Notational innovations for
rapid application development

ot

- i

"llll’l’ //[]

G
AT T T T

Dennis Furey
Institute for Computing Research
London South Bank University

ursala-support@basis.uklinux.net

August 6, 2010

Abstract

This manual introduces and comprehensively documentda atyoftware prototyping
and development involving a novel programming languagee [@hguage draws heavily
on the functional paradigm but lies outside the mainstrefimeosubject, being essentially
untyped and variable free. It is based on a firm semantic fatimal derived from a well
documented virtual machine model visible to the programrikse of a concrete virtual
machine promotes segregation of procedural considesavithin a primarily declarative
formalism.

Practical advantages of the language are a simple and uimfextace to several high
performance third party numerical libraries in C and Farticonvenient mechanism for
unrestricted client/server interaction with local or reenocommand line interpreters, built
in support for high quality random variate generation, anadpen source compiler with
an orthogonal, table driven organization amenable to usimetl enhancements.

This material is most likely to benefit mathematically prigict software developers,
scientists, and engineers, who are arguably less well ddry¢he verbose and restrictive
conventions that have become a fixture of modern programtaimguages. The implica-
tions for generality and expressiveness are demonstrateohw

1

Introduction
Motivation
1.1 Intendedaudience
1.1.1 Academicresearchers
1.1.2 Hackersand hobbyists
1.1.3 Numericalanalysts
1.1.4 Independent consultants
1.2 Grandtour.
1.2.1 Graphtransformation.
1.2.2 Datavisualization.
1.2.3 Numbercrunching
1.2.4 Recursive structures
1.3 Remarks
1.3.1 Installation
1.3.2 Organization of this manual
133 License
Language Elements
Pointer expressions

21 Context
2.2 Deconstructors oo

2.2.1 Specification of a deconstructor

2.2.2 Deconstructor semantics
2.2.3 Deconstructorsyntax

2.2.4 Other types of deconstructors

23 Constructors
2.3.1 Constructors by themselves
2.3.2 Constructors in expressions
2.3.3 Disambiguationissues
2.3.4 Miscellaneous constructors

Contents

2.4 Pseudo-pointers e e e 64

2.4.1 Nullary pseudo-pointers 65
2.4.2 Unarypseudo-pointers 68
2.4.3 Ternary pseudo-pointers 71
2.4.4 Binary pseudo-pointers 74
25 ESCapes 80
251 Nullaryescapes 82
2.5.2 UnaryesCcapes i i e e 84
25.3 Binaryescapes e 91
26 Remarks 105
Type specifications 106
3.1 Primitivetypes e 107
3.1.1 Parsingfunctions 107
3.1.2 Specifics 108
3.2 Typeconstructors 112
3.2.1 Binarytypeconstructors 112
3.2.2 Unarytypeconstructors 123
3.3 Remarks e 136
Advanced usage of types 138
4.1 Typeinducedfunctions, 381
4.1.1 Ordinaryfunctions, 138
4.1.2 Exception handling functions 421
4.2 Recorddeclarations 511
421 Untypedrecords 152
422 Typedrecords 155
4.2.3 Smartrecords e 158
4.2.4 Parameterizedrecords 162
4.3 Typestackoperators 6 16
4.3.1 Thetypeexpressionstack 166
4.3.2 Idiosyncratictypeoperators 168
44 Remarks e 174
Introduction to operators 176
5.1 Operator conventions e e e e 761
5.1.1 Syntax 177
5.1.2 Arity . . . e 178
5.1.3 Precedence e 179
5.1.4 Dyadicism 183
5.1.5 Declarationoperators 618
5.2 Aggregateoperators e e 871
5.2.1 Datadelimiters 187
5.2.2 Functional delimiters L 0oL 019

5.2.3 Lifteddelimiters 193

53 Remarks 197
Catalog of operators 198
6.1 Datatransformers 819
6.2 Constantforms 199
6.2.1 Semantics e 200
6.2.2 Suffixes 201
6.3 Pointeroperations 022
6.3.1 Theampersand 202
6.3.2 Thetilde 203
6.3.3 Assignment 203
6.34 Thedot 206
6.4 Sequencingoperations 08 2
6.4.1 Algebraicproperties oL 209
6.4.2 Semantics 209
6.4.3 Suffixes 210
6.5 Conditionalforms 121
6.5.1 Semantics 211
6.5.2 Suffixes 212
6.6 Predicate combinators. L L. 213
6.6.1 Booleanoperators 213
6.6.2 Comparison and membership operators 214
6.7 Moduledereferencing o 152
6.71 Thedash 215
6.7.2 Libraryinvocationoperators 216
6.8 Recursioncombinators oo 182
6.8.1 Recursive composition o000 219
6.8.2 Recursionovertrees 219
6.8.3 Recursionoverlists. 0oL 219
6.9 List transformations induced by predicates 221
6.9.1 Searchingandsorting. 221
6.9.2 Filtering. 223
6.9.3 Bipartitioning 224
6.9.4 Partitioning 226
6.10 Concurrentforms L 722
6.10.1 Mappingoperators 228
6.10.2 Couplingoperators 230
6.11 Patternmatching 423
6.11.1 Randomvariate generators 34 2
6.11.2 Type expression constructors 236
6.11.3 Reification 238
6.11.4 Stringhandlers 241

6.12 Remarks e, 243

Compiler directives 245
7.1 Sourcefile organization L L 245
7.1.1 Comments 246
7.1.2 Directives e 247
7.1.3 Declarations 248
7.2 SCOPE . . . o 250
7.2.1 The#import directive 250
7.2.2 Thettexport+ directive 252
7.2.3 Thethide+ directive 253
7.3 Binaryfileoutput 254
7.3.1 Binarydatafiles, 254
7.3.2 Libraryfiles. 255
7.3.3 Executablefiles o 257
7.3.4 Comments e e 262
7.4 Textfileoutput 263
7.4.1 The#tcast directive 264
7.4.2 The#tshow+ directive 264
7.4.3 Thetttext+ directive 264
7.4.4 Thetoutput directive 264
7.5 Codegeneration. e 265
751 Profiling 266
7.5.2 Optimizationdirectives 672
7.5.3 Fixed pointcombinators 268
7.6 Reflection 274
7.6.1 The#tdepend directive 274
7.6.2 Thettpreprocess directive 274
7.6.3 The#postprocess directive 276
7.7 Commandlineoptions 276
7.7.1 Documentation 277
7.7.2 Verbosity 279
7.7.3 Datadisplay 281
7.7.4 Filehandling 282
7.8 Remarks e 285
Standard Libraries 286
A general purpose library 287
8.1 Overview of packaged libraries 287
8.1.1 Installationassumptions 872
8.1.2 Documentationconventions 8 28

10

11

8.2 Constants 288

