list having a length equal to the number of levels ing. The returned value is
a lattice derived fromg by substituting each vertexv on thei-th level with the pair
(xi, v), wherexi is thei-th item ofx.

A simple demonstration of this function is the following.

$ fun lat --m="ldiz/’xy’ grid/<’a’,’ab’> <&!>" --c %cWG
<

[0:0: (‘x,‘a)ˆ: <1:0,1:1>],
[1:1: (‘y,‘b)ˆ: <>,1:0: (‘y,‘a)ˆ: <>]>

lmap

Given a functionf , this function returns a function that takes a latticeg as input, and
returns a lattice derived fromg by substituting every vertexv in g with f(v).

Thelmap combinator on lattices is analogous to themapcombinator on lists. This exam-
ple shows thelmap of a function that duplicates its argument.

$ fun lat --m="(lmap ˜&iiX) grid/<’a’,’ab’> <&!>" --c %cWG
<

[0:0: (‘a,‘a)ˆ: <1:0,1:1>],
[1:1: (‘b,‘b)ˆ: <>,1:0: (‘a,‘a)ˆ: <>]>

lzip

Given a pair of lattices(a, b) with unique roots and identical branching patterns, this
function returns a latticec in which every vertexv is the pair(u, w) with u being the
vertex at the corresponding position ina andw being the vertex at the corresponding
position inb.

374

This function is comparable the thezip function on lists. The following example shows
a lattice zipped to a copy of itself.

$ fun lat --m="lzip (˜&iiX grid/<’a’,’ab’> <&!>)" --c %cWG
<

[0:0: (‘a,‘a)ˆ: <1:0,1:1>],
[1:1: (‘b,‘b)ˆ: <>,1:0: (‘a,‘a)ˆ: <>]>

This operation has the same effect as the previous example, becauselmap ˜&iiX is
equivalent tolzip+ ˜&iiX .

lfold

Given a functionf , this function constructs a function that traverses a lattice back-
wards toward the root, evaluatingf at each vertexv by applying it to the pair
(v, 〈y0 . . . yn〉), where they values are the outputs fromf obtained previously when
visiting the descendents ofv. The overall result is that which is obtained when visitng
the root.

The lfold combinator is analogous to the tree folding operatorˆ * explained in Sec-
tion 6.8.2 on page 219, but it operates on lattices rather than trees. The following simple
example shows how thelfold combinator of the tree constructor converts a lattice into
an ordinary tree (with an exponential increase in the numberof vertices).

$ fun lat --m="lfold(ˆ:) grid/<’a’,’ab’,’abc’> <&!>" -c %c T
‘aˆ: <

‘aˆ: <‘aˆ: <>,‘bˆ: <>,‘cˆ: <>>,
‘bˆ: <‘aˆ: <>,‘bˆ: <>,‘cˆ: <>>>

A more practical example of thelfold combinator is shown in Listing 1.5 with some
commentary on page 32.

18.3 Induction patterns

The benefit of working with a lattice is in effecting a computation by way of one or more
of the transformations documented in this section. These allow an efficient, systematic
pattern of traversal through a lattice, visiting a user defined function on each vertex, and
allowing it to depend on the results obtained from neighboring vertices. Directions of
traversal can be forward, backward, sideways, or a combination. These operations are also
composable because the inputs and outputs are lattices in all cases.

Many of the algorithms concerning lattices have analogous tree traversal algorithms. As
the previous example demonstrates, a lattice of typet%Gcan be converted to a tree of type
t%Twithout any loss of information, and operating on the tree would be more convenient
if it were not exponentially more expensive, because the tree is a simpler and more abstract
representation. The combinators documented in this section therefore attempt to present

375

Listing 18.1 lattice transformation examples

#import std
#import nat
#import lat

x = grid/<’a’,’bc’,’def’,’ghij’> <&!>

xpress = bwi :ˆ/˜&l ˜&rdS; ˜&i&& :/‘(+ --’)’+ mat‘,
paths = fwi ˆrlrDlShiX2lNXQ\˜&rv ˜&l?\˜&rdNCNC ˜&rdPlLPD rlNCTS
roll = swi ˆH\˜&r -$+ ˜&lizyCX

neighbors =

fswi ˆ\˜&rdvDlS :ˆ/˜&ll ˆT(
˜&lrNCC+ ˜&rilK16rSPirK16lSPXNNXQ+ ˜&rdPlrytp2X,
˜&rvdSNC)

an interface to the user application whereby the lattice appears as a tree as far as possible.
In particular, it is never necessary for the application to be concerned explicitly with the
address fields in a lattice.

bwi

A function of the formbwi f maps a latticex of type t%Gto an isomorphic lattice
y of typeu%G. Each vertexw in y is given byf(v, 〈z0 . . . zn〉), wherev is the corre-
sponding vertex inx and thez values are trees (of typeu%T) populated by previous
applications off for the vertices reachable fromv. The root ofzk is the value off
computed for thek-th neighboring vertex referenced by the adjacency list ofv.

Thebwi function is mnemonic for “backward induction”, because thevertices most dis-
tant from the root are visited first. In this regard it is similar to thelfold function, but
the argumentf follows a different calling convention allowing it direct access to all rel-
evant previously computed results rather than just those associated with the top level of
descendents. The precise relationship between these two operations is summarized by the
following equivalence.

(bwi f) x ≡ (lmap ˜&l+ lfold ˆ\˜&v f) sever x

However, it would be very inefficient to implement thebwi function this way.
An example of backward induction is shown in thexpress function in Listing 18.1.

This function is purely for illustrative purposes, attempting to depict the chain of functional
dependence of each level on the succeeding ones in a backwardinduction algorithm. The
argument to thebwi combinator is the function

:ˆ/˜&l ˜&rdS; ˜&i&& :/‘(+ --’)’+ mat‘,

which is designed to operate on an argument of the form(v, 〈z0 . . . zn〉), for a character

376

v and a list of trees of stringszi. It returns a single character string by flattening and
parenthesizing the roots of the trees and inserting the characterv at the head. The subtrees
of zi are ignored. With Listing 18.1 stored in a file namedlax.fun , this function can be
demonstrated as follows.

$ fun lat lax -m="xpress grid/<’a’,’bc’,’def’> <&!>" -c %sG
<

[0:0: ’a(b(d,e,f),c(d,e,f))’ˆ: <1:0,1:1>],
[

1:1: ’c(d,e,f)’ˆ: <2:0,2:1,2:2>,
1:0: ’b(d,e,f)’ˆ: <2:0,2:1,2:2>],

[2:2: ’f’ˆ: <>,2:1: ’e’ˆ: <>,2:0: ’d’ˆ: <>]>

fwi

A function of the formfwi f transforms a latticex of type t%Gto an isomorphic
latticey of typeu%G. To computey, the latticex is traversed beginning at the root.

• For each vertexv in x, the sub-lattice of reachable vertices fromv is constructed
and converted to a treez of typet%T.

• The functionf is applied to the pair(i, z), wherei is a list of inheritances com-
puted from previous evaluations off . When visiting the root node,i is the empty
list.

• The functionf returns a pair(w, b) wherew becomes the corresponding vertex
to v in the output latticey, andb is a list of bequests.

– The number of bequests inb (i.e., its length) must be equal to the number
of descendents ofz (i.e., the length of̃&v z) or else an exception is raised
with a diagnostic message of “bad forward inducer ”.

– The bequests from each ancestor of each descendent ofz are collected au-
tomatically into the inheritances to be passed tof when the descendent is
visited.

The example of forward induction in Listing 18.1 demonstrates the general form of an
algorithm to compute all possible paths from the root to eachvertex in a lattice. This type
of problem might occur in practice for valuing path dependent financial derivatives. The
argument to thefwi combinator

ˆrlrDlShiX2lNXQ\˜&rv ˜&l?\˜&rdNCNC ˜&rdPlLPDrlNCTS

takes an argument(i, z) in which z is tree of characters derived from the input lattice,
and i is a list of lists of paths, each being inherited from a different ancestor. Ifi is
empty, the list of the singleton list of the root ofz is constructed bỹ&rdNCNC, but
otherwise,i is flattened to a list of paths and the root ofz is appended to each path by

377

˜&rdPlLPDrlNCTS . The pair returned by this function(w, b) has a copy of this result
asw, and a list of copies of it inb, with one for each descendent ofz.

The paths function using this forward induction algorithm in Listing18.1 can be
demonstrated as follows.

$ fun lat lax --m="paths x" --c %sLG
<

[0:0: <’a’>ˆ: <1:0,1:1>],
[

1:1: <’ac’>ˆ: <2:0,2:1,2:2>,
1:0: <’ab’>ˆ: <2:0,2:1,2:2>],

[
2:2: <’abf’,’acf’>ˆ: <2:0,2:1,2:2,2:3>,
2:1: <’abe’,’ace’>ˆ: <2:0,2:1,2:2,2:3>,
2:0: <’abd’,’acd’>ˆ: <2:0,2:1,2:2,2:3>],

[
2:3: <’abdj’,’acdj’,’abej’,’acej’,’abfj’,’acfj’>ˆ: <> ,
2:2: <’abdi’,’acdi’,’abei’,’acei’,’abfi’,’acfi’>ˆ: <> ,
2:1: <’abdh’,’acdh’,’abeh’,’aceh’,’abfh’,’acfh’>ˆ: <> ,
2:0: <’abdg’,’acdg’,’abeg’,’aceg’,’abfg’,’acfg’>ˆ: <>]>

As this example suggests, some pruning may be required in practice to limit the inevitable
combinatorial explosion inherent in computing all possible paths within a larger lattice.

swi

A function of the formswi f takes a latticex of type t%Gas input, and returns an
isomorphic latticey of typeu%G. Each vertexw in y is given byf(s, v) wherev is the
corresponding vertex inx, ands is the ordered list of vertices on the level ofv.

Theswi combinator is mnemonic for “sideways induction”. An example with the func-
tion ˆH\˜&r -$+ ˜&lizyCX shown in Listing 18.1 rolls each level of the lattice by
constructing a finite map (-$) from each vertex to its successor in the list of siblings.

$ fun lat lax --m="roll x" --c %cG
<

[0:0: ‘aˆ: <1:0,1:1>],
[

1:1: ‘bˆ: <2:0,2:1,2:2>,
1:0: ‘cˆ: <2:0,2:1,2:2>],

[
2:2: ‘eˆ: <2:0,2:1,2:2,2:3>,
2:1: ‘dˆ: <2:0,2:1,2:2,2:3>,
2:0: ‘fˆ: <2:0,2:1,2:2,2:3>],

[
2:3: ‘iˆ: <>,

378

2:2: ‘hˆ: <>,
2:1: ‘gˆ: <>,
2:0: ‘jˆ: <>]>

fswi

This combinator provides the most general form of inductionpattern on lattices, al-
lowing functional dependence of each vertex on ancestors and siblings. Given a lattice
x of typet%G, the functionfswi f returns an isomorphic latticey of typeu%G.

• For each vertexv in x, the sub-lattice of reachable vertices fromv is constructed
and converted to a treez of typet%T.

• The functionf is applied to the tuple((i, s), z), wherei is a list of inheritances
computed from previous evaluations off , ands is the ordered list of vertices in
x on the level ofv. When visiting the root node,i is the empty list.

• The functionf returns a pair(w, b) wherew becomes the corresponding vertex
to v in the output latticey, andb is a list of bequests.

– The number of bequests inb (i.e., its length) must be equal to the number
of descendents ofz (i.e., the length of̃&v z) or else an exception is raised
with a diagnostic message of “bad forward inducer ”.

– The bequests from each ancestor of each descendent ofz are collected au-
tomatically into the inheritances to be passed tof when the descendent is
visited.

The example in Listing 18.1 shows how a lattice can be constructed in which each vertex
stores a list of lists of neighboring vertices〈a, u, l, d〉 with the ancestors, upper sibling,
lower sibling, and descendents of the corresponding vertexin the input lattice.

$ fun lat lax --m="neighbors x" --c %sLG
<

[0:0: <’’,’’,’’,’bc’>ˆ: <1:0,1:1>],
[

1:1: <’a’,’’,’b’,’def’>ˆ: <2:0,2:1,2:2>,
1:0: <’a’,’c’,’’,’def’>ˆ: <2:0,2:1,2:2>],

[
2:2: <’bc’,’’,’e’,’ghij’>ˆ: <2:0,2:1,2:2,2:3>,
2:1: <’bc’,’f’,’d’,’ghij’>ˆ: <2:0,2:1,2:2,2:3>,
2:0: <’bc’,’e’,’’,’ghij’>ˆ: <2:0,2:1,2:2,2:3>],

[
2:3: <’def’,’’,’i’,’’>ˆ: <>,
2:2: <’def’,’j’,’h’,’’>ˆ: <>,
2:1: <’def’,’i’,’g’,’’>ˆ: <>,
2:0: <’def’,’h’,’’,’’>ˆ: <>]>

379

But then if we do not ever take time, how can we ever have
time?

The Merovingian inThe Matrix Reloaded

19
Time keeping

A small library of functions,stt , exists for the purpose of converting calendar times
between character strings and natural number representations.

one time

the constant character string’Fri Mar 18 01:58:31 UTC 2005’

string to time

This function takes a character string representing a time and returns the correspond-
ing number of seconds since midnight, January 1, 1970, ignoring leap seconds.

• The input format is “Thu, 31 May 2007 19:01:34 +0100 ”.

• The year must be 1970 or later.

• If the time zone offset is omitted, universal time is assumed.

• The fields can be in any order provided they are separated by one or more spaces.

• Commas are treated as spaces.

• The day of the week is ignored and can be omitted.

• Time zone abbreviations such asGMTare allowed but ignored.

• Month names must be three letters, and can be all upper or all lower case, in
addition to the mixed case format shown.

380

time to string

This function takes a natural number of non-leap seconds since midnight, January 1,
1970 and returns a character string expressing the corresponding date and time. The
output format is “Thu May 31 17:50:01 UTC 2007 ”.

The following example shows the moments when POSIX time was apower of two.

$ fun stt --m="time_to_string * next31(double) 1" --s
Thu Jan 1 00:00:01 UTC 1970
Thu Jan 1 00:00:02 UTC 1970
Thu Jan 1 00:00:04 UTC 1970
Thu Jan 1 00:00:08 UTC 1970
Thu Jan 1 00:00:16 UTC 1970
Thu Jan 1 00:00:32 UTC 1970
Thu Jan 1 00:01:04 UTC 1970
Thu Jan 1 00:02:08 UTC 1970
Thu Jan 1 00:04:16 UTC 1970
Thu Jan 1 00:08:32 UTC 1970
Thu Jan 1 00:17:04 UTC 1970
Thu Jan 1 00:34:08 UTC 1970
Thu Jan 1 01:08:16 UTC 1970
Thu Jan 1 02:16:32 UTC 1970
Thu Jan 1 04:33:04 UTC 1970
Thu Jan 1 09:06:08 UTC 1970
Thu Jan 1 18:12:16 UTC 1970
Fri Jan 2 12:24:32 UTC 1970
Sun Jan 4 00:49:04 UTC 1970
Wed Jan 7 01:38:08 UTC 1970
Tue Jan 13 03:16:16 UTC 1970
Sun Jan 25 06:32:32 UTC 1970
Wed Feb 18 13:05:04 UTC 1970
Wed Apr 8 02:10:08 UTC 1970
Tue Jul 14 04:20:16 UTC 1970
Sun Jan 24 08:40:32 UTC 1971
Wed Feb 16 17:21:04 UTC 1972
Wed Apr 3 10:42:08 UTC 1974
Tue Jul 4 21:24:16 UTC 1978
Mon Jan 5 18:48:32 UTC 1987
Sat Jan 10 13:37:04 UTC 2004

381

I wish you could see what I see.

Neo inThe Matrix Revolutions

20
Data visualization

A library namedplo for plotting graphs of real valued functions along the linesof Fig-
ures 15.1 and 15.2 is documented in this chapter. Features include linear, logarithmic and
non-numeric scales, variable line colors and styles, arbitrary rotation of axis labels, in-
clusion of LATEX code fragments as annotations, scatter plots, and piecewise linear plots.
More sophisticated curve fitting can be achieved by using this library in combination with
thefit library documented in Chapter 14.

The main advantages of this library are that it allows data visualization to be readily
integrated with with numerical applications developed in Ursala, and the results generated
in LATEX code will match the fonts of the document or presentation inwhich they are
included. The intention is to achieve publication quality typesetting.

20.1 Functions

A plot is normally specified in its entirety by a record data structure which is then translated
as a unit to LATEX code by the following functions.

plot

Given a record of type visualization , this function returns a LATEX code frag-
ment as a list of character strings that will generate the specified plot.

In order for a plot generated by this function to be typeset ina LATEX document, the
document preamble must contain at least these lines.

\usepackage{pstricks}
\usepackage{pspicture}
\usepackage{rotating}

382

Listing 20.1 a nearly minimal example of a plot

#import std
#import plo

#output dot’tex’ plot

f =

visualization[
curves: <curve[points: <(0.,0.),(1.,1.),(2.,-1.),(3., 0.)>]>]

-1.00

-0.60

-0.20

0.20

0.60

1.00

0.00 0.60 1.20 1.80 2.40 3.00

Figure 20.1: an unlabeled plot with default settings generated from Listing 20.1

It is also recommended to include the command

\psset{linewidth=.5pt,arrowinset=0,arrowscale=1.1}

near the beginning of the document after the\begin{document} command.
An example demonstrating theplot function is shown in Listing 20.1, and the result-

ing plot in Figure 20.1. In practice, the points in the plot are more likely to be algorith-
mically generated than enumerated as shown, but it is often appropriate to use theplot
function as a formatting function in an#output directive. Doing so allows the LATEX file
to be generated as follows.

$ fun plo plex.fun
fun: writing ‘f.tex’

whereplex.fun is the name of the file containing Listing 20.1. The plot stored in
f.tex can then be used in another document by the LATEX command\input{f} . The
visualization record structure used in this example is explained in the next section.

383

latex document

This function wraps a given a LATEX code fragment in some additional code to allow
it to be processed as a free standing document.

An attempt to typeset the output from theplot function by the shell command such as

$ latex f.tex

will be unsuccessful because a LATEX document requires some additional front matter that
is not part of the output from theplot function. Thelatex_document function solves
this problem by incorporating the commands mentioned abovein the output, among others.
A typical usages would be

f = latex_document plot visualization[. . .]

or similar variations involving the#output directive. The result can be typeset on its
own but not included into another document. This function isuseful mainly for testing,
because in practice the code for a plot is more likely to be included into another document.

20.2 Data structures

A basic vocabulary of useful concepts for describing a plot is as follows.

• A planar cartesian coordinate system denominated in points, where 1 inch= 72
points, fixes any location with respect to the plot

• The rectangular region of the plane bounded by the extrema ofthe axes in the plot is
known as the viewport.

– The dimensions of the viewport are(vx, vy).

– The lower left corner is at coordinates(0, 0).

• A somewhat larger rectangular region sufficient to enclose the viewport and the labels
of the axes is known as the bounding box.

– Dimensions of the bounding box are(bx, by).

– The lower left corner is at coordinates(cx, cy).

• Some additional dimensions in the plot are

– the space at the top,h = by + cy − vy

– the space on the right,m = bx + cx − vx

• Numerical values relevant to the functions being plotted are scaled and translated to
this coordinate system.

384

visualization

This function is the mnemonic for a record used to specify a plot for theplot func-
tion. The fields in the record have these interpretations in terms of the above notation.
All numbers are in units of points.

• viewport – the pair of floating point numbers(vx, vy)

• picture frame – the pair of pairs((bx, by), (cx, cy))

• headroom – space above the viewport,h = by + cy − vy

• margin – space to the right of the viewport,m = bx + cx − vx

• abscissa – a record of type axis that describes the horizontal axis

• pegaxis – a record of type axis describing a second independent axis

• ordinates – a list of one or two records describing the vertical axes

• curves – a list of records of type curve specifying the data to be plotted

• boxed – a boolean value causing the bounding box to be displayed when true

In a planar plot, there is no need for a second independent axis, so thepegaxis field is ig-
nored by theplot function. The data structures for axes and curves are explained shortly,
but some further notes on the numeric dimensions in thevisualization record are
appropriate.

• If no value is specified for theheadroom , a default of 25 points is used.

• If no value is specified for themargin , a default value of 10 points is used if there
is one vertical axis, and 30 points is used of there are two.

• Default values ofbx andby are 300 and 200 points.

• Default values ofcx andcy are both−32.5 points.

• Theviewport is always determined automatically by the other dimensions.

The default values ofh andm are usually adequate, but they are only approximate.
Their optimum values depend on the width or height of the textused to label the axes. If
the margins are too small or too large, the plot may be improperly positioned on the page.
In such cases, the only remedy is to use theboxed field to display the bounding box
explicitly, and to adjust the margins manually by trial and error until the outer extremes
of the labels coincide with its boundaries. After the right dimensions are determined, the
bounding box can be hidden for the final version.

The functions depicted in a plot can be real valued functionsof real variables, or they
can depend on discrete variables of unspecified types represented as series of character
strings. The data structure for an axis accommodates eitheralternative.

385

axis

This function is the mnemonic for a record describing an axis, which is used in several
fields of thevisualization record. This type of record has the following fields.

• variable – a character string containing a LATEX code fragment for the main
label of the axis, usually the name of a variable

• alias – a pair of floating point numbers(dx, dy) describing the displacement
in points of thevariable from its default position

• hats – a list of character strings or floating point numbers to be displayed peri-
odically along the axis

• rotation – the counter-clockwise angular displacement measured in degrees
whereby thehats are rotated from a horizontal orientation

• hatches – a list of character strings or floating point numbers determining the
coordinate transformation

• intercept – a list containing a single floating point number or character string
identifying a point where the axis crosses an orthogonal axis

• placer – function that maps any value along the continuum or discrete space
associated with the axis to a floating point number in the range0 . . . 1.

The coordinate transformation implied by theplacer normally doesn’t have to be indi-
cated explicitly, because it is inferred automatically from thehatches field.

• If the hatches field consists of a sequence of non-numeric values〈s0 . . . sn〉, then
theplacer function is that which mapssi to i/n.

• If thehatches are a sequence of floating point numbers〈x0 . . . xn〉 for whichxi+1−
xi is constant within a small tolerance, then theplacer function maps any givenx
to (x− x0)/(xn − x0).

• If the hatches are a sequence of positive floating point numbers〈x0 . . . xn〉 for
which xi+1/xi is constant within a small tolerance, theplacer function maps any
givenx to (ln x− ln x0)/(lnxn − lnx0).

• For other sequences of floating point numbers, theplacer function performs linear
interpolation.

However, if a value for theplacer field is specified by the user, it is employed in the
coordinate transformation. Theaxis record has several other automatic initialization
features.

• Zero values are inferred for unspecifiedrotation andalias .

386

• If the intercept is unspecified, theplot function positions an axis on the view-
port boundary.

• If the hats field is unspecified, it is determined from thehatches field.

– Symbolichatches (i.e., character strings) are copied verbatim to thehats
field.

– Numerichatches are translated to character strings either in fixed or scientific
notation, depending on the dynamic range.

• If the hatches field is not specified but thehats field is a list of strings in fixed or
exponential notation, thehatches field is read from it using themath..strtod
library function.

When theaxis forms part of avisualization record, further initialization of the
hatches field is performed automatically, because its values are implied by thecurves .

curve

This function is the mnemonic for a record data structure representing a curve to be
plotted, of which there are a list in thecurves field of avisualization record.
Thecurve record has the following fields.

• points – a list of pairs〈(x0, y0) . . . (xn, yn)〉 representing the data to be plotted,
wherexi andyi can be character strings or floating point numbers

• peg – a value that’s constant along the curve if it’s a function oftwo variables

• attributes – a list of assignments of attributes to keywords recognizedby
the LATEX pstricks package to describe line colors and styles

• decorations – a list of triples〈((x0, y0), s0) . . . ((xn, yn), sn)〉 wherexi and
yi are coordinates consistent with thepoints field indicating the placement of
a LATEX code fragmentsi on the plot, wheresi is a list of character strings

• scattered – a boolean value causing thepoints not to be connected when
plotted if true

• discrete – a boolean value causing points to be disconnected and also causing
each point to be plotted atop a vertical line if true

• ordinate – a pointer (e.g.,&h or &th) with respect to theordinates field
in avisualization record that identifies the vertical axis whoseplacer is
used to transform they values in thepoints field

Some additional notes on these fields:

• The default value for theordinate field is &h, which is appropriate when there is
a single vertical axis.

387

Listing 20.2 demonstration of decorations, attributes, and axes

#import std
#import plo
#import flo

#output dot’tex’ plot

plop =

visualization[
picture_frame: ((400.,300.),()),
abscissa: axis[

hats: printf/ * ’%0.2f’ ari13/0. 3.,
variable: ’time (μs)’],

ordinates: <
axis[variable: ’feelgood factor (erg$/$lightyear$ˆ2$)’]>,

curves: <
curve[points: <(0.,0.),(1.,1.),(2.,-1.),(3.,0.)>],
curve[

decorations: ˜&iNC/(0.35,-0.6) -[
\begin{picture}(0,0)
\psset{linecolor=black}
\psline{-}(0,0)(10,0)
\put(15,0){\makebox(0,0)[l]{\textsl{realized}}}
\psset{linecolor=lightgray}
\psline{-}(0,20)(10,20)
\put(15,20){\makebox(0,0)[l]{\textsl{projected}}}
\put(-10,-15){\dashbox(75,50){}}
\end{picture}]-,

attributes: <’linecolor’: ’lightgray’>,
points: <(0.,0.),(3.,1.5)>]>]

• In a planar plot, thepeg field is ignored.

• If the attributes field contains assignments<’foo’: ’bar’ . . .>, they are
passed through as\psset{foo=bar . . . } .

• The assignedattributes apply cumulatively to subsequent curves in the list of
curves in avisualization record.

The psset command is documented in thepstricks reference manual. Frequently
used attributes arelinecolor andlinewidth .

20.3 Examples

A possible way of using this library without reading all of the preceding documentation
is to copy one of the examples from this section and modify it to suit, referring to the

388

feelgood factor (erg/lightyear2)

-1.00

-0.50

0.00

0.50

1.00

1.50

time (µs)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00

realized

projected

Figure 20.2: output from Listing 20.2

389

Listing 20.3 symbolic axes, rotation, margins, discrete curves, generated data, and interpolation

#import std
#import nat
#import plo
#import flo
#import fit

data = ˜&p(ari7/0. 1.,rand * iota 7)

#output dot’tex’ plot

slam =

visualization[
margin: 35.,
picture_frame: ((400.,300.),((),-75.)),
abscissa: axis[

rotation: -60.,
hats: <

’impulse’,
’light speed’,
’ludicrous speed’,
’ridiculous speed’>,

variable: ’velocity (v)’],
ordinates: ˜&iNC axis[

hatches: ari11/0. 1.,
variable: ’tunneling probability (ρ)’],

curves: <
curve[discrete: true,points: data],
curve[

points: ˆ(˜&,sinusoid data) * ari200/0. 1.,
attributes: <’linecolor’: ’lightgray’>]>]

documentation only as needed. Most of the features are exemplified at one point or another.
Listing 20.2 demonstrates multiple curves with different attributes, and user-written

LATEX code decorations inserted “inline”. Note that the coordinates of the decorations are
in terms of those of the curve, rather than being absolute point locations, so they will scale
automatically if the bounding box size is changed. The results are shown in Figure 20.2.

Listing 20.3 and the results shown in Figure 20.3 demonstrate an axis with symbolic
rather than numeric hatches. In this case, the data are numeric and the axis labels are
chosen arbitrarily, but data that are themselves symbolic can also be used. Further features
of this example:

• the discrete plotting style, wherein the points are separated from one another but
connected to the horizontal axis by vertical lines.

• a smooth curve generated using thesinusoid interpolation function from thefit

390

tunneling probability (ρ)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

velocity (v)

im
pulse

light speed

ludicrous
speed

ridiculous
speed

Figure 20.3: output from Listing 20.3

391

Listing 20.4 aliases, intercepts, margins, and selective hats

#import std
#import nat
#import plo
#import flo

#output dot’tex’ plot

para =

visualization[
margin: 25.,
picture_frame: ((400.,200.),(-10.,-20.)),
abscissa: axis[

hats: printf/ * ’%0.2f’ ari9/-1. 1.,
alias: (205.,27.),
variable: ’x’],

ordinates: ˜&iNC axis[
alias: (8.,0.),
intercept: <0.>,
hats: ˜&NtC printf/ * ’%0.2f’ ari5/0. 1.,
variable: ’y’],

curves: <curve[points: ˆ(˜&,sqr) * ari200/-1. 1.]>]

library documented in Chapter 14

• A rotation of the horizontal axis labels

The scattered plot style is similar to the discrete style butomits the vertical lines.
Listing 20.4 and the results in Figure 20.4 demonstrate somepossibilities for position-

ing axes and labels. The vertical axis is displayed in the center by way of theintercept ,
and the labelx of the horizontal axis is displayed to the right rather than below. The zero
on the vertical axis is suppressed in thehats field of theordinate so as not to clash
with the horizontal axis. Some manual adjustment to the margins and bounding box are
made based on visual inspection of the bounding box in draft versions.

The last example in Listing 20.5 and Figure 20.5 shows how multiple functions can
be plotted on different vertical scales with the same horizontal axis. With two ordinates
and two curves, each refers to its own. A logarithmic scale isautomatically inferred for
the right ordinate because the hatches are given as a geometric progression. A decoration
for each curve reduces ambiguity by identifying the function it represents and hence the
corresponding vertical axis.

392

y

0.25

0.50

0.75

1.00

x

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

Figure 20.4: textbook style parabola illustration from Listing 20.4

Listing 20.5 logarithmic scales, decorations, and multiple ordinates

#import std
#import nat
#import plo
#import flo

#output dot’tex’ plot

gam =

visualization[
picture_frame: ((400.,250.),(-25.,())),
margin: 50.,
abscissa: axis[variable: ’x’,hats: ˜&hS %nP * ˜&tt iota 7],
ordinates: <

axis[variable: ’$\Gamma’’(x)$’,hats: printf/ * ’%0.1f’ ari6/0. 2.],
axis[variable: ’$\Gamma(x)$’,hatches: geo6/1. 120.]>,

curves: <
curve[

ordinate: &h,
decorations: <((2.8,1.0),-[$\Gamma’$]-)>,
points: ˆ(˜&,rmath..digamma) * ari200/2. 6.],

curve[
ordinate: &th,
decorations: <((4.8,10.),-[Γ]-)>,
points: ˆ(˜&,rmath..gammafn) * ari200/2. 6.]>]

393

Γ′(x)

0.0

0.4

0.8

1.2

1.6

2.0

Γ(x)

1.00×100

2.61×100

6.79×100

1.77×101

4.61×101

1.20×102

x

2 3 4 5 6

Γ′

Γ

Figure 20.5: gamma and digamma function plots with different vertical scales from Listing 20.5

394

It’s a way of looking at that wave and saying “Hey Bud, let’s
party”.

Sean Penn inFast Times at Ridgemont High

21
Surface rendering

Following on from the previous chapter, a library calledren uses the same data structures
to depict functions of two variables graphically as surfaces. The rendering algorithm fea-
tures correct perspective and physically realistic shading of surface elements based on a
choice of simulated semi-diffuse light sources. The renderings are generated as LATEX code
depending on thepstricks package, so that hidden surface removal is accomplished by
the back end Postscript rendering engine. The user has complete control over the choice
of a focal point, and scaling of the image both in the image plane and in 3-space.

21.1 Concepts

To depict a function of two variables as a surface, a specification needs to be given not
only of the function, but of certain other characteristics of the image. These include its
focal point relative to a hypothetical three dimensional space, which can be understood as
the position of an observer or a simulated camera viewing thesurface, and the position of
a simulated light source. Regardless of its relevance to thedata, shading consistent with
a light source is necessary for visual perception. There arealso the same requirements
for specifying the axis labels and hatches as in a two dimensional plot. The conventions
whereby this information is specified are documented in thissection.

21.1.1 Eccentricity

A function f : R2 → R defined on a region[a0, a1] × [b0, b1] is depicted as a surface
confined to the cube with corners{0, 1}3 in a right handed cartesian coordinate system.
Each input(x, y) in the region is associated with a point in the unit square on the horizontal
plane, and the value off(x, y) is indicated by the height of the surface above that point.

395

x < 1 x = 1 x > 1

y > 1

y = 1

y < 1

Table 21.1: eccentricity settings as seen fromols+ , with origin left andx axis in the foreground

396

coordinates angle (deg.) coordinates

code x y z θ φ code x y z

ile+ 2.040 1.578 1.184 35 20 ole+ 3.194 2.386 1.697
ime+ 1.842 1.440 1.647 35 35 ome+ 2.849 2.144 2.508
ihe+ 1.553 1.237 2.032 35 50 ohe+ 2.343 1.790 3.181
iln- 1.578 2.040 1.184 55 20 oln- 2.386 3.194 1.697
imn- 1.440 1.842 1.647 55 35 omn- 2.144 2.849 2.508
ihn- 1.237 1.553 2.032 55 50 ohn- 1.790 2.343 3.181
iln+ -0.578 2.040 1.184 125 20 oln+ -1.386 3.194 1.697
imn+ -0.440 1.842 1.647 125 35 omn+ -1.144 2.849 2.508
ihn+ -0.237 1.553 2.032 125 50 ohn+ -0.790 2.343 3.181
ilw- -1.040 1.578 1.184 145 20 olw- -2.194 2.386 1.697
imw- -0.842 1.440 1.647 145 35 omw- -1.849 2.144 2.508
ihw- -0.553 1.237 2.032 145 50 ohw- -1.343 1.790 3.181
ilw+ -1.040 -0.578 1.184 -145 20 olw+ -2.194 -1.386 1.697
imw+ -0.842 -0.440 1.647 -145 35 omw+ -1.849 -1.144 2.508
ihw+ -0.553 -0.237 2.032 -145 50 ohw+ -1.343 -0.790 3.181
ils- -0.578 -1.040 1.184 -125 20 ols- -1.386 -2.194 1.697
ims- -0.440 -0.842 1.647 -125 35 oms- -1.144 -1.849 2.508
ihs- -0.237 -0.553 2.032 -125 50 ohs- -0.790 -1.343 3.181
ils+ 1.578 -1.040 1.184 -55 20 ols+ 2.386 -2.194 1.697
ims+ 1.440 -0.842 1.647 -55 35 oms+ 2.144 -1.849 2.508
ihs+ 1.237 -0.553 2.032 -55 50 ohs+ 1.790 -1.343 3.181
ile- 2.040 -0.578 1.184 -35 20 ole- 3.194 -1.386 1.697
ime- 1.842 -0.440 1.647 -35 35 ome- 2.849 -1.144 2.508
ihe- 1.553 -0.237 2.032 -35 50 ohe- 2.343 -0.790 3.181

Table 21.2: observer coordinates and angular displacements from the center of the unit cube

Whereas a cube is normally envisioned as in the center of Table 21.1, the user is also at
liberty to emphasize particular dimensions by elongating it in one direction or another. A
so called eccentricity given by a pair of floating point numbers (x, y) hasx = y = 1 for
a neutral appearance, both dimensions greater than one for an apparent pizza box shape,
both less than one for a tower, and different combinations for other rectangular prisms.
The cube is transformed to a box with edges in the ratios ofx : y : 1 bounded by the
origin, and the surface is scaled accordingly.

21.1.2 Orientation

The surface is always rendered from the point of view of an observer looking directly at
the center of the prism described above, regardless of its eccentricity, but the position of
the observer is a tunable parameter with three degrees of freedom. The position can be
specified in principle by its cartesian coordinates, but it is convenient to encode frequently
used families of coordinates as shown in Table 21.2.

A specification of observer coordinates for one of these standard positions is a string of

397

the form
[i |o] [l |m|h] [e|n|w|s] [+|-]

• The first field, mnemonic for “in” or “out” determines the zoom, which is the distance
of the observer from the center of the cube. The image is scaled to the same size
regardless of the distance, but the inner position results in more pronounced apparent
convergence of parallel lines due to perspective.

• The second field, mnemonic for “low”, “medium” or “high”, refers to the angle of el-
evation. The angle is formed by the vector from the center of the cube to the observer
with the horizontal plane. These angles are defined as20◦, 35◦, and50◦, respectively.

• The third field, mnemonic for “east”, “north”, “west” or “south”, indicates the ap-
proximate lateral angular displacement of the observer, with e referring to the posi-
tive x direction, andn referring to the positivey direction.

• Because it is less visually informative to sight orthogonally to the axes, the last field
of - or + indicates a clockwise or counterclockwise displacement, respectively, of
35◦ from the direction indicated by the preceding field.

The cartesian coordinates shown in Table 21.2 apply only to the case of neutral eccen-
tricity. For oblong boxes, the positions are scaled accordingly to maintain these angular
displacements.

The effects of zooms, elevations, and lateral angular displacements are demonstrated
in Tables 21.3 and 21.4, with Table 21.4 showing various views of the same quadratic
surface.

21.1.3 Illumination

The library provides three alternatives for light source positions in a rendering, which are
left, right, and back lighting. The most appropriate choicedepends on the shape of the
surface being rendered and the location of the observer.

• left lighting postulates a light source above and behind thefocal point to the left

• right lighting is based on a source above and behind the focalpoint to the right

• back lighting simulates a light source facing the observer,slightly to the left and low
to the horizon

Best results are usually obtained with either left or right lighting, where more visible sur-
face elements face toward the light source than away from it.Back lighting is suitable only
for special effects and will generally result in lower contrast.

An example of each style of lighting is shown in Table 21.5. The central maximum does
not cast a shadow on the outer wave, because the image is not a true ray tracing simulation.
The shade of each surface element is determined by the angle of incidence with the light
source, and to lesser extent by the distance from it.

398

zoom

eye level in out

high

medium

low

Table 21.3: orthogonal choices of recommended levels and zooms

399

quadrant + -

e+ / n-

n+ / w-

w+/ s-

s+ / e-

Table 21.4: visual effects of lateral angular displacements

400

light source visual effect

left

right

back

Table 21.5: effects of left, right, and back lighting

401

21.2 Interface

Use of the library is fairly simple when the concepts explained in the previous section are
understood.

left lit rendering

This function takes an argument of the form((o, e), v) to a list of character strings
containing the LATEX code fragment for a surface rendering with the light sourceto the
left.

• o is an observer position specified either as a code from Table 21.2 in a char-
acter string, or as absolute cartesian coordinates in a listof three floating point
numbers.

• e is either empty or a pair of floating point numbers(x, y) describing the eccen-
tricity of the box in which the surface is inscribed, as explained in Section 21.1.1.
If e is empty, neutral eccentricity (i.e., a cube shape) is inferred.

• v is avisualization record as documented in the previous chapter specify-
ing axes and the surface to be rendered as a family of curves.

– The visualization record must contain exactly one ordinate axis, an
abscissa, and a non-empty peg axis.

– Each curve in thevisualization must have the same number of points.

– The i-th point in each curve must have the same left coordinate across all
curves for alli.

– Each curve must have apeg field serving to locate it along thepegaxis .

The abscissa is rendered along thex or “east” axis in 3-space, the peg axis along
they or “north”, and the ordinate along the vertical axis.

right lit rendering

This function follows the same conventions as the one above but renders the surface
with a light source to the right.

back lit rendering

This function is the same as above but with back lighting.

rendering

This function renders the surface with a randomly chosen light source either to the left
or to the right.

402

Most features of thevisualization record documented in the previous chapter,
such as use of symbolic hatches or logarithmic scales, generalize to three dimensional
plots as one would expect, other than as noted below.

• The intercept , rotation , andattributes fields are ignored.

• Thediscrete andscattered flags are inapplicable.

• The defaultpicture_frame is ((400, 400), (−50,−50))with theheadroom and
themargin at 50 points each.

A squareviewport field (i.e., with its width equal to its height) is not required but
strongly recommended for surface renderings because the image will be distorted other-
wise in a way that frustrates visual perception. Any preferred alterations to the aspect ratio
should be effected by the eccentricity parameter instead. If the margin andheadroom
are equal in magnitude and opposite in sign to thepicture_frame coordinates and the
picture frame is square, as in the default setting above, then theviewport will be initial-
ized to a square. Otherwise, theviewport should be initialized as such explicitly by the
user.

drafts

This function takes a pair(e, v) to a complete LATEX document represented as a list
of character strings containing renderings of a surface from all focal points listed in
Table 21.2, with one per page. The parametere is either an eccentricity(x, y) as
explained in Section 21.1.1 or empty, with neutral eccentricity inferred in the latter
case. The parameterv is a visualization describing the surface as explained above.

recommended observers

This is a constant of type%seLXLcontaining the data in Table 21.2. Each item of the
list is a pair with a code such as’ole+’ on the left and the corresponding cartesian
coordinates on the right.

Therecommended_observers list is not ordinarily needed unless one wishes to con-
struct a non-standard observer position by interpolation or perturbation of a recommended
one.

A short example using some of these features is shown in Listing 21.1 and Figure 21.1.
Although the family of curves is enumerated in this example,it would usually be generated
by an expression such as the following in practice,

curve$[peg: ˜&hl,points: * ˆ/˜&r f] * ˜&iiK0lK2x (ari n)/ a b

wheref is a function taking a pair of floating point numbers to a floating point number.

403

Listing 21.1 short example of a rendering

#import std
#import nat
#import plo
#import ren

#output dot’tex’ left_lit_rendering/(’ilw+’,())

surf =

visualization[
picture_frame: ((280.,280.),(-55.,-25.)),
margin: 65.,
headroom: 35.,
viewport: (210.,210.),
abscissa: axis[variable: ’x’,hats: <’0’,’1’,’2’,’3’>],
pegaxis: axis[variable: ’y’,hatches: <1.,5.,9.>],
ordinates: <axis[variable: ’z’]>,
curves: <

curve[peg: 1.,points: <(0.,2.),(1.,3.),(2.,4.),(3.,5.)>],
curve[peg: 5.,points: <(0.,1.),(1.,2.),(2.,3.),(3.,4.)>],
curve[peg: 9.,points: <(0.,0.),(1.,1.),(2.,2.),(3.,3.)>]>]

0

1

2

3

x

1.
005.
009.
00

y

0.00

1.00

2.00

3.00

4.00

5.00

z

Figure 21.1: output from Listing 21.1

404

You talkin’ to me?

Robert De Niro inTaxi Driver

22
Interaction

An unusual and powerful feature of Ursala is its interoperability with command line inter-
preters such as shells and computer algebra systems. Ready made interfaces are provided
for the numerical and statistical packagesOctave , R, andscilab , the computer alge-
bra systemsaxiom , maxima , andpari-gp , and the number theory packagegap . These
interfaces make any interactive function from these packages callable within the language,
even if the function is user defined and not included in the package’s development library.

There are also interfaces to the standard shellsbash andpsh (theperl shell), and to
privileged shells opened by thesu command. Orthogonal to the choice of an application
package or shell is the option to access it locally or on a remote host viassh .

The above mentioned packages incorporate an extraordinarywealth of mathematical
expertise, and with their extensible designs and scriptinglanguages, each is a capable
programming platform by itself. However, for a developer choosing to work primarily
in Ursala, the value added by the interfaces documented in this chapter is the flexibility
to leverage the best features of all of these packages from a single application with a
minimum of glue code.

22.1 Theory of operation

The application packages or shells are required to be installed on the local host or the
remote host in order to be callable from the language. In the latter case, the remote host
needs anssh server and the user needs a shell account in it, but the compiler and virtual
machine need only be installed locally. Installation of these applications is a separate issue
beyond the scope of this manual, but it is fairly painless at least for Debian and Ubuntu
users who are familiar with theapt-get utility.

405

22.1.1 Virtual machine interface

These shells are spawned and controlled at run time by the virtual machine through pipes
to their standard input and output streams, as implemented by theexpect library. Hence,
no dynamic loading takes place in the conventional sense. Furthermore, any console output
they perform is not actually displayed on the user’s console, but recorded by the virtual
machine. However, any side effects of executing them persist on the host.

22.1.2 Source level interface

Although a very general class of interaction protocols can be specified in principle, full
use demands an understanding of the calling conventions followed by the virtual machine’s
interact combinator as documented in theavram reference manual. As an alternative,
the functions definedcli library documented in this chapter insulate a developer from
some of these details for a restricted but useful class of interactions, namely those involving
a sequence of commands to be executed unconditionally.

Several options exist for users requiring repetitive or conditional execution of external
shell commands. In order of increasing difficulty, they include

• multiple shell invocations with intervening control decisions at the source level

• a user defined command in the application’s native scriptinglanguage, if any

• a hand coded client/server interaction protocol

22.1.3 Referential transparency

A more complex issue of interaction with external applications is the possible loss of
referential transparency.1 Although the code generated by thecli library functions can be
invoked and treated in most respects as functions, it is incumbent on the user to recognize
and to anticipate the possibility of different outputs being obtained for identical inputs on
different occasions. The compiler for its part will detect the interact combinator on
the virtual code level and refrain from performing any code optimizations depending on
the assumption of referential transparency.

22.2 Control of command line interpreters

Several functions concerned with sending commands to a shell and sensing its responses
are documented in this section. These are higher order functions parameterized by a data
structure of type_shell that isolates the application specific aspects of each shell(e.g.,
syntactic differences between computer algebra systems).The data structure is docu-
mented subsequently in this chapter for users wishing to implement interfaces to other
applications than those already provided, but may be regarded as an opaque type for the
present discussion.

1the property of pure functional languages guaranteeing run-time invariance of the semantics of any expression, even those including
function calls

406

22.2.1 Quick start

To invoke and interrogate one of the supported shells on the local host with any sequence
of non-interactive commands, the function described belowis the only one needed.

ask

This function takes an argument of typeshell and returns a function that takes a
pair (e, c) containing an environment and a list of commands to a resultt containing
a list of responses.

• The environmente is list of assignments<n0: m0 . . .> where eachni is a char-
acter string and eachmi is of a type that depends on the shell.

• The commandsc are a list of character strings<x0 . . .> that are recognizable by
the shell as valid interactive user input.

• The resultst are a list of assignments<x0: y0 . . .> where eachxi is one of the
commands inc, and the correspondingyi is the result displayed by the shell in
response to that command. Theyi value is a list of character strings by default,
unless the shell specification stipulates a postprocessor to the contrary.

Most command line interpreters entail some concept of a persistent environment or work-
space that can be modeled as a map from identifiers to elementsof some application spe-
cific semantic domain. The environment is regarded as a passive but mutable entity acted
upon by imperative commands. A convention of direct declarative specification of the en-
vironment separate from the imperative operations is used by this function in the interest
of notational economy. Here are a couple of examples of this function usingbash as a
shell.

$ fun cli --m="(ask bash)/<> <’uname’,’lpq’,’pwd’>" -c %sL m
<

’uname’: <’Linux’>,
’lpq’: <’hp is ready’,’no entries’>
’pwd’: <’/home/dennis/fun/doc’>>

$ fun cli --m="(ask bash)/<’a’: ’b’> <’echo \$a’>" --c %sLm
<’echo $a’: <’b’>>

The backslash is needed to quote the dollar sign because thisfunction is being executed
from the command line, but normally would not be required.

22.2.2 Remote invocation

The next simplest scenario to the one above is that of a shell or application installed on a
remote host. Assuming the host is accessible byssh (the industry standard secure shell
protocol), and that the user is an authorized account holder, the following functions allow
convenient remote invocation.

407

hop

Given a pair of character strings(h, p), whereh is a hostname andp is a password, this
function returns a function that takes a shell specificationof type shell to a result
of the same type. The resulting shell specification will callfor a remote connection
and execution when used as a parameter to theask function.

The host name is passed through to thessh client, so it can be any variation on the form
user@host. domain. An example of how thehop function might be used is in the following
code fragment.

(ask hop(’root@kremvax.gov.ru’,’glasnost’) bash)/<> <’ du’>

Invocations ofhop can be arbitrarily nested, as in

hop(h0, p0) hop(h1, p1) . . . hop(hn, pn) 〈shell〉

and the effect will be to connect first toh0, and then from there toh1, and so on, provided
that all intervening hosts havessh clients and servers installed, and the passwordspi
are valid. This technique can be useful if access tohn is limited by firewall restrictions.
However, in such cases it may be more convenient to use the following function.

multihop

This function, defined as-++-+ hop * , takes a list of pairs of host names and pass-
words<(h0, p0) . . . (hn, pn)> to a function that transforms an a given shell to a
remote shell executable on hosthn through a connection by way of the intervening
hosts in the order they are listed.

This function could be used as follows.

multihop<(h0, p0) , . . . (hn, pn)> 〈shell〉

sask

This function, defined asask++ hop , combines the effect of theask and hop
functions for a single hop as a matter of convenience. The usage sask(h, p) s
is equivalent toask hop(h, p) s.

22.3 Defined interfaces

As indicated in the previous section,ask and related functions are parameterized by a
data structure of type_shell , which specifies how the client should interact with the ap-
plication. It also determines the types of objects that may be declared in the application’s

408

environment or workspace, and generates the necessary initialization commands and set-
tings. Although a compatible specification for any shell canbe defined by the user, some of
the most useful ones are defined in the library as a matter of convenience, and documented
in this section.

22.3.1 General purpose shells

It is possible for an application in Ursala to execute arbitrary system commands by inter-
acting with a general purpose login shell. When such a shells is used in an expression of
the form(ask s)(< n0: m0 . . .>, c) , eachmi value can be either a character string or a
list of character strings.

• If mi is a character string, then an environment variable is implicitly defined by
export ni=mi.

• If mi is a list of character strings, then a text file is temporarilycreated in the current
working directory with a name ofni and contentsmi using the standard line editor,
ed . The text file is deleted when the shell terminates.

There are certain limitations on the commands that may appear in the listc.

• Interactive commands that wait for user input should be avoided because they will
cause the client to deadlock.

• Commands using input redirection (for example, “cat - > file ”) also won’t
work.

• Commands that generate console output generally are acceptable, but they may con-
fuse the client if they output a shell prompt ($) at the beginning of a line.

bash

This shell represents the standard GNU command line interpreter of the same name.
Some examples usingbash are given in Section 22.2.1.

psh

This shell is similar tobash but provides some additional features to the commands
by allowing them to includeperl code fragments. Please refer to thepsh home
pages athttp://www.focusresearch.com/gregor/psh/index.html
for more information.

su

This function takes a pair of character strings(u, p) representing a user name and
password. It returns a shell similar tobash but that executes with the account and
privileges of the indicated user. If the user name is empty,root is assumed.

409

The following example demonstrates the usage ofsu .

$ fun cli -m="(ask su/0 ’Z10N0101’)/<> <’whoami’>" -c %sLm
<’whoami’: <’root’>>

If an application is already executing asroot , it should not attempt to use a shell
generated by thesu function, because such a shell relies on the assumption thatit will
be prompted for a password. However, any application running asroot can achieve the
same effect just by executingsu 〈username〉 as an ordinary shell command.

22.3.2 Numerical applications

The numerical applications whose interfaces are describedin this section include linear
algebra functions involving vectors and matrices of numbers. Facilities are provided for
automatic initialization of these types of variables in theapplication’s workspace.

• When a shells interfacing to a numerical application is used in an expression of
the form (ask s)(< n0 : m0 . . .>, c) , eachmi value can be a number, a list of
numbers, or a lists of lists of numbers, and will cause a variable to be initialized in
the application’s workspace that is respectively a scalar,a vector, or a matrix.

• Different numeric types are supported depending on the application, including natu-
ral, rational, floating point, and arbitrary precision numbers in thempfr (%E) repre-
sentation. The type is detected automatically.

• If the application supports them, vectors and matrices of character strings are simi-
larly recognized, and may be initialized either as quoted strings or symbolic names
depending on the application.

• If an application supports vectors of strings, an attempt ismade to distinguish be-
tween lists of character strings representing vectors and those representing functions
defined in the application’s scripting language based on syntactic patterns as docu-
mented below. In the latter case, the list of strings is interpreted as the definition of a
function and initialized accordingly.

R

This shell pertains to theRsystem for statistical computation and graphics, for which
more information can be found athttp://www.R-project.org . Four types of
data can be recognized and initialized as variables in theRworkspace when this shell
is used as a parameter to theask function. Data of type%e, %eL, and%eLL are
assigned to scalar, vector, and matrix variables, respectively. Data of type%sL are
assumed to be function definitions and are assigned verbatimto the identifier.

In this example,R is invoked with an environment containing the declaration of a variable
x as a scalar equal to1. The value of1 + 1 is computed by executing the command to add
1 to x .

410

$ fun cli --m="ask(R)/<’x’: 1.> <’x+1’>" --c %sLm
<’x+1’: <’[1] 2’>>

octave

This shell interfaces with the GNUOctave system for numerical computation. It
allows real valued scalars, vectors, and matrices to be initialized automatically as
variables in the interactive environment when used as a parameter to theask func-
tion, from values of type%e, %eL, and%eLL, respectively. It also allows a value
of type%sL to be used as a function definition. Because most results fromOctave
are numerical, the interface specifies a postprocessor thatautomatically converts the
output from character strings to floating point format whereapplicable.

In this example,octave is used to compute the sum of a short vector of two items.

$ fun cli -m="ask(octave)/<’x’: <1.,2.>> <’sum(x)’>" -c %e m
<’sum(x)’: 3.000000e+00>

gp

This shell interfaces to thePARI/GP package, which is geared toward high per-
formance numerical and symbolic calculations in exact rational, modular, and arbi-
trary precision floating point arithmetic, with emphasis onpower series. Documenta-
tion about this system can be found athttp://pari.math.u-bordeaux.fr .
Scalar values, vectors, and matrices of strings and all numeric types including arbi-
trary precision (%E) are recognized and initialized. A list of strings is interpreted as a
function definition rather than a vector if the= character appears anywhere within it.

This example asksgp to compute1 + 1.

$ fun cli --m="(ask gp)/<> <’1+1’>" --c %sLm
<’1+1’: <’2’>>

scilab

This shell interfaces with thescilab system, which performs numerical calculations
with applications to linear algebra and signal processing.Scalars, vectors, and matri-
ces of all numeric types and strings can be recognized and initialized as variables
in the workspace when this shell parameterizes theask function. A list of strings
is interpreted as a function definition rather than a vector if the = character appears
anywhere in it.

This example asksscilab to compute1 + 1.

$ fun cli --m="(ask scilab)/<> <’1+1’>" --c %sLm
<’1+1’: <’ 2. ’>>

411

22.3.3 Computer algebra packages

The interfaces documented in this section pertain to computer algebra packages, which are
used primarily for symbolic computations.

gap

This shell interfaces with thegap system, which pertains to group theory and ab-
stract algebra, as documented athttp://www.gap-system.org . Scalars, vec-
tors, and matrices of natural numbers, rational numbers, and strings (but not floating
point numbers) can be declared automatically in the workspace whengap is used as
a parameter to theask function. These are indicated respectively by values of type
%n, %nL, %nLL, %q, %qL, %qLL, %s, %sL, and%sLL. However, if any string in a list
of strings contains the word “function ”, then the list is treated as a function defi-
nition and assigned verbatim to the identifier rather than being initialized as a vector
of strings.

This example demonstrates the use of rational numbers withgap .

$ fun cli --m="ask(gap)/<’x’: 1/2> <’x+2/3’>" --c %sLm
<’x+2/3;’: <’7/6’>>

Most commands togap need to be terminated by a semicolon or elsegap will wait
indefinitely for further input. The shell interface will therefore automatically supply a
semicolon where appropriate if it is omitted.

axiom

This shell interfaces with theaxiom computer algebra system, which is documented
at http://savannah.nongnu.org/projects/axiom . Scalars, vectors,
and matrices of all numeric types and strings are recognizedwhen this shell is the
parameter to theask function. A list of strings is treated as a function definition
rather than a vector of strings if any string in it contains the = character. Vectors and
matrices of strings are declared as symbolic expressions rather than quoted strings.

Any automated driver for theAxiom command line interpreter is problematic because
the interpreter responds with sequentially numbered prompts that can’t be disabled, and
the number isn’t incremented unless an operation is successful. Errors in commands will
therefore cause the client to deadlock rather than raising an exception, as it waits indefi-
nitely for the next prompt in the sequence.

A further difficulty stems from the default two dimensional text output format being
impractical to parse for use by another application. However, a partial workaround for
this issue is to display an expressionx using the type castx::INFORM on theAxiom
command line, which will cause most expressions to be displayed in lisp format. This
notation can be transformed to a parse tree by the functionaxparse defined in thecli
library for this purpose, and documented subsequently in this chapter.

412

maxima

This shell interfaces to theMaxima computer algebra system, as documented at
http://www.sourceforge.net/projects/maxima . Whenmaxima pa-
rameterizes theask function, only strings and lists of strings are usable to initialize
variables in the workspace (i.e., not vectors or matrices ofnumeric types as with other
interfaces). These are assigned verbatim to their identifiers.

The scripting language forMaxima allows interactive routines to be written that prompt
the user for input. These should be avoided via this interface because a non-standard
prompt will cause the client to deadlock.

22.4 Functions based on shells

A small selection of functions using some of the standard shells is included in thecli
library for illustrative purposes and possible practical use.

22.4.1 Front ends

The following functions usebash , octave , or Ras back ends to compute mathematical
results or perform system calls.

now

This function ignores its argument and returns the system time in a character string.

Here is an example ofnow.

$ fun cli --m=now0 --c %s
’Sat, 07 Jul 2007 07:07:07 +0100’

eigen

This function takes a real symmetric matrix of type%eLL to the list of pairs
<(< x . . .>, λ) . . .> representing its eigenvectors and eigenvalues in order of decreas-
ing magnitude.

Here is an example of the above function.

$ fun cli --m="eigen<<2.,1.>,<1.,2.>>" --c %eLeXL
<

(<7.071068e-01,7.071068e-01>,3.000000e+00),
(

<-7.071068e-01,7.071068e-01>,
1.000000e+00)>

413

A similar result can be obtained with less overhead by the function dsyevr among others
available through the virtual machine’slapack library interface if it is appropriately
configured.

choleski

This function takes a positive definite matrix of type%eLLand returns its lower tri-
angular Choleski factor. If the argument is not positive definite, an exception is raised
with a diagnostic message to that effect.

Here are some examples of Choleski decompositions.

$ fun cli --m="choleski<<4.,2.>,<1.,8.>>" --c %eLL
<

<2.000000e+00,0.000000e+00>,
<1.000000e+00,2.645751e+00>>

$ fun cli --m="choleski<<1.,2.>,<3.,4.>>" --c %eLL
fun:command-line: error: chol: matrix not positive defini te

The latter example demonstrates the technique of passing through a diagnostic message
from the back endoctave application. Note that if the virtual machine is configured
with a lapack interface, a quicker and more versatile way to get Choleski factors is by
thedpptrf andzpptrf functions.

stdmvnorm

This function takes a triple(<a0 . . . an>,<b0 . . . bn>,σ) to the probability that a random
draw <x0 . . . xn> from a multivariate normally distributed population with means0
and covariance matrixσ hasai ≤ xi ≤ bi for all 0 ≤ i ≤ n.

mvnorm

This function takes a quadruple(<a0 . . . an>,<b0 . . . bn>,<µ0 . . . µn>,σ) to the proba-
bility that a random draw<x0 . . . xn> from a multivariate normally distributed pop-
ulation with means<µ0 . . . µn> and covariance matrixσ hasai ≤ xi ≤ bi for all
0 ≤ i ≤ n.

It would be difficult to find a better way of obtaining multivariate normal probabilities
than by using theRshell interface as these functions do, because there is no corresponding
feature in the system’s C language API.

22.4.2 Format converters

A couple of functions are usable for transforming the outputof a shell. In the case of
Axiom , the default output format is somewhat difficult to parse.

$ fun cli --m="ask(axiom)/<> <’(x+1)ˆ2’>" --c %sLm

414

<
’(x+1)ˆ2’: <

’ 2’,
’ (1) x + 2x + 1’,
’ Type: Polynomial Integer’>>

Although suitable for interactive use, this format makes for awkward input to any other
program. However, the following technique can at least transform it to alisp expression.

$ fun cli --m="ask(axiom)/0 <’((x+1)ˆ2)::INFORM’>" --c %s Lm
<

’((x+1)ˆ2)::INFORM’: <
’ (1) (+ (+ (** x 2) (* 2 x)) 1)’,
’ Type: InputForm’>>

This format can be made convenient for further processing (e.g., with tree traversal com-
binators) by the following function.

axparse

Given alisp expression displayed byAxiom with an INFORMtype cast, this func-
tion parses it to a tree of character strings.

The following example demonstrates this effect.

$ fun cli --c %sT \
> --m="axparse ˜&hm ask(axiom)/<> <’((x+1)ˆ2)::INFORM’> "
’+’ˆ: <

’+’ˆ: <
’ ** ’ˆ: <’x’ˆ: <>,’2’ˆ: <>>,
’ * ’ˆ: <’2’ˆ: <>,’x’ˆ: <>>>,

’1’ˆ: <>>

octhex

This function is used to convert hexadecimal character strings displayed byOctave
to their floating point representations.

Theocthex function is used internally by theoctave interface but may be of use for
customizing or hacking it.

$ octave -q
octave:1> format hex
octave:2> 1.234567
ans = 3ff3c0c9539b8887
octave:3> quit
$ fun cli --m="octhex ’3ff3c0c9539b8887’" --c %e
1.234567e+00

415

22.5 Defining new interfaces

The remainder of the chapter needs to be read only by developers wishing to modify or
extend the set of existing shell interfaces. To this end, thebasic building blocks are what
will be called protocols and clients.

• A protocol is a declarative specification of a prescribed interaction or fragment there-
of between a client and a server.

• A client is a virtual machine code program capable of executing a protocol when used
as the operand to the virtual machine’sinteract combinator.

• A server in this context is the shell or command line interpreter for which an interface
is sought, and is treated as a black box.

• An interface is a record made up of a combination of clients, protocols, or client
generating functions each detailing a particular phase of the interaction, such as au-
thentication, initialization,etcetera.

22.5.1 Protocols

A protocol is represented as a non-empty list<(c0, p0), . . . (cn, pn)> of pairs of lists of
strings wherein eachci is a sequence of commands sent by the client to the server, andthe
correspondingpi is the text containing the prompt that the server is expectedto transmit in
reply.

• Line breaks are not explicitly encoded, but are implied if either list contains multiple
strings.

• If and when all transactions in the list are completed, the connection is closed by the
client and the session is terminated.

Certain patterns have particular meanings in protocol specifications. These interpreta-
tions are a consequence of the virtual machine’sinteract combinator semantics.

• If any promptpi is a list of one string containing only the end of file character (ISO
code 4), the client waits for all output until the server closes the connection and then
the session is terminated.

• If a promptpi is <’’> , the list of the empty string, the client waits for no output at
all from the server and proceeds immediately to send the nextlist commandsci+1, if
any.

• If a promptpi is <>, the empty list, the client waits to receive exactly one character
from the server and then proceeds with the next command, if any.

The last alternative, although supported by the virtual machine, is not presently used in the
cli library. It could have applications to matching wild cards in prompts.

416

The following definitions are supplied in thecli library as mnemonic aids in support
of the above conventions.

eof

the end of file character, ISO code 4, defined as4%cOi&

handshake

Given a pair(p,<c0, . . . cn>) wherep andci are character strings, this function con-
structs the protocol<(< c0,’’>,<’’, p>), . . . (< cn,’’>,<’’, p>)> describing
a client that sends each commandci followed by a line break and waits to receive the
stringp preceded by a line break from the server after each one.

completing

Given any protocol<(c0, p0), . . . (cn, pn)>, this function constructs the protocol
<(c0, p0), . . . (cn,<<eof>>)>, which differs from the original in that the client waits
for the server to close the connection after the last command.

closing

Given any protocol<(c0, p0), . . . (cn, pn)>, this function constructs the protocol
<(c0, p0), . . . (cn,<’’>)>, which differs from the original in that the connection is
closed immediately after the last command without the client waiting for another
prompt.

22.5.2 Clients

A client in this context is a functionf expressed in virtual machine code that is said to
execute a protocol<(c0, p0), . . . (cn, pn)> if it meets the condition

∀<x0 . . . xn>. ∃<q0 . . . qn>. f() = (q0, c0, p0)

∧ ∀i ∈ {0 . . . n− 1}. f(qi, -[-[xi]--[pi]-]-) = (qi+1, ci+1, pi+1)

where eachxi is a list of character strings and the dash bracket notation has the semantics
explained on page 118, in this case concatenating a pair of lists of strings by concatenating
the last string inxi with the first one inpi, if any. Theqi values are constants of unrestricted
type.

A client f in itself is only an alternative representation of a protocol in an intensional
form, but when a programinteract f is applied to any argument, the virtual machine
carries out the specified interactions to return the transcript

<c0, -[-[x0]--[p0]-]- , . . . cn, -[-[xn]--[pn]-]->

with thex values emitted by a server.

417

Thecli library contains a small selection of functions for constructing or transforming
clients more easily than by hand coding them, which are documented below.

Clients from strings

expect

Given a protocolr, this function returns a clientf that executesr in the sense defined
above.

exec

Given a single character strings, this function returns a client that is semantically
equivalent toexpect completing handshake/0 < s>, which is to say that
the client specifies the launch ofs followed by the collection of all output from it until
the server closes the connection.

An example of the above function follows.

$ fun cli --m="interact(exec ’uname’) 0" --c %sLL
<<’uname’>,<’Linux’>>

Clients from clients

seq

This function takes a promptp to a function that takes a list of clients to their se-
quential composition in a shell with promptp. The sequential composition is a client
that begins by behaving like the first client in the list, thenthe second when that one
terminates, and so on, expecting the promptp in between.

• If any client in the list closes the connection, interactionwith the next one starts
immediately.

• If any client waits for the server to close the connection (with <<eof>>), the
prompt<’’, p> is expected instead (i.e.,p preceded by a line break), any accom-
panying command from the client has a line break appended, and the interaction
of the next client in the list commences when<’’, p> is received.

• If the initial output transmitted by any client after the first one in the list is a
single string, a line break is appended to the command (by wayof an empty
string).

• If the initial prompt for any client after the first one in the list is a single string, a
line break is inserted at the beginning of the prompt (by way of an empty string).

418

For a list of commandsx and a promptp, the following equivalence holds,

expect handshake/ p x ≡ (seq p) exec * x

but the form on the left is more efficient.
Some command line interpreters, such as those ofAxiom andMaxima , use numbered

prompts. In these cases, the following function or something similar is useful as a wrapper.

prompt counter

This function takes a client as an argument and returns a client as a result. For any
state in which the given client would expect a prompt containing the substring’ \n’ ,
the resulting client expects a similar prompt in which this substring is replaced by a
natural number in decimal that is equal to 1 for the first interaction and incremented
for each subsequent one.

Execution of clients

watch

Given a client as an argument, this function returns a list oftype%scLULLcontaining
a transcript of the client/server interactions. The function is defined as̃&iNHiF+
interact .

The watch function is a useful diagnostic tool during development of new protocols or
clients. Here is an example.

$ fun cli --m="watch exec ’ps’" --c %sLL
<

<’ps’>,
<

’ PID TTY TIME CMD’,
’ 7143 pts/5 00:00:00 ps’>>

However, thewatch function is ineffective if deadlock is a problem, in which case the
--trace compiler option may be more helpful. See page 281 for an example.

22.5.3 Shell interfaces

The purpose of ashell data structure is to encapsulate as much useful informationas
possible about invoking a shell or command line interpreter. When ashell is properly
constructed, it can be used as a parameter to theask function and allow easy access to the
application it describes. Working with this data structureis explained in this section.

419

Data structures

As noted below, some of the fields in ashell are character strings, but to be adequately
expressive, others are protocols, clients, or functions that generate clients, as these terms
are understood based on the explanations in the previous sections.

shell

This function is the mnemonic for a record with the followingfields.

• opener – command to invoke the shell, a character string

• login – password negotiation protocol, if required, as a list of pairs of lists of
strings

• prompt – shell prompt to expect, a character string

• settings – a list of character strings giving commands to be executed when
the shell opens

• declarer – a function taking an assignment(n: m) to a client that binds the
value ofm to the symboln in the shell’s environment

• releaser – a function taking an assignment(n: m) to a client that releases the
storage for the symboln if required; empty otherwise

• closers – a list of character strings containg commands to be executed when
closing the connection

• answerer – a postprocessing function for answers returned by theask func-
tion, taking an argumentn: m of type%ssLA, and returning a modified version
of m, if applicable

• nop – a string containing a shell command that does nothing, usedby theask
function as a placeholder, usually just the empty string

• wrapper – a function used to transform the whole client generated by thesh
function allowing for anything not covered above

Some additional notes about these fields are given below.

• If the shell has any command line options that are appropriate for non-interactive
use, they should be included in theopener . e.g.,’R -q’ to launchR in “quiet”
mode. Any options that disable history, color attributes, banners, and line editing are
appropriate.

• Thelogin protocol is executed immediately after theopener , and should be some-
thing like <(<’’>,<’Password: ’>),(<’pass’,’’>,<’$> ’>)> for an
application that prompts for a passwordpass and then starts with a prompt$>. If
no authentication is required, thelogin field can be empty.

420

• After logging in and executing the first command in thesettings , the client detects
that the server is waiting for more input when a line break followed by theprompt
string is received. Theprompt field should therefore contain the whole prompt used
by the application from the beginning of the line.

• The argumentn: m to thedeclarer and thereleaser functions comes from the
left argument in the expression(ask s)/< n: m . . .> c when the shells is used as
a parameter to theask function. The functions typically will detect the type ofm,
and generate a client accordingly of the formexpect completing handshake . . .
that executes the relevant initialization commands.

– Most applications have documented or undocumented limits to the maximum
line length for interactive input, so initialization of large data structures should
be broken across multiple lines.

– The prompt used by the application during input of continuedlines may differ
from the main one.

• Theanswerer function, if any, should be envisioned as being implicitly invoked at
the pointˆ(˜&n,˜answerer s) * (ask s)/ e c when the shells is used as a
parameter to theask function. Typical uses are to remove non-printing characters or
redundant information.

• Theask function uses thenop command specified in theshell data structure as
a separator before and after the main command sequence to parse the results. Some
applications, such asMaxima , do not ignore an empty input line, in which case an
innocuous and recognizable command should be chosen as thenop .

• Applications with irregular interfaces demanding a hand coded client can be accom-
modated by thewrapper function. Theprompt_counter function documented
in the previous section is one example.

Hierarchical shells

A shell data structure can be converted to a client function by the operations listed
below. One reason for doing so might be to specify thedeclarer or releaser fields
in terms of shells, asbash does.

sh

This function takes an argument of typeshell and returns function that takes a
pair (e, c) of an environmente and a list of commandsc to a client.

ssh

Defined assh++ hop , this function takes a pair(h, p) of a host nameh and a pass-
word p, and returns a function similar tosh except that it requires the shell to be
executed remotely.

421

The functionssh andssh follow similar calling conventions toask andsask , respec-
tively, but return only a client without executing it. Further levels of remote invocation
are possible by using thehop function explicitly in conjunction with these. Aside from
using the client constructed by one of these functions to specify a field in ashell , the
only useful thing to do with it is to run it by thewatch function.

$ fun cli --m="watch (sh R)/<’x’: 1.> <’x+1’>" --c
<

<’R -q’>,
<’> ’>,
<’x=1.00000000000000000000e+00’,’’>,
<’x=1.00000000000000000000e+00’,’> ’>,
<’x+1’,’’>,
<’x+1’,’[1] 2’,’> ’>,
<’q()’,’’>,
<’q()’>>

open

This function takes an argument of typeshell and returns function that takes a
pair (e, c) of an environmente and a list of clientsc to a client.

sopen

Defined asopen++ hop , this function takes a pair(h, p) of a host name and a pass-
word, and returns a function similar toopen except that it requires the shell to be
executed remotely.

The functionsopen andsopen are analogous tosh andssh , except that the operandc
is not a list of character strings but a list of clients. The following equivalence holds.

(sh s)/ e c ≡ (open s)/ e exec * c

Theopen function is therefore a generalization ofsh that provides the means for inter-
active commands or shells within shells to be specified. It ispossible to perform a more
general class of interactions withopen than with theask function, but parsing the tran-
script into a convenient form (e.g., a list of assignments) must be hand coded.

22.5.4 Interface example

The programming languageyorick is suitable for numerical applications and scientific
data visualization (seehttp://yorick.sourceforge.net), and it is designed to
be accessed by a command line interpreter. Although there isno interface to theyorick
interpreter defined in thecli library, a user could easily create one by gleaning the fol-
lowing facts from the documentation.

422

• The command to invoke the interpreter isyorick , with no command line options.

• The interpreter uses the string’> ’ as a prompt, except for continued lines of input,
where it uses’cont> ’ .

• The command to end a session isquit .

• Two types of objects that can be defined in the environment arefloating point numbers
and functions.

– Declarations of floating point numbers use the syntax

〈identifier〉=〈value〉;

– Function declarations use the syntax

func 〈name〉 (〈parameter list〉)
{
〈body〉

}

The first three points above indicate the appropriate valuesfor theopener , prompt ,
andclosers fields in the shell specification, while the last point suggests a convenient
declarer definition. In particular, given an argumentn : m, the declarer should
check whetherm is a floating point number or a list of strings. If it is a floating point
number, thedeclarer will return a simple client constructed by theexec function
that performs the assignment in the syntax shown. Otherwise, it will return a client that
performs the function declaration by expecting a handshaking protocol with the prompt
’cont> ’ .

The complete specification for the shell interface along with a small test driver is shown
in Listing 22.1. Assuming this listing is stored in a file named ytest.fun , its operation
can be verified as follows.

$ fun flo cli ytest.fun --show
<’double(x)+1’: <’3’>>

If this code hadn’t worked on the first try, perhaps due to deadlock or a syntax error, the
cause of the problem could have been narrowed down by tracingthe interaction using the
compiler’s--trace command line option.

$ fun flo cli ytest.fun --show --trace
opening yorick
waiting for 62 32

...

<- q 113
<- u 117

423

Listing 22.1 example of a user-defined shell interface with a test driver

#import std
#import nat
#import cli
#import flo

yorick =

shell[
opener: ’yorick’,
prompt: ’> ’,
declarer: %eI?m(

("n","m"). exec "n"--’ = ’--(printf/’%0.20e’ "m")--’;’,
%sLI?m(

expect+ completing+ handshake/’cont> ’+ ˜&miF,
<’unknown yorick type’>!%)),

closers: <’quit’>]

alas =

%sLmP (ask yorick)(
<

’x’: 1.,
’double’: -[

func double(x)
{

return x+x;
}]->,

<’double(x)+1’>)

<- i 105
<- t 116
<- 10
waiting for 13 10
-> q 113
-> u 117
-> i 105
-> t 116
-> 13
-> 10
matched
closing yorick
<’double(x)+1’: <’3’>>

424

Part IV

Compiler Internals

425

Yeah well, new rules.

Tom Cruise inRain Man

23
Customization

Many features of Ursala normally considered invariant, such as the operator semantics,
can be changed by the command line options listed in Table 23.1. These changes are
made without rebuilding or modifying the compiler. Instead, the compiler supplements
its internal tables by reading from a binary file whose name isgiven as a command line
parameter. This chapter is concerned with preparing the binary files associated with these
options, which entails a knowledge of the compiler’s data structures.

The kinds of things that can be done by means explained in thischapter are adding
a new operator or directive, changing the operator precedence rules, defining new type
constructors and pointers, or even defining new command lineoptions. It is generally
assumed that the reader has a reason for wanting to add features to the language, and
that the desired enhancements can’t be obtained by simpler means (e.g., defining a library
function or using programmable directives).

The possible modifications described in this chapter affectonly an individual compila-
tion when the relevant command line option is selected, but they can be made the default
behavior by editing the compiler’s wrapper script. There islikely to be some noticeable
overhead incurred when the compiler is launched, which could be avoided if the changes
were hard coded. Further documentation to that end is given in the next chapter, but this
chapter is worth reading regardless, because the same data structures are involved.

23.1 Pointers

The pointer constructors documented in Chapter 2 are specified in a table calledpnodes
of type_pnode%mdefined in the filesrc/psp.fun . Each record in the table has the
following fields.

• mnemonic – either a string of length 1 or a natural number as a unique identifier

426

option interpretation

--help-topics load interactive help topics from a file
--pointers load pointer expression semantics from a file
--precedence load operator precedence rules from a file
--directives load directive semantics from a file
--formulators load command line semantics from a file
--operators load operator semantics from a file
--types load type expression semantics from a file

Table 23.1: command line options pertaining to customization

• pval – a function taking a tuple of pointers to a pointer

• fval – a function taking a tuple of semantic functions to a semantic function

• pfval – a function taking a pointer on the left and a semantic function on the right
to a semantic function

• help – a character string describing the pointer for interactivedocumentation

• arity – the number of operands the pointer constructor requires

• escaping – a function taking a natural number escape code to a_pnode

Each assignmenta: b in the table ofpnodes hasa equal to themnemonic field of b.
Hence, we have

$ fun psp --m=pnodes --c _pnode%m
<

’n’: pnode[
mnemonic: ’n’,
pval: 4%fOi&,
help: ’name in an assignment’],

’m’: pnode[
mnemonic: ’m’,
pval: 4%fOi&,
help: ’meaning in an assignment’],

...
and so on.

The semantics of a given pointer operator or primitive is determined by the fieldspval ,
fval , andpfval . No more than one of them needs to be defined, but it may be useful
to define bothpval andfval . Thefval field specifies a pseudo-pointer semantics, and
thepval field is for ordinary pointers. Thepfval field is peculiar to theP operator.

427

Listing 23.1 source file defining a new pseudo-pointer

#import std
#import nat
#import psp

#binary+

pfi =

˜&iNC pnode[
mnemonic: ’u’,
fval: ("f","g"). subsetˆ("f","g"),
arity: 2,
help: ’binary subset combinator’]

23.1.1 Pointers with alphabetic mnemonics

An example of a file specifying a new pointer constructor is shown in Listing 23.1. The file
contains a list ofpnode records to be written in binary form to a file namedpfi . The list
contains a single pointer constructor specification with a mnemonic ofu. This constructor
is a pseudo-pointer that requires two pointers or pseudo-pointers as subexpressions in the
pointer expression where it occurs. If the expression is of the form ˜& fgu x, then the
result will besubset(˜& f x,˜& g x) .

As a demonstration, the text in Listing 23.1 can be saved in a file namedpfi.fun and
compiled as shown.

$ fun psp pfi.fun
fun: writing ‘pfi’

Using this file in conjunction with the--pointers command line option shows the new
pointer is automatically integrated into the interactive help.

$ fun --pointers ./pfi --help pointers,2

pointer stack operators of arity 2 (* pseudo-pointer)
--- --

A assignment constructor
...

* p zip function

* u binary subset combinator

* w membership

As this output shows, the rest of the pointers in the languageretain their original meanings
when a new one is defined, and the new ones replace any built in pointers having the same
mnemonics. Another alternative is to use theonly parameter on the command line, which
will make the new pointers the only ones that exist in the language.

428

$ fun --main="˜&x" --decompile
main = reverse
$ fun --pointers only ./pfi --main="˜&x" --decompile
fun:command-line: unrecognized identifier: x

A simple test of the new pointer is the following.

$ fun --pointers ./pfi --m="˜&u/’ab’ ’abc’" --c %b
true

A more reassuring demonstration may be to inspect the code generated for the expression
˜&u , to confirm that it computes the subset predicate.

$ fun --pointers ./pfi --m="˜&u" --d
main = compose(

refer conditional(
field(0,&),
conditional(

compose(member,field(0,(((0,&),(&,0)),0))),
recur((&,0),(0,(0,&))),
constant 0),

constant &),
compose(distribute,field((0,&),(&,0))))

23.1.2 Pointers accessed by escape codes

A drawback of defining a new pointer in the manner described above is that the mnemonic
u is already used for something else. Although it is easy to change the meaning of an
existing pointer, doing so breaks backward compatibility and makes the compiler unable
to bootstrap itself. The issue is not avoided by using a different mnemonic because every
upper and lower case letter of the alphabet is used, digits have special meanings, and non-
alphanumeric characters are not valid in pointer mnemonics. However, it is possible to
define new pointer operators by using numerical escape codesas described in this section.

The escaping field in a pnode record may contain a function that takes a natural
number as an argument and returns apnode record as a result. The argument to the
function is derived from the digits that follow the occurrence of the escaping pointer in an
expression. The result returned by theescaping field is substituted for the original and
the escape code to evaluate the expression.

There is only one pointer in thepnodes table that has a non-emptyescaping field,
which is theK pointer, but only one is needed because it can take an unlimited number
of escape codes. The way of adding a new pointer as an escape code is to redefine theK
pointer similarly to the previous section, but with theescaping field amended to include
the new pointer.

A simple way of proceeding is to use the definitions of theK pointer and theescapes
list from thepsp module, as shown in Listing 23.2. Theescapes list is a list of type

429

Listing 23.2 adding a new pointer without breaking backward compatibility

#import std
#import nat
#import psp

pfi =

˜&iNC pnode[
mnemonic: length psp-escapes,
fval: ("f","g"). subsetˆ("f","g"),
arity: 2,
help: ’binary subset combinator’]

escapes = --(ˆA(˜mnemonic,˜&) * pfi) psp-escapes

#binary+

kde =

˜&iNC pnode[
mnemonic: ’K’,
fval: <’escape code missing after K’>!%,
help: ’escape to numerically coded operators’,
escaping: %nI?(

˜&ihrPB+ ˆE(˜&l,˜&r.mnemonic) * ˜+ ˜&D\(˜&mS escapes),
<’numeric escape code missing after K’>!%),

arity: 1]

430

_pnode%mwhosei-th item (starting from 0) has a mnemonic equal to the naturalnumber
i. It is used in the definition of theescaping field of theK pointer specification.

TheK record is cut and pasted frompsp.fun , without any source code changes, but
the list ofescapes is locally redefined to have an additional record appended. Appending
it rather than inserting it at the beginning is necessary to avoid changing any of the existing
escape codes. The appended record, for the sake of a demonstration, is similar to the one
defined in the previous section.

The code in Listing 23.2 is compiled as shown.

$ fun psp kde.fun
fun: writing ‘kde’

The new pointer shows up as an escape code as required in the interactive help,

$ fun --pointers ./kde --help pointers,2

pointer stack operators of arity 2 (* pseudo-pointer)
--- --
...

* K18 binary subset combinator

...
and it has the specified semantics.

$ fun --pointers ./kde --m="˜&K18" --d
main = compose(

refer conditional(
field(0,&),
conditional(

compose(member,field(0,(((0,&),(&,0)),0))),
recur((&,0),(0,(0,&))),
constant 0),

constant &),
compose(distribute,field((0,&),(&,0))))

23.2 Precedence rules

The --precedence command line option allows the operator precedence rules docu-
mented in Section 5.1.3 to be changed. The option requires the name of a binary file to be
given as a parameter, that contains a pair of pairs of lists ofpairs of strings

((〈prefix-infix〉, 〈prefix-postfix〉), (〈infix-postfix〉, 〈infix-infix〉))
of type%sWLWW. Each component of the quadruple pertains to the precedencefor a par-
ticular combination of operators arities (e.g., prefix and infix). Each string is an operator

431

Listing 23.3 a revised set of precedence rules to make infix composition right associative

#binary+

npr = ((<>,<>),(<>,<(’+’,’+’)>))

mnemonic, either from Table 5.2 or user defined. The presenceof a pair of strings in
a component of the tuple indicates that the left operator is related to the right under the
precedence relation.

23.2.1 Adding a rule

Listing 23.3 provides a short example of a change in the precedence rules. Normally infix
composition is left associative, but this specification makes the+ operator related to itself
when used in the infix arity, and therefore right associative. Given this code in a file named
npr.fun , we have

$ fun --main="f+g+h" --parse
main = (f+g)+h
$ fun npr.fun
fun: writing ‘npr’
$ fun --precedence ./npr --main="f+g+h" --parse
main = f+(g+h)

In the case of functional composition, both interpretations are of course semantically
equivalent.

23.2.2 Removing a rule

Additional precedence relationships are easy to add in thisway, but removing one is
slightly less so. In this case, a set of precedence rules derived from the default prece-
dence rules from the modulesrc/pru.avm has to be constructed as shown below, with
the undesired rules removed.

npr = (&rr:= ˜&j\<(’;’,’/’)>+ ˜&rr) pru-default_rules

The rules would then be imposed using theonly parameter to the--precedence op-
tion, as in

$ fun --precedence only ./npr foobar.fun

23.2.3 Maintaining compatibility

Changing the precedence rules can almost be guaranteed break backward compatibility
and make the compiler unable to bootstrap itself. If customized precedence rules are im-
plemented after a project is underway, it may be helpful to identify the points of incom-
patibility by a test such as the following.

432

$ fun * .fun --parse all > old.txt
$ fun --precedence ./npr * .fun --parse all > new.txt
$ diff old.txt new.txt

Assuming the files of interest are in the current directory and named* .fun , this test will
identify all the expressions that are parsed differently under the new rules and therefore in
need of manual editing.

23.3 Type constructors

Type expressions are represented as trees of records whose declaration can be found in
the filesrc/tag.fun . The main table of type constructor records is declared in the file
src/tco.fun . It has a type of_type_constructor%m . A type_constructor
record has the following fields, first outlined briefly below and then explained in more
detail.

• mnemonic – a string of exactly one character uniquely identifying thetype con-
structor

• microcode – a function that maps a pair(s, t) with a stack of previous resultss
and a list of type constructorst to a new configuration(s′, t′)

• printer – given a pair(< t . . .>, x) , where<t . . .> is a stack of type expressions
andx is an instance, the function in this field returns a list of character strings display-
ing x as an instance of typet. Trailing members of<t . . .>, if any, are the ancestors
of t in the expression tree were it occurs.

• reader – for some primitive types, this field contains an optional function taking a
list of character strings to an instance of the type

• recognizer – same calling convention as theprinter , returns true iffx is an
instance of the typet

• precognizer – same as the recognizer except without checking for initialization

• initializer – a function taking an argument of the form(< f . . .>,< t . . .>)
where<t . . .> is a stack of type expressions as above, and<f . . .> is a list of type
initializing functions with one for each subexpression; the result is the main initial-
ization function for the type

• help – short character string to be displayed by the compiler for interactive help

• arity – natural number specifying the number of subexpressions required

• target – used by themicrocode to store a function value

• generator – takes a list<g . . .> of one generating function for each subexpression
and returns random instance generator for the whole type expression

433

23.3.1 Type constructor usage

Supplementary material on thetype_constructor field interpretations is provided in
this section for readers wishing to extend or modify the system of types in the language. As
noted above, every field in the record except for thehelp andarity fields is a function.
Most of these functions are not useful by themselves, but areintended to be combined in
the course of a traversal of a tree of type constructors representing an aggregate type or
type related function. This design style allows arbitrarily complex types to be specified in
terms of interchangeable parts, but it requires the functions to follow well defined calling
conventions.

Printer and recognizer calling conventions

The printing function for a typedˆ: v, whered is a type_constructor record, is
computed according to the equivalence

(%-P dˆ: v) x ≡ (˜printer d) (< dˆ: v>, x)

at the root level. Note that the function is applied to an argument containing itself and the
type expression in which it occurs, which is convenient in certain situations, in addition to
the datax to be printed.

Primitive and aggregate type printers For primitive types, theprinter field often may take
the formf+ ˜&r , because the type expressions on the left are disregarded. For example,
the printer for boolean types is as follows.

$ fun tag --m="˜&d.printer %b" --d
main = couple(

conditional(
field(0,&),
constant ’true’,
constant ’false’),

constant 0)

For aggregate types, theprinter in the root constructor normally needs to invoke
the printers from the subexpressions at some point. When a printer for a subexpression is
called, convention requires it to be passed an argument of the form

(<t, dˆ: v>, x′)

wheredˆ: v is the original type expression, now appearing second in thelist, while t is
the subexpression type. In this way, the subexpression printer may access not just its own
type expression but its parents. Although most printers do not depend on the parents of
the expression where they occur, the exception is theh type constructor for recursive types
(and indirectly for recursively defined records).

434

List printer example To make this description more precise, we can consider the printer
for the list type constructor,L. The representation for a list type expression is always
something similar to the following,

$ fun tag --m="%bL" --c _type_constructor%T
ˆ: (

type_constructor[
mnemonic: ’L’,
printer: 674%fOi&,
recognizer: 274%fOi&,
precognizer: 100%fOi&,
initializer: 32%fOi&,
generator: 1605%fOi&],

<
ˆ:<> type_constructor[

mnemonic: ’b’,
printer: 80%fOi&,
recognizer: 16%fOi&,
initializer: 11%fOi&,
generator: 110%fOi&]>)

where the subexpression may vary. The source code for theprinter function in the list
type constructor takes the form

ˆD(˜&lhvh2iC,˜&r); (* ˆH/˜&lhd.printer ˜&); f

where the functionf takes a list of lists of strings to a list of strings, supplying the nec-
essary indentation, delimiting commas, and enclosing angle brackets. The first phase,
ˆD(˜&lhvh2iC,˜&r) , takes an argument of the form

(<dˆ:< t>>,< x0 . . . xn>)

and transforms it to a list of the form

<(<t, dˆ:< t>>, x0) . . . (<t, dˆ:< t>>, xn)>

The second phase,(* ˆH/˜&lhd.printer ˜&) , uses the printer of the subexpres-
sion t to print each itemx0 throughxn. Many printers for unary type constructors have
a similar first phase of pushing the subexpression onto the stack, but this second phase is
more specific to lists.

Recognizers The calling conventions forrecognizer andprecognizer functions
follow immediately from the one for printers. Rather than returning a list of strings, these
functions return boolean values. The root printer functionof a type expression may need
to invoke the recognizer functions of its subexpressions, which is done for example in the
case of free unions.

435

The difference between therecognizer and theprecognizer field is that the
precognizer will recognize an instance that has not been initialized, such as a rational
number that is not in lowest terms or a record whose initializing function has not been
applied. For some types (mainly those that don’t have an initializer), there is no distinction
and theprecognizer field need not be specified. However, if the distinction exists, then
theprecognizer needs to reflect it in order for unions and a-trees to work correctly with
the type.

Microcode and target conventions

The function in themicrocode field is invoked when a type expression is evaluated as
described in Section 4.3.1. To evaluate an expression such as s%t0t1 . . . tn, the list of type
constructors<T0 . . . Tn> associated with each of the mnemonicst0 throughtn is combined
with the initial stack<s>, and themicrocode field ofT0 is applied to(<s>,<T0 . . . Tn>).
Certain conventions are followed by microde functions although they are not enforced in
any way.

• If T0 is the type constructor for a primitive type, the microcode should return a result
of (<T0ˆ:<> , s>,<T1 . . . Tn>), which has the unit tree of the constructorT0 shifted
to the stack.

• If T1 is a unary type constructor, its microcode should map the result returned by
the microcode ofT0 to (<T1ˆ:< T0ˆ:<>> , s>,<T2 . . . Tn>), which shifts a type ex-
pression onto the stack havingT1 as the root and the previous top of the stack as the
subexpression.

• If T1 is a binary type constructor, its microcode should map the result returned by
the microcode ofT0 to (<T1ˆ:< s, T0ˆ:<>>> ,<T2 . . . Tn>), ands best be a type
expression. This result has a type expression on top of the stack withT1 as the root
and the two previous top items as the subexpressions.

• If any Ti represents a functional combinator rather than a type constructor (for ex-
ample, like theP andI constructors), themicrocode should return a result of the
form (< dˆ:<>>,<>) , with the resulting function stored in thetarget field of d.

• The microcode for the remaining constructors such asl andr transforms the stack
in arbitraryad hocways, as shown in Figure 4.1 on page 167.

Initializers

The initializer field in each type constructor is responsible for assigning the default
value of an instance of a type when it is used as a field in a record. It takes an argument of
the form(< f0 . . . fn>,< t . . .>) because the initializer of an aggregate type is normally
defined in terms of the initializers of its component types, although the initializer of a
primitive type is constant. For example, the boolean (%b) initializer is ! ˜&i&& &! ,
the constant function returning the function that maps any non-empty value to thetrue

436

boolean value (&). The initializer of the list construtor (L) is ˜&l; ˜&ihB&& ˜&h; * ,
the function that applies the initializerf0, in the above expression, to every item of a list.

For aggregate types, most initializers are of the form˜&l; h, because they depend
only on the initializers of the subtypes, but the exception is theU type constructor, whose
initializer needs to invoke theprecognizer functions of its subtypes and hence requires
the stack of ancestor types in case any of them is recursivelydefined.

Generators

A random instance generator for a typet is a function that takes either a natural number as
an argument or the constant&. If it is given a natural numbern as an argument, its job is
to return an instance oft having a weight as close as possible ton, measured in quits. If
it is given& as an argument, it is expected to return a boolean value whichis true if there
exists an upper bound on the size of the instances oft, and false otherwise. Examples of
the former types are boolean, character, standard floating point types, and tuples thereof.

Thegenerator field in each type constructor is responsible for constructing a ran-
dom instance generator of the type. For aggregate types, it is normally defined in terms of
the generators of the component types, but for primitive types it is invariant. For example,
thegenerator field of thee type constructor is defined as

! math..sub\10.0+ mtwist..u_cont+ 20.0!

whereas the generator of theU type constructor is

&?=ˆ\choice !+ ˜&g+ ˜&iNNXH+ gang

based on the assumption that it will be applied to the list of the generators of the com-
ponent types,<g0 . . . gn>. Note that˜&g ˜&iNNXH gang< g0 . . . gn> is equivalent to
˜&g <. g0 . . . gn> &, which is non-empty if and only ifgi & is non-empty for alli.

Various functions defined in thetag module may be helpful for constructing random
instance generators, but there are no plans to maintain a documented stable API for this
purpose.

23.3.2 User defined primitive type example

Interval arithmetic is a technique for coping with uncertainty in numerical data by identi-
fying an approximate real number with its known upper and lower bounds. By treating the
pair of bounds as a unit, sums, differences, and products of intervals can all be defined in
the obvious ways.

Interval representation

A library of interval arithmetic operations is beyond the scope of this example, but the
specification of a primitive type for intervals is shown in Listing 23.4. According to
this specification, intervals are represented as pairs(a, b) with a < b, wherea andb are

437

Listing 23.4 a new primitive type for interval arithmetic

#import std
#import nat
#import tag
#import flo

#binary+

H =

˜&iNC type_constructor[
mnemonic: ’H’,
microcode: ˜&rhPNVlCrtPX,
printer: ˜&r; ˜&iNC+ math..isinfinite?l(

math..isinfinite?r(’0+-inf’!,--’-inf’+ ˜&h+ %eP+ ˜&r),
math..isinfinite?r(

--’+inf’+ ˜&h+ %eP+ ˜&l,
ˆ|T(˜&,’+-’--)+ (˜&h+ %eP+ div\2.)ˆ˜/plus bus)),

reader: ˜&L; -?
(==’0+-inf’): (ninf,inf)!,
substring/’+-’: -+

math..strtod˜˜; ˜&rllXG; ˆ|/bus plus,
(‘+,‘-)ˆ?=ahthPX/˜&Natt2X ˜&ahPfatPRXlrlPCrrPX+-,

suffix/’-inf’: ˜&/ninf+ math..strtod+ ˜&xttttx,
suffix/’+inf’: ˜&\inf+ math..strtod+ ˜&xttttx,
<’bad interval’>!%?-,

recognizer: ! ˜&i&& &&fleq both %eI,
precognizer: ! ˜&i&& both %eI,
initializer: ! ˜&?\(ninf,inf)! ˜&l?(

˜&r?/(fleq?/˜& ˜&rlX) ˜&\inf+ ˜&l,
˜&/ninf!+ ˜&r),

help: ’push primitive interval type’,
generator: ! &?=/&! fleq?(˜&,˜&rlX)+ 0%eWi]

438

floating point numbers representing the endpoints. This representation is implied by the
recognizer function, which is satisfied only by a pair of floating point numbers with
the left less than the right.

Interval type features

The mnemonic for the interval type isv , so it may be used in type expressions like%H
or %HL, etcetera. This mnemonic is chosen so as not to clash with any already defined,
thereby maintaining backward compatibility. A small number of unused type mnemonics
is available, which can be listed as shown.

$ fun tco --m="˜&j/letters ˜&nSL type_constructors" --c
’FHK’

Other fields in the type constructor are defined to make working with intervals conve-
nient. Theinitializer function will take a partially initialized interval and define the
rest of it. If either endpoint is missing, infinity is inferred, and if the endpoints are out of
order, they are interchanged. The default value of an interval is the entire real line. This
function would be invoked whenever a field in a record is declared as type%H.

Theprecognizer field differs from therecognizer by admitting either order of
the endpoints. This difference is in keeping with its intended meaning as the recognizer of
data in a non-canonical form, where this concept applies.

The concrete syntax for a primitive type needn’t follow the representation exactly. The
printer andreader fields accommodate a concrete syntax like

1.269215e+00+-9.170847e-01

for finite intervals, which is meant to resemble the standardnotationx ± d with x at the
center of the interval andd as half of its width. Semi-infinite intervals are expressed as
x+inf or x-inf as the case may be, with the finite endpoint displayed.

Thegenerator function simply generates an ordered pair of floating point numbers.
The size (in quits) of a pair of floating point numbers is not adjustable, so the generator
returns& when applied to a value of&, following the convention.

Interval type demonstration

To test this example, we first store Listing 23.4 in a file namedty.fun and compile it as
follows.

$ fun tag flo ty.fun
fun: writing ‘H’

Random instances can now be generated as shown.

$ fun --types ./H --m="0%Hi&" --c %H
-7.577923e+00+-3.819156e-01

439

Note that if the file nameH doesn’t contain a period, it should be indicated as shown on
the command line to distinguish it from an optional parameter. Data can also be cast to
this type and displayed,

$ fun --types ./v --m="(1.6,1.7)" --c %H
1.650000e+00+-5.000000e-02

and data using the concrete syntax chosen above can be read bythe interval parser%Hp.

$ fun --types ./H --m="%Hp -[2.5+-.001]-" --c %H
2.500000e+00+-1.000000e-03

However, defining a concrete syntax for constants of a new primitive type does not auto-
matically enable the compiler to parse them.

$ fun --types ./H --m="2.5+-.001" --c %H
fun:command-line: unbalanced +-

This kind of modification to the language would require hand written adjustments to the
lexical analyzer, as outlined in the next chapter.

23.4 Directives

The compiler directives, as documented in Chapter 7, are defined in terms of transforma-
tions on the compiler’s run-time data structures. They can be used either to generate output
files or to make arbitrary source level changes during compilation, and in either case may
be parameterized or not.

The directive specifications are stored in a table nameddefault_directives de-
fined in the filesrc/dir.fun . This table can be modified dynamically when the com-
piler is invoked with the--directives command line option. This option requires a
binary file containing a list of directive specifications that will be incorporated into the
table. A directive specification is given by a record with thefollowing fields, which are
explained in detail in the remainder of this section.

• mnemonic – the identifier used for the directive in the source code

• parameterized – character string briefly documenting the parameter if one is
required

• parameter – default parameter value; empty means there is none

• nestable – boolean value implying the directive is required to appearin matched
+ and- pairs (currently true of only thehide directive)

• blockable – boolean value implying the scope of the directive doesn’t automati-
cally extend inside nestable directives (currently true only of theexport directive)

• commentable – boolean value indicationg that output files generated by the direc-
tive can have comments included by thecomment directive

440

• mergeable – boolean value implying that multiple output file generating instances
of the directive in the same source file should have their output files merged into one

• direction – a function from parse trees to parse trees that does most of the work
of the directive

• compilation – for output generating directives, a function taking a module and a
list of files (type_file%LomwX) to a list of files (type_file%L)

• favorite – a natural number such that higher values cause the directive to take
precedence in command line disambiguation

• help – a one line description of the directive for on-line documentation

23.4.1 Directive settings

The settings for fields in adirective record tend follow certain conventions that are
summarized below, and should be taken into account when defining a new directive.

Flags

• Thenestable andblockable fields should normally be false in a directive spec-
ification, unless the directive is intended as a replacementfor thehide or export
directives, respectively.

• The commentable field should normally be true for output generating directives
that generate binary files, but probably not for other kinds of files.

• Either setting of themergeable field could be reasonable depending on the nature
of the directive. Currently it is true only of thelibrary directive.

Command line settings

Any new directive that is defined will automatically cause a command line option of
the same name to be defined that performs the same function, unless there is already a
command line option by that name, or the directive is defined with a true value for the
nestable field.

• A non-zero value for thefavorite may be chosen if the directive is likely to be
more frequently used from the command line than existing command line options
starting with the same letter. Several directives currently use low numbers like1, 2,
etcetera(page 277). Higher numbers indicate higher name clash resolution priority.

• The parameter field, which can have any type, is not used when the directive
occurs in a source file, but will supply a default parameter for command line usage.
For example, the#cast directive has a%gtype expression as its default parameter.

• Thehelp andparameterized fields should be assigned short, meaningful, help-
ful character strings because these will serve as on-line documentation.

441

23.4.2 Output generating functions

The remaining fields in adirective record describe the operations that the directive
performs as functions. The more straightforward case is that of thecompilation field,
which is used only in output generating directives.

Calling conventions

Thecompilation field takes an argument of the form

(< s0 : x0 . . . sn : xn>,< f0 . . . fm>)

wheresi is a string,xi is a value of any type, andfj is a file specification of type_file ,
as defined in the standard library. These values come from thedeclarations that appear
within the scope of the directive being defined. For example,a user defined directive by
the name offoobar used in a source file such as the following

#foobar+

s = 1.2
t = (3,4.0E5)

#foobar-

can be expected to have a value of(<’s’: 1.2,’t’: (3,4.0E5)>,<>) passed to
the function in itscompilation field. Note that the right hand sides of the declarations
are already evaluated at that stage. The list of files on the right hand side is empty in this
case, but for the code fragment below it would contain a file.

#foobar+

s = 1.2
t = (3,4.0E5)

#binary+

u = ’game over’

#binary-

#foobar-

The files in the right hand side of the argument to thecompilation function are those
that are generated by any output generating directives within its scope. These files can
either be ignored by the function, or new files derived from them can be returned.

442

Listing 23.5 simple example of an output generating directive

directive[
mnemonic: ’binary’,
commentable: &,
compilation: ˜&l; * file$[

stamp: &!,
path: ˜&nNC,
preamble: &!,
contents: ˜&m],

help: ’dump each symbol in the current scope to a binary file’]

Example

The resulting list of files returned by thecompilation function can depend on these pa-
rameters in arbitrary ways. Listing 23.5 shows the completespecification for thebinary
directive, whosecompilation field makes a binary file for each item of the list of dec-
larations.

23.4.3 Source transformation functions

The direction field in a directive specification can perform an arbitrary source
level transformation on the parse trees that are created during compilation. Unlike the
compilation field, this function is invoked at an earlier stage when the expressions
might not be fully evaluated.

Parse trees

Parse trees are represented as trees oftoken records, which are declared in the file
src/lag.fun . Functions stored in these records allow parse trees to be self-organizing.
A bit of a digression is needed at this point to explain them inadequate detail, but this ma-
terial is also relevant to user defined operators documentedsubsequently in this chapter. A
token record contains the following fields.

• lexeme – a character string identifying the token as it appears in a source file

• filename – a character string containing the name of the file in which the token
appears

• filenumber – a natural number indicating the position of the token’s source file in
the command line

• location – a pair of natural numbers giving the line and column of the token in its
source file

• preprocessor – a function whereby the parse tree rooted with this token is to be
transformed prior to evaluation

443

• postprocessors – a list of functions whose head transforms the value of the
parse tree rooted with this token after evaluation

• semantics – a function taking the token’s suffix to a function that takesthe list of
subtrees to the value of the whole tree rooted on this token

• suffix – the suffix list (type%om) associated with this token in the source file

• exclusions – a predicate on character strings used by the lexical analyzer to qual-
ify suffix recognition

• previous – an ignored field available for any future purpose

The first four fields are used for name clash resolution as explained on page 253, and
the semantic information is contained in the remaining fields. All of these fields except
possibly thesemantics will have been filled in automatically prior to any user defined
directive being able to access them.

Control flow during compilation When the compiler is invoked, the first phase of its op-
eration after interpreting its command line options is to build a tree oftoken records
containing all of the declarations and directives in all of the source files. Symbolic names
appearing in expressions are initially represented as terminal nodes with thesemantics
field undefined, but literal constants have theirsemantics initialized accordingly. This
tree is then transformed under instructions contained in the tree itself. The transformation
proceeds generally according to these steps.

1. Traverse the tree repeatedly from the top down, executingthepreprocessor field
in each node until a fixed point is reached.

2. Traverse the tree from the bottom up, evaluating any subtree in which all nodes have
a known semantics, and replace such subtrees with a single node.

3. Search the tree for subtrees corresponding to fully evaluated declarations, and sub-
stitute the values for the identifiers elsewhere in the tree according to the rules of
scope.

Control returns repeatedly to the first step after the third until a fixed point is reached,
because further progress may be enabled by the substitutions. Hence, there may be some
temporal overlap between evaluation and preprocessing in different parts of the tree, rather
than a clear separation of phases.

Parse tree semantics Almost any desired effect can be achieved by a directive through suit-
able adjustment to thepreprocessor , postprocessors , andsemantics fields
of the parse tree nodes, so it is worth understanding their exact calling conventions. The
preprocessor field is invoked essentially as follows.

ˆ= ˜&aˆ& ˆaadPfavPMVB/˜&f ˆH\˜&a ||˜&! ˜&ad.preprocessor

444

Hence, its argument is the tree in whose root it resides, and it is expected to return the
whole tree after transformation. Thesemantics field is invoked as if the following code
were executed during parse tree evaluation.

˜&aˆ& ˆH(
||˜&! ˜&ad.postprocessors.&ihB,
ˆH\˜&favPM ˜&H+ ˜&ad.(semantics,lag-suffix))

The argument of thesemantics function is thesuffix of the node in which it resides.
It is expected to return a function that will map the list of values of the subtrees to a value
for the whole tree, which is passed to the head of thepostprocessors , if any, to obtain
the final value.

Transformation calling conventions

When a user defined directive has a non-emptydirection field, this field should contain
a function that takes a tree oftoken records as described above and return one that is
transformed as desired. The tree represents the source codeencompassing the scope of
the directive (i.e., everything following it up to the end ofthe enclosing name space or the
point where it is switched off).

The direction function benefits from a reflective interface in that the rootof the
tree passed to it is atoken whose lexeme is the directive’s mnemonic and whose
preprocessor andsemantics are automatically derived from thedirection and
compilation functions of the directive.

For parameterized directives, the parameter is accessed asthe first subexpression of the
parse tree,̃&vh . If the action of the directive depends on the value of the parameter,
as it typically would, then the parameter needs to be evaluated first. Thedirection
function can wait until the parameter is evaluated before proceeding if it is specified in the
following form,

(* ˆ0 -&˜&,˜&d.semantics,˜&vig&-)?vh\˜& f

wheref is the function that is applied after the parameter has been evaluated. This code
simply traverses the first subexpression tree to establish that all semantics fields are
initialized. If this condition is not met, it means there aresymbolic names in the expression
that have not yet been resolved, but will be on a subsequent iteration, as explained above
in the discussion of control flow. In this case, the identity function ˜& leaves the tree
unaltered.

A general point to note aboutdirection functions is that some provision usually
needs to made to ensure termination when they are iterated. The simplest approach for
the directive to delete itself from the tree by replacing theroot with a placeholder such
as theseparation token defined in theapt library. Where this is not appropriate,
it also suffices to delete thepreprocessor field of the root token. Refer to the file
src/dir.fun for examples.

445

Listing 23.6 an example of a directive performing a parse tree transformation

#import std
#import nat
#import lag
#import dir
#import apt

#binary+

al =

˜&iNC directive[
mnemonic: ’alphabet’,
direction: _token%TMk+ ˜&v?(

˜&V/separation+ ˆT\˜&vt -+

* ˜&arˆ& ˆV\˜&falrvPDPM :=ard (
&ard.(filename,filenumber,location),
˜&al.(filename,filenumber,location)),

ˆD/˜&d ˜&vh; -+

* -+
˜&V/token[lexeme: ’=’,semantics: ˜&hthPA!],
˜&iNViiNCC+ token$[lexeme: ˜&,semantics: !+ !]+-,

* ˆ0 ˆT\˜&vL ˜&d.lexeme; &&˜&iNC subset\letters+-+-,
<’misused #alphabet directive’>!%),

help: ’bulk declare a list of identifiers as strings’,
parameterized: ’list-of-identifiers’]

23.4.4 User defined directive example

One reason for customizing the directives might be to implement syntactic sugar for some
sort of domain specific language. In a language concerned primarily with modelling or
simulation of automata, for example, it might be convenientto declare a system’s input or
output alphabet in an abstract style such as the following.

#alphabet <a,b,ack,nack,foo,bar>

system = box_of(a,b,ack,nack)

The intent is to allow the symbolsa, b, etceterato be used as symbolic names with no
further declarations required.

Specification

Listing 23.6 shows a possible specification for a directive to accomplish this effect, which
works by declaring each symbol as a string containing its identifier, (e.g.,a = ’a’) but
this representation need not be transparent to the user. This example could also serve as a

446

Listing 23.7 test driver for the directive defined in Listing 23.6

#alphabet foo bar baz

x = <foo,bar,baz>

prototype for more sophisticated alternatives. Several points of interest about this example
are the following.

• The parameter to the directive need not be a list of identifiers, but can be any expres-
sion the compiler is able to parse. The directive traverses its parse tree in search of
alphabetic identifiers and ignores the rest.

• The declaration subtree constructed for each identifier has= as the root token, which
is a requirement for a declaration, as is its semantics of˜&hthPA! , the function that
constructs an assignment from the two subexpressions.

• Thesemantics field constructed for each identifier is a second order function of
the formx!! to follow the convention of returning a function when applied to the
suffix (unused in this case) that returns a value when appliedto the list of subexpres-
sion values (empty in this case).

• Thelocation and related fields for the newly created parse trees are inherited from
those of the root token of the parse tree to ensure that name clash resolution will work
correctly for these identifiers if required.

• The transformation calls for the directive to delete itselffrom the parse tree so that it
won’t be done repeatedly. The replacement of the root with theseparation token
accomplishes this effect.

Demonstration

To demonstrate this example, we can store it in a file namedal.fun and compile it as
follows.

$ fun lag dir apt al.fun
fun: writing ‘al’

It can then be tested in a file such as the one shown in Listing 23.7, namedaltoid.fun .

$ fun --directives ./al altoid.fun --c
<’foo’,’bar’,’baz’>

This output is what should be expected if the identifiers weredeclared as strings. We can
also verify that the directive is accessible directly from the command line.

$ fun --dir ./al --m=foo --alphabet foo --c
’foo’

447

23.5 Operators

The operators documented in Chapters 5 and 6 are specified by atable of records of type
_operator . The record declaration is in the filesrc/ogl.fun . The main opera-
tor table is defined in the fileops.fun , the declaration operators are defined in the file
eto.fun , and the invisible operators for function application, separation, and juxtaposi-
tion are defined in the fileapt.fun .

Adding a new operator to the language or changing the semantics of an existing one
is a matter of putting a new record in the table. It can be done dynamically by the
--operators command line option, which takes a binary file containing a list of oper-
ators in the form ofoperator record specifications.

23.5.1 Specifications

Most operators admit more than one arity but have common or similar features that are
independent of the arity. Theoperator record therefore contains several fields of type
_mode. A mode record is used as a generic container having a named field for each
arity. The field identifiers areprefix , postfix , infix , solo , andaggregate .
This record type is declared in the fileogl.fun . Here is a summary of the fields in an
operator record.

• mnemonic – a string of one or two characters containing the symbol usedfor the
operator in source code

• match – for aggregate operators, a character string containing the right matching
member of the pair (e.g. a closing parenthesis or brace)

• meanings – amode of functions containing semantic specifications

• help – amodeof character strings each being a one line descriptions of the operator
for on-line help

• preprocessors – amodeof optional functions containing additional transforma-
tions for thepreprocessor field in the operatortoken

• optimizers – amodeof functions containing optional code optimizations or other
postprocessing semantics applicable only for compile timeevaluation

• excluder – an optional predicates taking a character string and returning a true
value if it should not be interpreted as a suffix during lexical analysis

• options – a module (type%om) of entities to be recognized during lexical analysis
if they appear in the suffix of the operator

• opthelp – a list of strings containing free form documentation of theoperator’s
suffixes as given by theoptions field

• dyadic – a mode of boolean values indicating the arities for which the dyadic
algebraic property holds

448

• tight – a boolean value indicating higher than normal operator precedence (used
by the parser generator)

• loose – a boolean value indicating lower than normal precedence (used by the
parser generator)

• peer – an optional mnemonic of another operator having the same precedence (used
for inferring precedence rules)

23.5.2 Usage

Information contained in anoperator specification is used automatically in various
ways during lexical analysis, parsing, and evaluation. Theparse tree for an expression
containing operators is a tree oftoken records as documented in Section 23.4.3, with a
token record corresponding to each operator in the expression. Thesetoken records
are derived from theoperator specification with appropriatepreprocessor and
semantic fields as explained below.

Precedence

The last three fields in anoperator record,loose , tight , andpeer , affect the oper-
ator precedence, which affects the way parse trees are built. Any time one of these fields
is changed as a result of the--operators command line option for any operator, the
rules are updated automatically.

• Use of thepeer field is the recommended way of establishing the precedence of a
new operator rather than changing the precedence rules directly as in Section 23.2,
because it is conducive to more consistent rules and is less likely to cause backward
incompatibility.

• The loose field should have a true value only for declaration operatorssuch as::
and=. However, some hand coded modifications to the compiler would also be re-
quired in order to introduce new kinds of declarations, making this field inappropriate
for use in conjunction with the--operators command line option.

• The tight field is false for all operators except the very high precedence operators
tilde (̃), dash (-), library (..), and function application when expressed without a
space, as inf(x) . Otherwise, it is appropriate for infix operators whose leftoperand
is rarely more than a single identifier.

Optimization

The list of functions in theoptimizers field maps directly to thepostprocessors
field in a token record derived from an operator. An optimizer function can perform an
arbitrary transformation on the result computed by the operator, but the convention is to
restrict it to things that are in some sense “semantics preserving”. In this way, the operator
can be evaluated with or without the optimizer as appropriate for the situation.

449

Generally the operator semantics itself is designed as a function of manageable size in
case it is to be stored or otherwise treated as data, while theoptimizer associated with it
may be a large or time consuming battery of general purpose semantics preserving trans-
formations that are more convenient to keep separate. The latter is invoked only when the
operator is associated with operands and evaluated at compile time. For most operators
built into the default operator table, the result returned is a function, and the optimizer is
theoptimization function defined in the filesrc/opt.fun .

The reason for having a list of optimizers rather than just one is to cope with operators
having a higher order functional semantics. For a solo operator ∇, the first optimizer in
the list will apply to expressions of the form∇x0, the second to(∇x0) x1, and so on. In
many cases, theoptimization function is applicable to all orders.

Preprocessors

Because there is potentially a different semantics for eacharity, thepreprocessor in a
token corresponding to an operator is automatically generated todetect the number and
positions of the subtrees and to assign thesemantics accordingly. Having done that, it
will also apply the relevant function from thepreprocessors field of theoperator
specification, if any.

The preprocessors in an operator specification are not required and should be
used sparingly when defining new operators, because top-down transformations on the
parse tree can potentially frustrate attempts to formulatea compositional semantics for the
language, making it less amenable to formal verification. However, there are two reasons
to use them somewhat more frequently.

One reason is to insert a so called “spacer” token into the parse tree using a function
such as the following for a postfix preprocessor.

˜lexeme==’(spacer)’?vhd/˜& &vh:= ˜&v; //˜&V token[
lexeme: ’(spacer)’,
semantics: ˜&h!]

The spacer should be inserted into the parse tree below any operator token that evaluates
to a function but takes an operand that is not necessarily a function. such as the! and
=> operators. Normally if all nodes in a parse tree have the samepostprocessors, they are
deleted from all but the root to avoid redundant optimization. The spacer token performs
no operation when the parse tree is evaluated other than to return the value of its subex-
pression, but its presence allows the subexpression to be optimized by itsoptimizer
functions if applicable because they will not be deleted when the spacer is present.

The other reason to use preprocessors in an operator specification is in certain aggregate
operators that reduce to the identity function if there is just one operand, such as cumulative
conjunction, which can benefit from a preprocessor like this.

||˜& -&˜&d.lag-suffix.&Z,˜&v,˜&vtZ,˜&vh&-

450

Algebraic properties

Thedyadic field stores the information in Table 5.7 for each operator. For example, if
an operator with a specificationo is postfix dyadic, theñdyadic.postfix o will be
true. This information is not mandatory when defining an operator but may improve the
quality of the generated code if it is indicated where appropriate. The field is referenced
by the preprocessor of the function application operator defined in the fileapt.fun .

Options

Theoptions field in anoperator record is of the same type as thesuffix field in
a token derived from it, but theoptions fields contains the set of all possible suffix
elements for the operator, and thesuffix field contains only those appearing in the
source text for a given usage.

The options are a list of the form<s0 : x0 . . . sn : xn>, where eachsi is a char-
acter string containing exactly one character, and thexi values can be of any type. For
example, some operators allowing pointer suffixes have the list of pnodes as their op-
tions (see Section 23.1), and other operators that allow type expressions as suffixes have
the type_constructors as their options, the main table oftype_constructor
records defined in the filetco.fun . Still others such as the/ * operator have a short list
of functional options defined as follows,

<’ * ’: * ,’=’: ˜&L+,’$’: fan>

and other operators such as|= have combinations of these. However, nooptions should
be specified for aggregate operators (e.g., parentheses andbrackets) because they have a
consistent style of using periods for suffixes as documentedin Section 5.2.3, which is
handled automatically.

The use made of the options by the operator depends on their type and the operator se-
mantics, as explained further below. For example, a list ofpnodes can be assembled into
a pointer or pseudo-pointer by thepercolation function defined in the filepsp.fun ,
and a list of type constructors is transformed to a type expression or type induced function
by theexecution function defined intag.fun . A list of functional combinators such
as those above might only need to be composed with the operator semantic function.

Whatever options an operator may have, they should be documented in a few lines of
text stored in theopthelp field, so that users are not forced to read the source code
or search for a reference manual that might not exist or be outof date. The contents
of this field are displayed when the compiler is invoked with the command line option
--help suffixes , with the text automatically wrapped to fit into eighty columns on
a terminal.

Semantics

The functions in themeanings field follow a variety of calling conventions depending
on the arity and depending on whether theoptions field is empty.

451

If the options field is empty, the infix semantic function (i.e., the value accessed by
˜meanings.infix o for an operatoro) takes a pair(x, y) as an argument, the prefix
and postfix functions take a single argumentx, and the aggregate semantic function takes
a list of values<x0 . . . xn>. The contents of̃meanings.solo o is not a function but
simply the value obtained for the operator when it is used without operands, if this usage
is allowed.

If there are options, then these fields are treated as higher order functions by the com-
piler, or as a first order function in the case of the solo arity. The argument to each function
is the list of options following it in the source text, which will be members of theoptions
field of the formsi : xi. Given this argument, the function is expected to return a function
following the calling convention described above for the case without options.

As a short example, the infix semantic function for the assignment operator (:=) has
the following form, and something similar is done for any operator allowing a pointer
expression as a postprocessor.

˜&lNlXBrY+percolation+˜&mS; ˜&?=/assign! "d". "d"++ ass ign

Thepercolation function takes a list ofpnode records, which in this case will come
from the suffix applied to the:= operator where it is used in a source text. It returns a
pair (p, f) with a pointerp or a functionf , at most one non-empty, depending on whether
a pointer or a pseudo-pointer is detected. The˜&lNlBrY function forms either the de-
constructor functioñ p or takes the whole functionf as the case may be. If this turns out
to be the identity function, no postprocessing is required,so the semantics reduces to the
virtual machine’sassign combinator. Otherwise, the semantics takes a pair(x, y) to a
functiond+ assign(x, y) , whered is the function derived from the suffix.

Lexical analysis

Themnemonic andexcluder fields in anoperator specification map directly to the
lexeme andexclusions fields in the token derived from it.

Mnemonics A new operator mnemonic can break backward compatibility even if it is not
previously used, by coinciding with a frequently occurringcharacter combination. For
example,$[would be a bad choice for an operator because this character combination
occurs frequently in the expression of record valued functions. If this combination started
to be lexed as an operator, many existing applications wouldneed to be edited.

Exclusions Theexcluder field can be used in operators with suffixes to suppress inter-
pretation of a suffix. This function is consulted by the lexical analyzer when the operator
lexeme is detected, and passed the string of characters following the lexeme up to the end
of the line. If the function returns a true value, then the operator is considered not to have
a suffix. One example is the assignment operator,:= , whose excluder detects the condi-
tion ˜&ihB-=’0123456789’ . This condition allows expressions such asf :=0! to be
interpreted in the more useful sense, rather than having0 as a pointer suffix.

452

Listing 23.8 a user defined tree mapping operator

#import std
#import nat
#import psp
#import ogl

#binary+

tm =

˜&iNC operator[
mnemonic: ’ˆ-’,
peer: ’ * ˆ’,
dyadic: mode[solo: &],
options: pnodes,
opthelp: <’a pointer expression serves as a postprocessor’ >,
help: mode[

infix: ’fˆ-g maps f to internal nodes and g to leaves in a tree’ ,
prefix: ’ˆ-g maps g only to terminal nodes in a tree’,
postfix: ’fˆ- maps f only to non-terminal nodes in a tree’,
solo: ’ˆ- (f,g) maps f to internal nodes and g to leaves’],

meanings: ˜&H\-+˜&lNlXBrY,percolation,˜&mS+- mode$[
infix: //+ "h". "h"++ * ˆ0+ ˆV\˜&v+ ˜&v?+ ˜&d;˜˜,
prefix: //+ "h". "h"++ * ˆ0+ ˆV\˜&v+ ˜&v?/˜&d+ ˜&d;,
postfix: //+ "h". "h"++ * ˆ0+ ˆV\˜&v+ ˜&v?\˜&d+ ˜&d;,
solo: //+ "h". "h"++ * ˆ0+ ˆV\˜&v+ ˜&v?+ ˜&d;˜˜]]

23.5.3 User defined operator example

The best designed operators are not necessarily the most complex, but the most easily
learned and remembered. For a seasoned user, use of the operator becomes second na-
ture, and for an inexperienced user, the time spent consulting the documentation is well
compensated by the programming effort it saves. Most operators should be polymorphic,
designed to support classes of types rather than specific types.

Specification

A first attempt at an operator aspiring to these attributes isshown in Listing 23.8. This
operator operates on trees or dual type trees. It is analogous to themap combinator on
lists, in that it determines a structure preserving transformation wherein a single function
is applied to multiple nodes.

The operator, expressed by the symbolˆ- , is chosen to have the same precedence as
the* ˆ operator, and allows four arities. In the infix form it satisfies these recurrences,

(f ˆ- g) dˆ: <> = (g d)ˆ: <>

(f ˆ- g) dˆ: (h: t) = (f d)ˆ: (f ˆ- g) * (h: t)

453

which is to say that the user may elect to apply a different function to the terminal nodes
than to the non-terminal nodes. Its other arities have thesealgebraic properties,

ˆ- g ≡ (˜&)ˆ- g

f ˆ- ≡ f ˆ- (˜&)

(ˆ-) (f, g) ≡ f ˆ- g

the last being the solo dyadic property. Furthermore, the operator allows a pointer expres-
sion as a suffix, which can perform any postprocessing operations.

The question of whether these algebraic properties are mostconvenient would be re-
solved only by experience, so this specification allows design changes to be made easily
and transparently. A postfix dyadic semantics, for example,would be achieved by substi-
tuting

"h". "f". "g". "h"+ * ˆ0 ˆV\˜&v ˜&v? ˜&d;˜˜ ("f","g")

into themeanings.postfix function specification.

Demonstration

The code shown in Listing 23.8, stored in a file namedtm.fun , is compiled as follows.

$ fun psp ogl tm.fun
fun: writing ‘tm’

To demonstrate the operator, we use a function˜&ixTˆ- , in which the operand is a func-
tion that generates a palindrome by concatenating any list with its reversal. This expression
is applied to a randomly generated tree of character strings.

$ fun --operators ./tm --m="˜&ixTˆ- 500%sTi&" --c %sT
’zDOgcmHp}<eQQe<}pHmcgODz’ˆ: <

’-n.ss.n-’ˆ: <
’#A%WYSD-‘‘-DSYW%A#’ˆ: <’p’ˆ: <>>,
’PzT$&&$TzP’ˆ: <

’GV+qswwsq+VG’ˆ: <
’’ˆ: <’’ˆ: <>,’Q’ˆ: <>,’’ˆ: <>,’’ˆ: <>>,
ˆ: (

’}AL|yTm[[mTy|LA}’,
<’P’ˆ: <>,˜&V(),’P’ˆ: <>,’’ˆ: <>>),

’’ˆ: <>>,
’z/e4L’ˆ: <>,
’zg’ˆ: <>>,

’W’ˆ: <>>,
’22O’ˆ: <>>

This result shows that all of the non-terminal nodes in the tree are palindromes.

454

23.6 Command line options

Most command line options to the compiler are not hard coded but based on executable
specifications stored in a table.1 The table can be dynamically modified by way of the
--formulators command line option so as to define further command line options. In
fact, all other command line options described in this chapter could be defined if they were
not built in, and can be altered in any case.

23.6.1 Option specifications

Each command line option is specified by a record of type_formulator as defined in
the filesrc/for.fun . This record contains the semantic function of the option, among
other things, which works by transforming a record of type_formulation as defined in
the filemul.fun . The latter contains dynamically created copies of all tables mentioned
in previous sections of this chapter, as well as entries for user supplied functions that can
be invoked during various phases of the compilation.

To be precise, theformulator record contains the following fields.

• mnemonic – a character string giving the full name of the option as it appears on
the command line

• filial – a boolean value that is true if the option takes a file parameter

• formula – the semantic function of the option, taking an argument

((< 〈parameter〉 . . .>, 〈file)〉, 〈formulation〉)

of type ((%sL,_file%Z)%X,_formulation)%X and returning a new record
of type_formulation derived from the argument

• extras – a list of strings giving the names of the allowable parameters for the
option, currently used only for on-line documentation

• requisites a list of strings giving the names of the required parametersfor the
option, currently used only for on-line documentation

• favorite – a natural number specifying the precedence for disambiguation, with
greater numbers implying higher precedence

• help – a character string containing a short description of the option for on-line
documentation

The most important field of theformulator record is theformula , which alters
the behavior of the compiler by effecting changes to the specifications it consults in the
formulation record. Before passing on to a description of this data structure, we may
note a few points about some of the remaining fields.

1The exceptions are the--phase option and to some extent the--trace option.

455

Command line parsing is handled automatically even in the case of user defined com-
mand line options. Thefilial field is an annotation to the effect that the command line
is expected to contain the name of a file immediately following the option thus described.
If such a file name is found, the file is opened and read in its entirety into a record of type
_file as defined in the standard library. This record is then passedto theformula .

The parameters passed to theformula are similarly obtained from any comma sep-
arated list of strings following the option mnemonic on the command line, preceded op-
tionally by an equals sign.

Recognizable truncations of themnemonic field on the command line are acceptable
usage, with no further effort in that regard required of the developer.

23.6.2 Global compiler specifications

The formulation data structure specifies a compiler by way of the following fields.
Changing this data structure changes the behavior of the compiler.

• command_name– a character string containing the command whereby the compiler
is invoked and diagnostics are reported

• source_filter – a function taking a list of input files (type_file%L) to a list
of input files, invoked prior to the initial lexical analysisphase

• token_filter – a function taking the initial a list of lists of lists of tokens (type
_token%LLL) to a result of the same type, invoked after lexical analysisbut before
parsing

• preformer – a function taking a list of parse trees before preprocessing to a list of
parse trees

• postformer – a function taking a parse tree for the whole compilation after pre-
processing stabilizes to a parse tree suitable for evaluation

• target_filter – a function taking a list of output files to a list of output files,
invoked after all parsing and evaluation

• import_filter – a function for internal use by the compiler (refer to the source
code documentation insrc/mul.fun)

• precedence – a quadruple of pairs of lists of strings describing precedence rules
as defined in Section 23.2.

• operators – the main list of operators, with type_operator%L as defined in
Section 23.5.1.

• directives – the main list of compiler directives, type_directive%L as de-
fined in Section 23.4.

• formulators – the list of compiler option specifications,_formulator%L as
defined in Section 23.6.1.

456

• help_topics – a module of functions (type%fOm) each associated with a possible
parameter to the--help command line option, as documented in Section 23.7.

Conspicuous by their absence are tables for the type constructors and pointer operators.
These exist only in thesuffix fields of individual operators in the table of operators.
Extensions of the language involving new forms of operator suffix automata would require
no modification to the mainformulation structure (although a new help topic covering
it might be appropriate, as explained in Section 23.7).

All of the functional fields in this structure are optional and can be left unspecified. The
default values for most of them are the identity function. However, in order for command
line options to work well together, those that modify the filter functions should compose
something with them rather than just replacing them. For example, in an option that installs
a new token filter, theformula field should be a function of the form

&r.token_filter:=r +ˆ\-|˜&r.token_filter,! ˜&|- ˜&l; . . .

where the remainder of the expression takes a pair(p, f) of a list of parametersp and
possibly a configuration filef to a function that is applied to the token stream.

Token streams

The token stream is represented as a list of type_token%LLL because there is one list
for each source file. Each list pertaining to a source file is a list of lists of tokens. Each list
within one of these lists represents a contiguous sequence of tokens without intervening
white space. Where white space or comments appear in the source file, the token preceding
it is at the end of one list and the token following it is at the beginning of the next. Hence,
a source code fragment like(f1, g2) , would have the first four tokens together in a list,
and the next three in the subsequent list.

Parse trees

Parse trees follow certain conventions to express distinctions between operator arities,
which must be understood to manipulate them correctly. If a user supplied function is
installed as thepreformer in the formulation record, its argument will be a list
of parse trees as they are constructed prior to any self-modifying transformations deter-
mined by thepreprocessor field in thetoken records. Prior to preprocessing, every
operator token initially has two subtrees.

• For infix operators, the left operand is first in the list of subtrees and the right operand
is second.

• For prefix operators, the first subtree is empty and the secondsubtree is that of the
operand.

• For postfix operators, the first subtree contains the operandand the second subtree is
empty.

457

Listing 23.9 parse tree for a prefix operator%=s, showing an empty first subexpression

ˆ: (
token[

lexeme: ’%=’,
location: (2,7),
preprocessor: 983811%fOi&],

<
˜&V(),
ˆ:<> token[

lexeme: ’s’,
location: (2,9)]>)

Listing 23.10parse tree for a postfix operators%=, showing an empty second subexpression

ˆ: (
token[

lexeme: ’%=’,
location: (2,8),
preprocessor: 983811%fOi&],

<
ˆ:<> token[

lexeme: ’s’,
location: (2,7)],

˜&V()>)

Listing 23.11parse tree for an infix operators%=t , with two non-empty subexpressions

ˆ: (
token[

lexeme: ’%=’,
filename: ’command-line’,
location: (2,8),
preprocessor: 983811%fOi&],

<
ˆ:<> token[

lexeme: ’s’,
location: (2,7)],

ˆ:<> token[
lexeme: ’t’,
location: (2,10)]>)

458

These conventions are illustrated by the parse trees shown in Listings 23.9, 23.10,
and 23.11. The operator%=has the same lexeme in all three arities, but the infix, pre-
fix, or postfix usage is indicated by the subtrees.

For aggregate operators such as parentheses and braces, theenclosed comma separated
sequence of expressions is represented prior to preprocessing as a single expression in
which the comma is treated as a right associative infix operator. The left enclosing aggre-
gate operator is parsed as a prefix operator and stored at the root of the tree. The matching
right operator is parsed as a postfix operator and stored at the root of the second sub-
tree. Compiler directives such as#export+ and#export- are parsed the same way as
aggregate operators. An example of a parse tree in this form is shown in Listing 23.12.

It can also be seen from these examples that most operator tokens initially have a
preprocessor but no semantics . The semantics depends on the operator arity,
which is detected by thepreprocessor when it is evaluated. At a minimum, the pre-
processor for each operator token initializes itssemantics field for the appropriate arity,
deletes any empty subtrees, and usually deletes the preprocessor itself as well. The prepro-
cessor for an aggregate operator will check for a matching operator and delete it if found.
It will also remove the comma tokens and transform their subexpressions to a flat list.

It is important to keep these ideas in mind if a user supplied function is to be installed
as thepostformer field, whose argument will be a parse tree in the form obtainedafter
preprocessing. An example is shown in Listing 23.13.

23.6.3 User defined command line option example

We conclude the discussion of command line options with the brief example of a user de-
fined command line option shown in Listing 23.14. The code shown in the listing provides
the compiler with a new option,--log , which causes an extra annotation to be written to
the preamble of every generated binary or executable file stating the names of all source
files given on the command line. This information could be useful for a “make” utility to
construct the dependence graph of modules in a large project.

Theory of operation

There could be several ways of accomplishing this effect, but the basic approach in this
case is to alter thepostformer field of the compiler’s specification. The function in this
field takes the main parse tree after preprocessing but before evaluation. At this stage the
parse tree will consist only of directives and declarations(i.e., = operator tokens) whose
subexpressions have been reduced to single leaf nodes by evaluation.

The first step is to form the set of file names by collecting thefilename fields from all
tokens in the parse tree, formatted into a string prefaced bythe word “dependences: ”.
Next, the function is constructed that will insert this string into the preamble of each file
in a list of files. Executable files require slightly different treatment than other binary files,
because the last line of the preamble in an executable file must contain the shell command
to launch the virtual machine, so the annotation is insertedprior to the last line.

459

Listing 23.12 the parse tree for{a,b,c }, showing commas and aggregate operators

ˆ: (
token[

lexeme: ’{’,
location: (2,7),
preprocessor: 154623%fOi&],

<
˜&V(),
ˆ: (

token[
lexeme: ’}’,
location: (2,13),
preprocessor: 152%fOi&,
semantics: 5%fOi&],

<
ˆ: (

token[
lexeme: ’,’,
location: (2,9),
semantics: 177%fOi&],

<
ˆ:<> token[

lexeme: ’a’,
location: (2,8)],

ˆ: (
token[

lexeme: ’,’,
location: (2,11),
semantics: 177%fOi&],

<
ˆ:<> token[

lexeme: ’b’,
location: (2,10)],

ˆ:<> token[
lexeme: ’c’,
location: (2,12)]>)>),

˜&V()>)>)

460

Listing 23.13 the parse tree from Listing 23.12 after preprocessing

ˆ: (
token[

lexeme: ’{’,
location: (2,7),
preprocessor: 852%fOi&,
postprocessors: <0%fOi&>,
semantics: 480%fOi&],

<
ˆ:<> token[

lexeme: ’a’,
location: (2,8)],

ˆ:<> token[
lexeme: ’b’,
location: (2,10)],

ˆ:<> token[
lexeme: ’c’,
location: (2,12)]>)

Listing 23.14command line option to add source dependence information tooutput files

#import std
#import lag
#import for
#import mul

#binary+

log =

˜&iNC formulator[
mnemonic: ’log’,
formula: &r.postformer:=r +ˆ\-|˜&r.postformer,! ˜&|- ! - +

˜&arˆ& ˜lexeme.&ihB==‘#?ard(
&ard.postprocessors:=ar ˜&iNC+ ˆ|/˜&+ ˜&al,
˜&ard2falrvPDPMV),

_token%TfOwXMk+ ˆ\˜& -+
˜&iNC; "d". * ˜preamble?\˜& preamble:= ˜preamble; ?(

-&˜&h=]’!/bin/sh’,˜&z=]’exec avram’,˜&yzx=]’\’&-,
ˆT/˜&yyNNCT ((* :/‘) "d")--+ ˜&yzPzNCC,
--<’’>+ --((* :/‘) "d")+ ˜&iNNCT),

’dependences: ’--+ mat‘ + ˜&s+ * ˆ0 :ˆ\˜&vL ˜&d.filename+-+-,
help: ’list source file dependences in executables and libr aries’]

461

The postformer will descend the parse tree from the root, stopping at the first di-
rective token, and reassign itspostprocessors to incorporate the preamble modifying
function just constructed. An alternative would have been to change thesemantics
function, but this approach is more straightforward.

By convention, every parse tree whose root is a directive token (i.e., a token whose
lexeme begins with a hash and is derived from a compiler directive in the source code)
evaluates to a pair(s, f), wheres is a list of assignments of identifiers to values (type
%om), andf is a list of files (type_file%L). The assignments ins are obtained from the
declarations within the scope of the directive, and the filesin f are those generated by the
directive at the root or by other output file generating directives in its scope. It therefore
suffices for the head postprocessor to be a function of the form ˆ|/˜& d, so as to pass the
left side of its argument through to its result, and to apply the preamble modifying function
d to the right.

Demonstration

The binary file containing the new command line option is easily prepared as shown.

$ fun lag for mul log.fun
fun: writing ‘log’

One might then test it on itself.

$ fun --formulators ./log lag for mul log.fun --log
fun: writing ‘log’
$ cat log
#
#
dependences: for lag log.fun mul nat std
#
syCs{auXn[eWGCvbVB@wDt...

23.7 Help topics

The--help-topics command line option requires a binary file as a paramter contain-
ing a list of assignments of strings to functions (type%fm). For each items: f of the list,
the functionf takes an argument of the form

(< 〈parameter〉 . . .>, 〈formulation〉)
to a list of character strings to be displayed when the compiler is invoked with the option
--help s. That is, the strings is a possible parameter to the--help command line
option. The parameters in the argument tof are any further parameters that may appear
afters in a comma separated sequence on the command line.

The default help topics are automatically updated when any change is made to the oper-
ators, directives, or formulators (and by extension, to thetypes or pointer constructors), as

462

Listing 23.15a user defined help topic

#import std
#import nat
#import for
#import mul

#binary+

pri =

˜&iNC ’priority’: ˜&r.formulators; -+
ˆplrTS(

(--’ ’+ ˜&rS+zipp‘)ˆ * D(leql$ˆ,˜&)+ <’option’,’------’>--+ ˜&lS,
<’priority’,’--------’>--+ ˜&rS; * ˜&h+ %nP),

˜&rF+ * ˆ/˜mnemonic ˜favorite+-

shown in previous examples. This option is needed thereforeonly if a whole new classifi-
cation of interactive help is intended, such as might arise if the language were extensively
customized in other respects.

Listing 23.15 shows a small example of how a user defined help topic can be speci-
fied. Recall that certain command line options have a higher disambiguation priority than
others (page 277), but that this information is accessible only by consulting the written
documentation, which may be unavailable or obsolete. To correct this situation, the help
topic defined in Listing 23.15 equips the compiler with an option --help priority ,
which will display the priorities of any command line options with priorities greater than
zero.

The operation of the code is very simple. It accesses theformulators field in the
main formulation record that will be passed to it as its right argument, filtersthose
with positive favorite fields, and displays a table showing the mnemonics and the
priorities of the results. This code can be tested as follows.

$ fun for mul pri.fun
fun: writing ‘pri’
$ fun --help-topics ./pri --help priority

option priority
------ --------
help 1
parse 1
decompile 1
archive 1
optimize 1
show 1
cast 1

463

Where are you going with this, Ikea boy?

Brad Pitt inFight Club

24
Manifest

This chapter gives a general overview of the compiler sourceorganization for the benefit
of developers wishing to take it further. The compiler consists of a terse 6305 lines of
source code at last count, written entirely in Ursala, divided among 25 library files and a
very short main driver shipped under thesrc directory of the distribution tarball. These
statistics do not include the standard libraries documented in Part III, except forstd.fun
andnat.fun .

Library files are employed as a matter of programming style, not because the project is
conceived as a compiler developer’s tool kit. Most library functions are geared to specific
tasks without much scope for alternative applications. Noris there any carefully planned
set of abstractions meant to be sustained behind a stable API. Nevertheless, this material
may be of interest either to developers inclined to make small enhancements to the lan-
guage not covered by features discussed in the previous chapter, or to those concerned
with scavenging parts of the code base for a new project.

Comprehensive developer level documentation of the compiler will probably never ex-
ist, because it would double the length of this manual, and because not much of the code is
amenable to natural language descriptions in any case. Moreover, many parts of the com-
piler perform quite ordinary tasks that a competent developer could implement in various
ways more easily than consulting a reference. Furthermore,to the extent that any such
documentation is useful, it necessarily renders itself obsolete. We therefore limit the scope
of this chapter to a brief summary of each library module in relation to the others.

Table 24.1 lists the compiler modules in thesrc directory with brief explanations of
their purposes. Generally modules in the table depend only on modules appearing above
them in the table, although there are cyclic dependences betweenstd andnat , between
tag andtco , and betweenfor andmul .

The intermodular dependences are documented in the executable shell script named
bootstrap , also distributed under thesrc directory. Execution of this script will re-

464

module comment

cor virtual machine combinator mnemonics
std standard library
nat natural number library
com virtual machine combinator emulation
ext data compression functions
pag parser generator
opt code optimization functions
sol fixed point combinators
tag type expression supporting functions
tco table of type constructors
psp table of pointer operators
lag lexical analyzer generator
ogl operator infrastructure
ops main table of operators
lam parse tree transformers for lambda abstraction
apt specifications of invisible operators
eto specification of declaration operators
xfm symbol name resolution and substitution functions
dir table of compiler directives
fen parser and lexical analysis drivers and glue code
pru precedence rule specifications
for supporting functions for command line options
mul compiler formulation data structure declaration
def main table of command line options
con command line parsing and glue code
fun executable driver

Table 24.1: compiler modules

465

build the compiler from source, but depends on thefun executable. The script has a com-
mand line option to generate a compiler with extra profiling features, also documented
within.

A full build is an over night job, subject to performance variations, of course. Most of
the CPU time for a build is spent on code optimization, and thenext largest fraction on
file compression. Any production version of the compiler will bootstrap an exact copy of
itself, unless the time stamp onfor.fun has changed. Some modifications to the source
code may require multiple iterations of bootstrapping in order for the compiler to recover
itself.

Thecor , std , andnat modules are previously documented in Listing 3.1 and Chap-
ters 8 and 9. The remainder of this chapter expands on Table 24.1 with some more detailed
comments on the other modules.

24.1 com

One way to simplify the job of implementing an emulator for the virtual machine is to
code the smallest subset of combinators necessary for universality, and arrange for the re-
mainder to be translated dynamically into these. Thecom module contains a selection of
virtual machine code transformaters relevant to this task.For example, a program of the
form iterate(p, f) using the virtual machine’siterate combinator can be trans-
formed into one using only recursion.

The rewrite function automatically detects the root combinator of a given program
and transforms it if possible. This function is written to anexternal file as a C language
character constant when this library is compiled, which is used byavram as a sort of
virtual “firmware” in the main evaluation loop.

The other use of this module is in theopt code optimization module (Section 24.4),
where it is used for abstract interpretation when optimizing higher order functions.

24.2 ext

This module contains the data compression functions used with compressed types (t%Q),
archived libraries, and self-extracting executables. Compression is a bottleneck in large
compilations that would reward a faster implementation of these functions with noticably
better performance.

The compression algorithm transforms a given treet to a tuple((p, s), t′) if doing so
will result in a smaller size, or to((), t) otherwise. The treet′ is like t with all occurrences
of its maximum shared subtree deleted. The subtrees is that which is deleted, andp is
another tree identifying the paths from the root to the deleted subtrees int′, similarly to a
pointer constant. The tuple((p, s), t′) itself usually can be compressed further in the same
way, so the algorithm iterates until a fixed point is reached or until the size of the largest
shared subtree falls below a user defined threshold.

466

Most of the time in this algorithm is spent searching for the maximum shared subtree.
A data structure consisting of eight queues is used for performance reasons, although any
positive number would also work. Each queue contains a list of lists of subtrees. Each
subtree has the same weight as the others in its list, and the lists are queued in order of
decreasing member tree weights. The residual of each tree weight modulo 8 is the same
as that of all other trees within the same queue.

The algorithm begins with all but one queue empty, and the non-empty one containing
only a single list containing a single tree, which is the treewhose maximum shared subtree
is sought.

On each iteration, the list containing the heaviest trees isdequeued, and inspected for
duplicates. If a duplicated entry is found, it is the answer and the algorithm terminates.
Otherwise, every tree in the list is split into its left and right subtrees, these are inserted in
their appropriate places in the existing data structure, and the algorithm continues.

The pathsp for the shared subtree obtained above are not recorded during the search,
but detected by another search after the subtree is found.

This algorithm relies heavily on the fact that computing tree weights and comparison of
trees are highly optimized operations on the virtual machine level. It is faster to recompute
the weight of a given tree using theweight combinator than to store it.

24.3 pag

This module contains a generic parser generator based on anad hoctheory, taking a data
structure of type_syntax describing the grammar of the language as input. Traditional
parser generator tools are inadequate for the idiosyncrasies of Ursala with regard to op-
erator arity and overloading, but a hand coded parser would be too difficult to maintain,
especially with user defined operators.

The parsers generated by this method are much like traditional bottom-up operator
precedence parsers using a stack, but are generalized to accommodate operator arity dis-
ambiguation on the fly and a choice of precedence relations depending on the arities of
both operators being compared.

Rather than taking a list of tokens as input, the parser takesa list of lists of tokens,
with white space implied between the lists, but juxtaposition of the tokens within each
list (see page 457). Each token is first annotated with a list of four boolean values to
indicate its possible arities prior to disambiguation. This information is derived partly from
the operator specifications encoded by thesyntax record parameterizing the parser, and
partly by contextual information (for example, that the last token in a list can’t be a prefix
operator unless it has no other arity). A token is ready to be shifted or reduced only when
all but one of its flags are cleared. Otherwise a third alternative, namely a disambiguation
step, is performed to eliminated at least one flag by contextual information that may at this
stage depend on the stack contents.

An exception to the conventional operator precedence parsing rules is made when a pre-
fix operator is followed by a postfix operator and both are mutually related in precedence.
In this case, they are simulataneously reduced, so that expressions like<> or {} can be

467

parsed as required. This test also applies to prefix and postfix operators with an expression
between them, wherein the reduction results in a parse tree like that of Listing 23.12.

Although thesyntax data structure doesn’t explicitly represent any distinction be-
tween aggregate operators and ordinary prefix or postfix operators, aggregate operators
are indicated by being mutually related with respect to prefix-postfix precedence. There is
never a need for this condition to hold with other prefix or postfix operators, because the
relation is meaningful only in one direction.

24.4 opt

Code optimization functions are stored in theopt library module. The optimizations are
concerned with transforming virtual machine code to simpler or more efficient forms while
preserving semantic equivalence.

Optimizations include things like constant folding, boolean and first order logic sim-
plifications, factoring of common subexpressions, some forms of dead code removal, and
other ad hoc transformations pertaining to list combinators and recursion. The results
are not provably optimal, which would be an undecidable problem, but are believed to be
semantically correct and generally useful. A more rigorousinvestigation of code optimiza-
tion for this virtual machine model awaits the attention of asuitably qualified algebraist.

An intermediate representation of the virtual machine codeis used during optimization,
which is a tree of combinators (type%sfOZXT) as explained on pages 86 and 141. The
left of each node is a mnemonic from thecor library, and the right is a function that will
transform this representation to virtual code given the virtual code for each subtree.

There are further possibilities for optimization of higherorder functions. A second
order function in this tree representation can be evaluatedwith a symbolic argument by
abstract interpretation. Several functions concerned with abstract interpretation are de-
fined in the library. The result, if it is computable, will be the representation of a first
order function in which some of the nodes contain an unspecifed semantic function. Op-
timization in this form followed by conversion back to second order often will be very
effective.

This technique generalizes to higher orders, but the drawback is that it is not possible
to infer the order of a function by its virtual code alone, andmistakenly assuming a higher
order than intended will generally incur a loss of semantic equivalence. In certain cases
the order can be detected from source level clues, such as functions defined by lambda
abstraction or functions using operators implying a higherorder. The#order+ compiler
directive, which is currently unused, could serve as a pragma for the programmer to pass
this information to the optimizer.

Code optimization is an interesting area for further work onthe compiler, but should not
be pursued indiscriminately. Optimizations that are unlikely to be needed in practice will
serve only to slow down the compiler. Introduction of new optimizations that conflict with
existing ones (i.e., by implying incompatible notions as towhat constitutes optimality) can
cause non-termination of the optimizer. Of course, semantically incorrect “optimizations”
can have disastrous consequences. Any changes to the optimization routines should be

468

validated at a minimum by establishing that the compiler exactly reproduces itself with
sufficiently many iterations of bootstrapping.

24.5 sol

The main purpose of this library module is to implement the algorithm for general solution
of systems of recurrences. The#fix compiler directive documented in Section 7.5.3
is one source level interface to this facility, and the use ofmutually dependent record
declarations is the other (page 158). Thegeneral_solution function takes a list
of equations and user defined fixed point combinators to its solution following a calling
convention with detailed documentation in the source, including a worked example.

The general solution algorithm consists mainly of term rewriting iterations necessary to
separate a system of mutually dependent equations to equations in one variable. Following
that, obtaining the solutions is a straightforward application of each equation’s respective
fixed point combinator. Thorough exposition of the algorithm is a subject for a separate
article. However, being only sixteen lines of code and embedding many typed breakpoints
of the style described starting on page 145, its inner workings are easily open to inspection.

This module also includes thefunction_fixer and fix_lifter functions ex-
plained in Section 7.5.3.

24.6 tag

This module contains some functions relevant to type expressions, and also contains the
declaration of thetype_constructor record.

Many of the functions defined in this module underlie the instance generators of primi-
tive types and type constructors, along with their statistical distributions. These properties
are adjustable only by hard coded changes to the compiler source through this module.

Miscellaneous functions used in the definitions of various type constructors are also
present, as is theexecution function, which builds a type expression from a list of
constructors by executing their microcode (see page 436). This function is needed to
define the semantics of operators allowing type expressionsas suffixes (e.g., the%and%-
operators, Section 6.11.2).

The fixed point combinatorsgeneral_type_fixer andlifted_type_fixer
are also defined in this module. These are used internally by the compiler for solving sys-
tems of mutually dependent record declarations, but may also be of some use to developers
wishing to construct mutually recursive types explicitly.

24.7 tco

This library module contains the main table of type constructors. Adding a user defined
type constructor to this table and rebuilding the compiler can be done as an alternative to

469

loading one dynamically from binary a file as described in Section 23.3. The effect will be
that the user defined type constructor becomes a permanent feature of the language.

24.8 psp

This module contains the main table of pointer constructors, the declaration of thepnode
record type specifying pointer constructors, and thepercolation function used to
translate a list of pointer constructors to its pointer or pseudo-pointer functional seman-
tics. Thepercolation function is used in the definition of any operator that allowsa
pointer expression as a suffix.

Adding a user defined pointer constructor to this table can bedone as an alternative to
loading it from a binary file as described in Section 23.1. Theeffect will be to make it a
permanent feature of the language. As discussed previously, there are no unused pointer
mnemonics remaining, and changing an existing one will break backward compatibility.
However, an unlimited number of escape codes can be added, which would be done by
appending morepnode records to theescapes table in the source.

24.9 lag

Functions pertaining to lexical analysis are stored in thelag library. This library also
includes the declaration of thetoken record type, and a few operations on parse trees.

Lexical analysis is less automted than parsing (Section 24.3), requiring essentially a
hand coded scanner for each lexical class (e.g., numbers, strings,etcetera) although some
of these functions are parameterized by lists of operators or directives derived automati-
cally from tables defined elsewhere.

The scanner for each lexical class consists of a triple(n, p, f) called a “plugin”, wheren
is a natural number describing the priority of the scanner,p is a predicate to detect the class,
andf is a function to lex it. The functionsp andf take an argument of type%nWsLLXJ
of the form˜&J(h,(l, c),< s . . .>) , whererefer(h) is the lexical analyzer meant to
be called recursively,l andc are the line and column numbers of the current character in
the input stream, ands is the current line of the input stream beginning with the current
character.

The functionp is supposed to return a boolean value that is true ifs begins with an
instance of the lexical class in question, and false otherwise.

The functionf is applied only whenp is true, and should return list oftoken records
beginning with the one corresponding to the current position in the input stream, and
followed by those obtained from a recursive call toh. That implies that a new argument
of the form ˜&J(h,(l′, c′),< s′ . . .>) must be constructed and passed in a recursive
invocation ofh, (usually of the formˆR/˜&f . . .) with the line and column numbers
adjusted accordingly, and the input stream advanced to the character past the end of the
current token. Alternatively, if an error is detected,f can raise an exception, but should
include the successors of the line and column numbers as partof the message.

470

Two other important functions in this library arepreprocess andevaluation .
Thepreprocess function takes a parse tree of type_token%T and transforms it under
the direction of its internal preprocessor functions, as explained in Section 23.4.3. The
evaluation function takes a parse tree to its value as defined by itssemantics fields.

24.10 ogl

This library module contains theoperator record type declaration (Section 23.5.1) and
various functions in support of operator definitions.

One useful entry point is thetoken_forms function, which takes a list of operator
records to a list of token records suitable for parameterizing thebuilt_ins plugin of the
lag module described in the previous section. Another is thepropagation function,
for operators allowing pseudo-pointers as operands, whoseusage is best understood by
looking at a few examples in theops module.

24.11 ops

This module contains the main table of operators. Adding a new operator to this table and
rebuilding the compiler is a more persistent alternative toloading a user defined operator
from a binary file as described in Section 23.5.

Note that unlike operator specifications loaded from a file, these tables are fed through
a function in thedefault_operators declaration that initializes theoptimizers
fields to copies of theoptimization function defined in theopt module if they are
non-empty. This feature is not necessarily appropriate if new operators are to be defined
over non-functional semantic domains, and would require some minor reorganization.

24.12 lam

This module contains the code that allows functions to be specified by lambda abstraction.
Lambda abstraction is a top-down source transformation implemented by a fairly simple
algorithm. An expression of the form("x","y"). f(g "x","y") , for example, is
transformed tofˆ(g+ ˜&l,˜&r) , with deconstructors replacing the variables, compo-
sition replacing application, and the couple operator usedin application of functions of
pairs. Subexpressions without bound variables are mapped to constant functions by the
algorithm. The algorithm requires no modification if new operators are defined in the lan-
guage, because their semantic functions are obtained from thesemantics fields in the
parse tree regardless.

Being a source transformation, the lambda abstraction codeforms part of the prepro-
cessor for the. operator, but because this operator is overloaded, the preprocessor is not
defined until the arity is determined to be either postfix or infix. The postfix usage is
initially parsed as a function application (e.g.,("x".) e) with the implied application

471

token at the root of the parse tree, so it becomes the responsibility the application token’s
preprocessor to reorganize the tree appropriately.

The virtual code generated by a naive implementation of the above algorithm tends to be
suboptimal, so this library also includes several postprocessing transformations designed
to improve the quality. These are semantically correct but do not always improve the code,
and therefore can be disabled by the#pessimize directive.

24.13 apt

This module contains specifications for the tokens representing white space in a source
file. There are three kinds of white space, which are the spacebetween consecutive dec-
larations, the space betwen a functional expression and itsargument, and the space where
there is insufficient information to distinguish between the two other cases. These are
designated asseparation , application , andjuxtaposition respectively.

Only application has a meaningful semantics, while the other two are expectedto
be transformed out in the course of preprocessing and will raise an exception if they are
ever evaluated.

The preprocessor of theapplication token is responsible for performing all al-
gebraic transformations associated with dyadic operators. For this reason, the token is
defined by way of a function that takes the main operator tableas input, including any run
time additions.

Several minor source level optimizations are also performed by the preprocessor of
theapplication token, such as recognition of lambda abstraction as mentioned in the
previous section, and elimination of binary to unary combinators in some cases. These
transformations depend on some of the operators having the mnemonics they have, inde-
pendently of the table of operators.

24.14 eto

This module defines the tokens associated with the declaration operators,= and:: . These
operators do not appear in the main table of operators but aredefined instead in this mod-
ule, mainly because their definitions are parameterized by the rest of the operators for
various reasons.

The :: operator has no semantics at all but only a preprocessor thattransforms itself
to a sequence of ordinary declarations in terms of the= operator, and also inserts#fix
directives with appropriate fixed point combinators for types and functions in the event
of self-referential declarations. It includes features todetect when a lifted fixed point
combinator can be used in preference to an ordinary one to achieve the equivalent order,
and uses it if possible (see Section 7.5.3 for theoretical background).

The = operator semantics follows a required convention of evaluating an expression
to an assignments : x, with s being the identifier andx being the value of the body

472

of the expression. The preprocessor of this operator is complicated by the need to in-
teract correctly with the#pessimize directive, and by the need to transform declara-
tions likef("x") = y in conventional mathematical notation to the lambda abstraction
f = "x". y .

Although this library is short, the code in it is more difficult than most and will yield
only to a meticulous reading.

24.15 xfm

This library is concerned primarily with establishing the rules of scope described in Sec-
tion 7.2 and with resolution of symbolic names as needed for evaluation of expressions.
There are also functions concerned with dead code removal, and with invoking the general
solution algorithm defined in thesol module (Section 24.5) when cyclic dependences are
detected. The latter are applied globally to the parse tree of a given compilation in thecon
module (Section 24.22), whereas the former constitute the bulk of the preprocessor for the
#hide directive defined in thedir library (Section 24.16).

24.16 dir

The directive record declaration describing compiler directives is declared in this
module, as is the main table of compiler directives. Adding auser defined compiler direc-
tive specification to this table and rebuilding the compilerhas a similar effect to loading
a directive specification from a binary file as described in Section 23.4, except that in this
case the directive will become a permanent feature of the language.

This library also declares a function calledtoken_forms . Similarly to a function of
the same name inogl (Section 24.10), this function transforms a list of directive speci-
fications to a list of tokens. The main purpose of this function is to construct the list of
tokens used to parameterize thedirectives plugin in the lexical analyizer generator
(Section 24.9), but it also has applications in various other contexts where there is a need
to construct a parse tree containing directives.

24.17 fen

This module instantiates the parser and lexical analyzer generators of thepag and lag
modules with the operators, directives, and precedence rules fromops , eto , apt , dir ,
andpru .

Certain other details are also addressed in this module, such as the precedence rules
for such non-operators as white space, commas, smart comments (page 246), and dash
bracket delimiters (page 118). The lexical analyzer produced by thelexer function in
this module includes a hand written scanner that insertsseparation tokens between
consecutive declarations so that the automatically generated parser can apply to a whole
file. The relaxation of the requirement that all compiler directives appear in matched

473

opening and closing pairs is also a feature of this lexical analyzer, which inserts matching
directives using a hand written algorithm.

24.18 pru

This module contains the main tables of precedence rules depicted in Tables 5.3 through
5.6, and also contains a function for pretty printing a parsetree, which is used by the
--parse command line option. A function to compute the operator precedence equiva-
lence classes shown in Table 5.2 is also included, but the underlying equivalence relation
is determined by thepeer fields of the operators defined in theops module.

Redefining the operator precedence rules in this module followed by rebuilding the
compiler can be done as an alternative to temporarily loading the rules from a file as ex-
plained in Section 23.2. The effect will be a permanent change in the operator precedence
rules of the language. As noted previously, changes in precedence rules are likely to break
backward compatibility.

24.19 for

This module contains the declaration of theformulator record used to describe com-
mand line options as explained in Section 23.6.1, and a couple of functions that are help-
ful for constructing records of this type. There are also some important constants de-
clared in this module, such as the email address of the Ursalaproject maintainer, and the
main compiler version number, which is displayed when the compiler is invoked with the
--version option. The version number may also be supplemented with a time stamp,
which is derived from the time stamp of this source file.

One function in this module,directive_based_formulators , takes a list of
compiler directive specifications as input, and returns a list of formulator records.
This function is the means whereby any compiler directive automatically induces a corre-
sponding command line option.

Another function,help_formulator , takes a table of help topics as described in
Section 23.7 and returns the formulator for the--help command line option parameter-
ized by those topics.

24.20 mul

This very short module contains the declaration for theformulator record, which em-
bodies a complete specification for the compiler by including all tables previously men-
tioned, as explained in Section 23.6.2. A couple of functions define default values for
some of the formulation fields, and thedefault_formulation function takes a table
of formulator records to aformulation using them.

474

24.21 def

The main tables offormulator records and help topics are stored in this module. These
tables can be modified and the compiler rebuilt as an alternative to loading help topics
or command line option specifications from a binary file as explained in Sections 23.6
and 23.7. In this case, the modifications will become permanent features of the compiler.

24.22 con

This module contains functions responsible for managing the main flow of control during
a compilation. Thecustomized function performs the initial interpretation of com-
mand line options and parameters to arrive at theformulation record that will be used
subsequently.

Thereafter, compilation is divided into three main phases,corresponding to the results
that can be inspected by the--phase command line option. The first covers lexical
analysis and parsing. The second covers preprocessing, dependence analysis, and some
local evaluation of expressions. The third phase includes all remaining evaluation and
execution of compiler directives, and the construction of the list of output files.

Each of these phases is specified by one of the functions in thelist of phases . These
are higher order functions parameterized by aformulation record, which return func-
tions operating on parse trees and files. The composition of these functions, achieved by
thecompiler function, constitutes the bulk of the compiler.

24.23 fun

This file contains the executable driver for the functions defined in thecon module. The
additional features implemented in this file are detection and handling of the--phase
command line option, displaying the default help messages when no files or options are
given, supporting thecommand-name feature of theformulation by incorporating
it into diagnostic messages, displaying a warning when output generating directives are
omitted, and trapping non-printing characters in diagnostic messages.

475

While it remains a burden assiduously avoided, it is not un-
expected and thus not beyond a measure of control.

The Architect inThe Matrix Reloaded

A
Changes

A problem with software documentation perhaps first observed by Gerald Weinberg is that
if it’s too polished, it gets out of sync with the software because it becomes intimidating
for some people to update it.

This appendix is reserved for contributions by maintainers, site administrators, or any-
one redistributing the software who is disinclined to alterthe main text. Any commentary,
errata, or documentation of new features recorded here should be deemed to take prece-
dence.

476

B
GNU Free Documentation License

Version 1.2, November 2002
Copyright c© 2000,2001,2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and use-
ful document “free” in the sense of freedom: to assure everyone the effective freedom to
copy and redistribute it, with or without modifying it, either commercially or noncommer-
cially. Secondarily, this License preserves for the authorand publisher a way to get credit
for their work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements theGNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals provid-
ing the same freedoms that the software does. But this License is not limited to software
manuals; it can be used for any textual work, regardless of subject matter or whether it
is published as a printed book. We recommend this License principally for works whose
purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

477

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The “Document”, below, refers to any such
manual or work. Any member of the public is a licensee, and is addressed as “you”. You
accept the license if you copy, modify or distribute the workin a way requiring permission
under copyright law.

A “ Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into another
language.

A “ Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated,
as being those of Invariant Sections, in the notice that saysthat the Document is released
under this License. If a section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero Invariant Sections.
If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under this
License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at
most 25 words.

A “ Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for re-
vising the document straightforwardly with generic text editors or (for images composed
of pixels) generic paint programs or (for drawings) some widely available drawing editor,
and that is suitable for input to text formatters or for automatic translation to a variety of
formats suitable for input to text formatters. A copy made inan otherwise Transparent file
format whose markup, or absence of markup, has been arrangedto thwart or discourage
subsequent modification by readers is not Transparent. An image format is not Transpar-
ent if used for any substantial amount of text. A copy that is not “Transparent” is called
“Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without mark
up, Texinfo input format, LaTeX input format, SGML or XML using a publicly available
DTD, and standard-conforming simple HTML, PostScript or PDF designed for human
modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque
formats include proprietary formats that can be read and edited only by proprietary word
processors, SGML or XML for which the DTD and/or processing tools are not generally
available, and the machine-generated HTML, PostScript or PDF produced by some word

478

processors for output purposes only.
The “Title Page” means, for a printed book, the title page itself, plus such following

pages as are needed to hold, legibly, the material this License requires to appear in the title
page. For works in formats which do not have any title page as such, “Title Page” means
the text near the most prominent appearance of the work’s title, preceding the beginning
of the body of the text.

A section “Entitled XYZ ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “ Dedications”, “ Endorsements”, or “History ”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a section
“Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any
other implication that these Warranty Disclaimers may haveis void and has no effect on
the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license notice
saying this License applies to the Document are reproduced in all copies, and that you
add no other conditions whatsoever to those of this License.You may not use technical
measures to obstruct or control the reading or further copying of the copies you make
or distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may pub-
licly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers)
of the Document, numbering more than 100, and the Document’slicense notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, andBack-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as the publisher of
these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying
with changes limited to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest
onto adjacent pages.

479

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-networklocation from which the
general network-using public has access to download using public-standard network pro-
tocols a complete Transparent copy of the Document, free of added material. If you use
the latter option, you must take reasonably prudent steps, when you begin distribution of
Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible
at the stated location until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Documentunder the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of theDocument, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it.
In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may usethe same title as a
previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has fewer than
five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of thisLicense, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

480

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating
at least the title, year, new authors, and publisher of the Modified Version as given
on the Title Page. If there is no section Entitled “History” in the Document, create
one stating the title, year, authors, and publisher of the Document as given on its
Title Page, then add an item describing the Modified Version as stated in the previous
sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the networklocations given in
the Document for previous versions it was based on. These maybe placed in the
“History” section. You may omit a network location for a workthat was published at
least four years before the Document itself, or if the original publisher of the version
it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substanceand tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in
their titles. Section numbers or the equivalent are not considered part of the section
titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in
the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title
with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant.To do this, add their titles to
the list of Invariant Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but en-
dorsements of your Modified Version by various parties–for example, statements of peer
review or that the text has been approved by an organization as the authoritative definition
of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of CoverTexts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace the
old one, on explicit permission from the previous publisherthat added the old one.

481

The author(s) and publisher(s) of the Document do not by thisLicense give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, un-
der the terms defined in section 4 above for modified versions,provided that you include in
the combination all of the Invariant Sections of all of the original documents, unmodified,
and list them all as Invariant Sections of your combined workin its license notice, and that
you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License,and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sec-
tions with the same name but different contents, make the title of each such section unique
by adding at the end of it, in parentheses, the name of the original author or publisher of
that section if known, or else a unique number. Make the same adjustment to the section
titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various
original documents, forming one section Entitled “History”; likewise combine any sections
Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You must delete
all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various docu-
ments with a single copy that is included in the collection, provided that you follow the
rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, anddistribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

482

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of
the Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders,but you may include translations
of some or all Invariant Sections in addition to the originalversions of these Invariant
Sections. You may include a translation of this License, andall the license notices in
the Document, and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions ofthose notices and disclaimers.
In case of a disagreement between the translation and the original version of this License
or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or dis-
tribute the Document is void, and will automatically terminate your rights under this Li-
cense. However, parties who have received copies, or rights, from you under this License
will not have their licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License“or any later version” applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the FreeSoftware Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in
the document and put the following copyright and license notices just after the title page:

Copyright c© YEAR YOUR NAME. Permission is granted to copy, distribute
and/or modify this document under the terms of the GNU Free Documentation
License, Version 1.2 or any later version published by the Free Software Foun-
dation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

483

Texts. A copy of the license is included in the section entitled “GNU Free Doc-
umentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with . . . Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover
Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend re-
leasing these examples in parallel under your choice of freesoftware license, such as the
GNU General Public License, to permit their use in free software.

484

Index

A
assignment pointer constructor, 61
assignment type constructor, 122

a
address type, 108, 128
job argument deconstructor, 61, 72

abs
floating point, 326
rational, 322

abs
BCD, 318
integer, 314

acos , 329
address enumeration pseudo-pointer, 82
address map pseudo-pointer, 90
--alias option, 280
all , 305
all same pseudo-pointer, 84
all same, 306
alternate list items pseudo-pointers, 83
ampersand operator, 202
anonymous recursion, 44
any , 306
application specific languages, 280
apply-to-both operator, 230
apt library, 472
apt-get utility, 405
arbitrage, 27
arbitrary precision, 51, 111, 117, 196

matrices, 358
arbitrary precision arithmetic, 357
arc , 294
--archive option, 32, 216, 256, 282
ari , 335
ari , 330
arrays, 128
asin , 329

ask , 407
assignment operator, 199, 203
associate left , 292
atan , 329
atanh , 330
avram , 34, 120

combinators, 68, 112
copyright, 54
download, 51
internals, 466
libraries, 45

axiom
computer algebra system, 405, 419
url, 412

axis , 385
axparse , 415

B
conjunction pseudo-pointer, 77, 78
record type constructor, 169

b
boolean type, 110

back lit rendering , 402
backward induction, 32
bad tag diagnostic, 101
bandwidth, 342
bash , 204
bash , 52, 144, 193, 281, 405, 407, 421

program control, 409
between , 354
--binary option, 276
#binary compiler directive, 17, 252, 254
#binary directive, 283
binary files, 265
binary to unary combinators, 199, 200

mapped, 201
suffixes, 201

485

binary type constructors, 121
binomial lattice, 27, 29
bipartitioning operators, 224
bipartitioning pseudo-pointer, 89
bisection, 332
bleq , 317
block , 296
booktabs LATEX package, 363, 364

vertical rules, 366
boolean operators, 213, 305
boolean representation, 69, 77, 110, 123
bootstrap shell script, 464
both , 305
brainf *** language, 105
brange , 320
bus , 328
bwi backward induction, 376
BWI alerts

boss with idea, 142, 174

C
crash type operator, 143
list pointer constructor, 61

c
intersection pseudo-pointer, 303

c
character type, 110, 117
intersection pseudo-pointer, 77

C language, 1, 12, 110
C++ language, 200
capacitors, 37
cardinality, 312
cartesian product, 300
cartesian product pseudo-pointer, 91
case , 291
cases , 291
--cast option, 276, 281
#cast directive, 264
character constants, 110, 131
characters , 288
characters , 110
choice , 294
choices , 300
choleski , 414

choose , 311
mp chord fit , 342
chov , 354
circuits

AC, 35
digital, 13, 269

cli library, 405
data structures, 420

closing , 417
closure , 300
com library, 466
combinations, 311
command line data structures, 258, 290
command line options

customization, 455
comment delimiters, 140
comments, 246

directive, 262
comparison operators, 214
compiler directives

customization, 440
syntax, 247
table, 247

completing , 417
complex library, 114
complex numbers

precision, 43
composition, 19, 20, 190, 195

optimization, 191
compression, 32, 282

granularity, 169
internals, 466
of libraries, 216
of phase dumps, 280

compression function, 132
computer algebra, 405
con library, 475
concatenation, 74

operator, 199
conditional combinator, 68, 71, 211
conditional operators, 211

suffixes, 212
configuration files, 260

486

conjunction, 77
constant combinator, 199, 200
constrained optimization, 352, 355
contingent claims, 27
continuous maps, 352
contrib subdirectory, 260, 287
cop library, 35, 352
copyright information, 53
cor library, 112, 281, 288
correlation , 337
cos , 329
cosmology, 192
coupling operators, 230
covariance , 337
cross , 300
crypttab , 68
cumulative conditionals, 191, 196, 291

exceptions, 237
cu prod , 332
current, 35
current division, 37, 42
currying, 180, 200
curve , 387
cu sum, 333
cuts , 301
Cygnus tools, 52

D
distribution pseudo-pointer, 75
dual type tree constructor, 122

d
type stack dup, 167, 168

dagglm , 340
dash bracket notation, 118, 190, 194
dash operator, 215, 251, 253, 282
--data option, 284
Debian, 51, 52, 405
debugging tips, 143, 145, 246, 256, 267

customization, 432
type errors, 146
with --phase , 280
with --trace , 281, 423

declarations, 248
internals, 472

decompilation, 114, 141, 202, 281
deconstructors, 57

compound, 59
lists, 59
nested, 58
relative, 59
table, 60

def library, 475
defensive programming, 146
--depend option, 274, 281
#depend directive, 274
derivative , 330
derivatives

financial, 27
mathematical, 34, 35, 330, 355
partial, 35, 355

DES key space, 311
dgelsd , 340
difference

natural, 310
rational, 323

difference
BCD, 319
integer, 315

differentiation, 35
digits , 288
dir library, 473
--directives option, 440, 447
disassembly, 114, 141
disjunction, 77
distributing bipartition by comparison, 93
distributing bipartition operator, 225
distributing bipartition pseudo-pointer, 88
distributing filter by comparison, 93
distributing filter operator, 223
distributing filter pseudo-pointer, 88
distribution operator, 199
div , 327
division

natural, 311
division

integer, 315, 320
dollar sign

487

record lifting operator, 232
shell prompt, 17
shell variable punctuation, 407

dot , 290
double , 309
download, 51
dpptrf , 414
drafts , 403
dsyevr , 414
dummy variables, 24, 162, 208, 248, 255

in recurrences, 272

E
arbitrary precision type, 111
comparison pseudo-pointer, 77

e
floating point type, 110, 325
set element deconstructor, 61

EBNF syntax, 245, 248
edges , 372
efficient estimators, 336
eigen , 413
either , 305
elipses operator, 217
elongation , 367
engineering , 324
enum, 289
enumerated types, 173, 238, 289
environment variables, 258
eof , 417
eps , 325
eql , 303
equality, 78
eto library, 472
eudist , 334
exception handling, 143

operators, 236, 265
exec , 418
#executable compiler directive, 34
#executable directive, 257, 283
exp , 330
expect , 418

library, 406
exponentiation

of natural numbers, 311
of rational numbers, 323

#export compiler directive, 252
#export directive, 285
export shell command, 259
ext library, 466
extraction function, 132

F
filtering pseudo-pointer, 69

f
job function deconstructor, 61, 72
primitive function type, 112

factorial , 309
factorial

BCD, 319
false boolean value, 288
fan combinator, 230
fen library, 473
fftw library, 12, 128
field combinator, 58
field identifiers, 152, 203
file record specification, 260
file attributes, 261
filtering operators, 223
finite map operators, 239
firewalls, 408
fit library, 340, 382, 390
#fix directive, 252, 268
fixed , 323
fixed point combinators, 269
fixed point iterator, 209
fix lifter , 273, 469
flattening map operator, 229
fleq , 328
fleq , 201
flo library, 325, 345
float , 339
floating point representation, 111, 415
floatz , 339
folding operator, 220
for library, 474
--formulators option, 455, 462
Fortran, 1, 276

488

forward induction, 377
forward sideways induction, 379
Free Software Foundation, 53
free unions, 122, 127, 133
fromint , 320
fswi , 379
function application, 19
function application internals, 472
functional composition, 19, 20, 190

lifted, 195
operator, 209
optimization, 191
suffixes, 210
with pointers, 209

functional programming, 12
impurity, 82, 171, 406

function fixer , 270, 469
fun version identifier, 249, 262

fused , 293
fwi , 377

G
glomming pointer constructor, 63
grid type constructor, 123, 370

g
general primitive type, 114, 120
list conjunction pseudo-pointer, 70

gang , 292
gap , 412

number theory package, 405
gcase , 292
gcd , 311
gcp , 295
gdif , 306
General Public License, 53
generalized difference by comparison, 93
generalized difference pseudo-pointer, 87
generalized intersection by comparison, 92
generalized intersection pseudo-pointer, 87
generalized set operations, 306
general type fixer , 272
geo , 335
gint , 306
gldif , 306

glint , 307
glpk library, 357
GNU Scientific Library, 12, 35, 330, 331,

355
series extrapolation, 335

gp , 411
gpl function, 290
--gpl option, 282
graph plotting, 382

data structures, 384
default settings, 385
discrete points, 390
inline code, 390
interpolation, 390
positioning axes, 392
symbolic axes, 390
three dimensional, 395

data structures, 403
eccentricity, 395
elevation, 398
focal point, 395, 397
light sources, 398
observer coordinates, 397
zoom, 398

with multiple axes, 392
Graphviz, 97
greatest common divisor, 311
Greeks, 34
grid , 370
grow , 112
guard combinator, 237

H
function application pointer, 79

h
head deconstructor, 59
recursive type operator, 171

hackers, 12, 112, 114
half , 309
half list pseudo-pointers, 83
half line , 352
handshake , 417
hashing operators, 239
--help option, 277

489

help customization, 462
--help-topics option, 462
hexadecimal, 116
#hide compiler directive, 253, 263
#hide directive, 277
Hoare, Tony, 291
hop , 407, 422

I
pairwise relative pointer, 64
type instance recognizer, 140

i
identity pointer, 60
instance generator, 130, 170

identifier syntax, 249
from file names, 283

impedance, 37, 43
imperative programming, 125
--implicit-imports option, 284
#import compiler directive, 19, 136, 216,

255, 256
semantics, 250

#import directive, 282, 284
indexable , 304
inductors, 37
inf , 325
infinite streams, 258
installation instructions, 52, 287
int library, 313
integer programming, 361
integers, 313
integral , 331
interact combinator, 281, 416
interaction protocols, 416
interactive applications, 261
interpolation, 25

comparison of methods, 343
multivariate, 347
polynomial, 342
sinusoidal, 342
spline, 342

intersecting , 303
interval arithmetic, 437
interview questions, 243

inverse , 321
iol , 296
iota , 312
iprod , 334
ISO code, 110, 118, 131, 170
iteration operator, 209

J
job pointer constructor, 61, 72, 141
job type constructor, 127

j
primitive complex type, 114
set difference pseudo-pointer, 77

jacobian , 35, 355
jacobian row , 356
Java, 12

k
comment type operator, 139
list disjunction pseudo-pointer, 70

Kinsol library, 12, 352, 355

L
list flattening pseudo-pointer, 65
list type constructor, 127

l
left deconstructor, 58
type stack deconstructor, 167, 168

label , 367
lag library, 470
lam library, 471
lambda abstraction, 24, 195, 255

in recurrences, 270, 273
internals, 471
operator, 207
semantics, 207

lapack , 12, 128, 340, 357, 414
lat library, 125, 126, 370
LATEX

graphics, 21, 25
labels, 367
tables, 45, 363

latex document , 383
lattices, 370

490

binomial, 27, 29
ldis , 373
ldiz , 374
least squares regression, 340
left lit rendering , 402
length , 312
leql , 303
lesser , 292
letters , 288
levels , 372
levin limit , 35
levin limit , 335
levin sum, 336
lexical analysis customization, 470
lfold , 32, 375
#library directive, 216, 252, 255, 283,

284
library combinator, 217
library operators, 216
license, 53, 283
lin library, 357
linear programming, 357

data structures, 359
linear system , 360
lisp , 12, 415
lists, 127, 191

delimiters, 187
folding, 220
operators, 220

leql , 304
lmap , 374
lmdir , 355
ln , 330
lnodes , 372
logarithms

of floating point numbers, 330
of natural numbers, 312

logical operators, 192
logical value representation, 69, 77, 110, 123
longtable environment, 367
longtable environment, 48
lp solve library, 357
lp solver , 361

lsm , 307
lzip , 374

M
error messenger, 145
mapped recursion pointer, 76

m
assignment meaning deconstructor, 61
module type constructor, 135

--main option, 284
map to alternate items pseudo-pointer, 95
map-to-both operator, 228
mapping operator, 228
mat , 298
math library, 110, 192, 194
matrices

operations, 357
representation, 128, 357

representation , 414
matrix multiplication, 358
matrix operations

inversion, 358
multiplication, 228, 358
solution, 358
sparse, 358

max, 328
maxima , 412

computer algebra system, 405, 419
mean, 336
membership, 78

operators, 214
merge pseudo-pointer, 95
Mersenne Twister, 82, 235, 294, 337
Microsoft Windows, 52
min , 328
minimum bandwidth, 342
minpack library, 352, 355
minus , 327
minverse , 358
mip solver , 362
mixed integer programming, 361
mmult , 358
modulo, 310
mp chord fit , 343

491

mpfr library, 51, 111, 117, 196, 325
matrices, 357

mp one piece polynomial , 342
mp sinusoid , 341
mp solve , 358
mp sparso , 358
msolve , 358
mtwist library, 294
mul library, 474
multihop , 408
multivariate , 347
mvnorm, 414

N
a-tree type constructor, 128
cumulative normal probability, 338
empty constant pseudo-pointer, 65

n
assignment name deconstructor, 61
natural number type, 115

name clashes, 251, 252
resolution, 253, 255

NaN(not a number), 135
nan , 326
nat library, 116, 287, 308
natural numbers, 308

representation, 76
negation

pseudo-pointer, 70
negation

BCD, 318
integer, 314
rational, 321

negation pseudo-pointer, 89
negative , 326
neither , 305
next , 293
ninf , 326
nleq , 19, 308
--no-core-dumps option, 280
non-determinacy, 294
non-linear optimization, 352
non-mutability, 204
non-strictness, 211, 213, 305

not , 305
now, 413
--no-warnings option, 280
range , 312
nth deriv , 331
nth diff , 333
num, 296
numerical differentiation, 35, 330, 343, 355
numerical integration, 331

O
composition pseudo-pointer, 79
opaque type constructor, 114, 130

o
opaque type, 116, 147
tree folding pseudo-pointer, 70

obfuscation, 67, 120
object orientation, 24, 120, 151
Octave, 12, 405
octave , 411
octhex , 415
odd , 308
odd

BCD, 318
ogl library, 471
one-to-each operator, 232
one piece polynomial , 342
one time , 380
only command line parameter, 428
open , 422
operators, 176

aggregate, 187, 193, 195
ambiguity, 179
arity, 178
associativity, 180
customization, 448, 471
declaration, 186
dyadic, 183
equivalence classes, 180
precedence, 179, 449

customization, 431, 474
suffixes, 177, 193
syntax, 177

--operators option, 448

492

oprod , 334
ops library, 471
opt library, 468
#optimize directive, 267
options

command line, 261, 276, 278
customization, 455, 474

financial, 27
in operators, 451

ordered , 305
ordered bipartition operators, 225
outer product, 334
#output directive

dot function interface, 290
#output directive, 263, 264

dot function interface, 265
with LATEX files, 364
with plots, 383

over , 354

P
pointer constructor, 63, 71, 79
printing type operator, 141

p
parsing type operator, 140
zip pseudo-pointer, 75, 295

package, 51
pad , 297
pag library, 467
palindromes, 454
parallel combination, 36
parameterized option, 258
pari-gp math package, 405
parsable primitive types, 140
--parse command line option, 179, 282
parse trees, 274

spacers, 450
specifications, 443, 457

parser internals, 467
partial reification pseudo-pointer, 90
partition by comparison pseudo-pointer, 84
partitioning operator, 226
PDF, 21
permutations , 300

#pessimize directive, 267
--phase option , 475
--phase option, 280
physics, 334
pi , 326
plo library, 382
plot , 382
plotting

data structures, 384
plus , 327
pointer constructors, 19, 56, 61

customization, 426, 470
escape codes, 80, 81, 429
examples, 62
table, 60

--pointers option, 428
poly dif , 343
polymorphism, 150, 162
polynomial interpolation, 342
#postprocess directive, 276
Postscript, 21, 395
pow, 327
power

natural, 311
rational, 323

power
BCD, 320

powerset , 300
--precedence option, 431
precedence rules, 179, 431
predecessor , 144

BCD, 318
integer, 314

predeclared identifiers, 249
predicates, 213, 303

on lists, 305
prefix predicate pseudo-pointer, 92
prefix recognition operator, 242
#preprocess directive, 274
primitive types, 107
printf , 339
probability density, 21
product

493

BCD, 319
integer, 315
natural, 202, 310
rational, 323

#profile directive, 266
profile combinator, 250
program transformation, 64, 114
progressions

arithmetic, 335
geometric, 335

prompt counter , 419
proper subset predicate, 94
pru library, 474
pseudo-pointers, 64

binary, 74
nullary, 65
optimizations, 66, 70, 78, 85
unary, 69

psh , 409
Perl shell, 405

psort , 298
psp library, 470
pspicture LATEX package, 382
pstricks LATEX package, 382, 395
rotating LATEX package, 382

Q
compressed type, 131, 140, 169
conditional pseudo-pointer, 71
inverse cumulative normal probability,

338
q

rational number type, 117, 321
recursive conditional pointer, 71, 78

quantum physicists, 180
quits, 116, 119, 130, 132, 137, 289

definition, 86, 114
quotes, 118
quotient

natural, 310
rational, 323

quotient
BCD, 319
integer, 315

R
math library, 338
recursifier type operator, 146
recursion pseudo-pointer, 72, 75, 79
statistical package, 12, 405

url, 410
r

right deconstructor, 58, 121
type stack deconstructor, 167, 168

rand , 337
random constants, 116, 130, 170
random data generators, 294, 337
random lattices, 372
random list deconstructor, 82
random operator, 234
rat library, 117, 321
rational numbers, 321

relational operator, 322
representation, 322

reactive components, 37
recommended observers , 403
record lifting operator, 232
records

deconstruction, 154
default values, 157
delimiters, 188
higher order, 163, 164, 195
initialization, 159, 205
instances, 153, 156
mnemonics, 152
parameterized, 162
polymorphic, 162
recursive, 158
smart, 158
type checking, 156, 206
type constructor, 169
type declarations, 154
typed, 155
untyped, 152

recursion, 44
recursion operators, 218
reduce combinator, 221
reduction operator, 220

494

reduction pseudo-pointer, 89
refer combinator, 68, 71, 146, 212, 214
referential transparency, 406
reification operators, 239
relative addressing operator, 206
remainder

natural, 310
remainder

BCD, 319
integer, 315

remote shells, 407
ren library, 395
rendering , 402
rep , 293
replacement functions, 357, 361

compile time, 217
run time, 218

replacement lp solver , 361
residual, 310
resistors, 36
reverse composition operator, 209
right lit rendering , 402
rlc , 299
rleq, 322
root , 311
root finder , 331
run length code, 299

S
mapping pseudo-pointer, 70
set type constructor, 133

s
list-to-set pointer, 65, 77, 84, 134
string type, 117

sask , 408, 422
scientific , 323
scientific notation , 369
scilab , 411

math package, 405
scope rules, 250
searching operators, 221
sectioned table , 364
segmentation fault, 142
self extracting files, 282

sep , 298
seq , 418
series combination, 35
series extrapolation, 35
series operations, 332

extrapolation, 335
set shell command, 265
set shell command, 259
set union operator, 199
sets, 65, 76, 134

delimiters, 188
sever , 373
sgn

floating point, 327
sgn

BCD, 318
integer, 314

sh , 421
shell , 420
--show option, 141, 281
#show directive, 264
showtabs example program, 66
shrink , 112
sideways induction, 378
simplified , 322
sin , 329
singly branched , 304
sinusoid , 340, 341
sinusoid , 390
skip , 296
skipwhile , 299
smart comments, 246
sol library, 270, 273, 469
sopen , 422
sorting operator, 221
source code, 464

source time stamp , 249, 262
sparse matrices, 357
sparso , 358
sqr , 326
sqrt , 327
src/ subdirectory, 464
ssh , 421

495

secure shell protocol, 405, 407
standard form , 360
statistical functions, 336
std library, 287
stdev , 337
stdmvnorm , 414
stochasm , 294
string substitution operator, 242
string to time , 380
strtod , 339
strtod , 111
stt library, 380
su , 409

command, 405
subset , 303
subset predicate, 94
substring , 304
substring predicate pseudo-pointer, 91
successor

natural, 309
successor

BCD, 318
integer, 314

suffix , 304
suffix predicate pseudo-pointer, 92
sum

natual, 310
rational, 322

sum
BCD, 319
integer, 314

surface rendering, 395
swi , 378
swin , 297
--switches option, 250, 284

switches predeclared identifier, 249

T
concatenation pseudo-pointer, 74
tree type constructor, 134

t
tail deconstructor, 59
transparent type, 119

table , 363

tables
long, 366

tabular environment, 364, 367
tag library, 469
tagged unions, 173
take , 296
takewhile , 299
tan , 329
tanh , 330
tbl library, 48, 363
tco library, 469
tenfold , 310
tenfold

BCD, 318
#text directive, 263, 264
tilde operator, 203
times , 327
time to string , 380
toint , 320
total reification pseudo-pointer, 94
--trace option, 281, 419, 423
transitive closure, 300
transpose pseudo-pointer, 80, 86
tree evaluation pseudo-pointer, 85, 114
tree syntax, 40, 97, 134
tree tagging pseudo-pointers, 95
tree traversal operator, 219
triangle operator, 229
triangle pseudo-pointer, 87
triangle squared pseudo-pointer, 90
true boolean value, 288
truncating zip, 73
truncation of options, 277, 281
tuples, 187
type checking, 12, 149

in records, 156
safety, 120
undecidability, 35, 107

type expression stack, 167
type expressions, 18

customization, 433, 469
operators, 236
parsing functions, 107

496

primitive, 107
printer internals, 434
recognizer internals, 435
uses, 106

--types option, 439

U
union pseudo-pointer, 77
union type constructor, 122

u
subset deconstructor, 61
unit type constructor, 173

Ubuntu, 52, 405
umf library, 357
unary type constructors, 123
under , 354
unions

free, 122, 127, 133
tagged, 173

unparameterized option, 258
unzipped partial reification, 94
upto , 289
Ursala

abbreviation, 51
download, 51

V
tree pointer constructor, 61
type verifier, 144, 149

v
subtree deconstructor, 61

variance , 336
vector operations, 333
vectors, 128
--version option, 277
vid , 328
visibility, 252, 253
visualization , 402
visualization , 385
visualization record, 382
voltage, 39
vwrap , 367

W

pair type constructor, 135
pairwise recursion pointer, 76

w
membership pseudo-pointer, 78
type stack swap, 167, 168

--warranty option, 277
watch , 419
web page, 51
Weinberg, Gerald, 476
words , 302

X
cartesian product pointer, 61
cartesian product type, 123

x
raw primitive type, 114, 119
reversal pseudo-pointer, 66, 270

xfm library, 473

Y
disjunction pseudo-pointer, 77
self describing formatter, 120, 142

y
list lead pseudo-pointer, 66
self describing type, 120, 280

yorick language, 422

Z
maybe type constructor, 135
negation pseudo-pointer, 70
normal variate, 337

z
integer type, 121, 313
last of list pseudo-pointer, 66

zenity utility, 262
zeroid , 328
zip , 295
zipp , 297
zipt , 295
zipt , 101
zleq , 313
zpptrf , 414
zrange , 315

497

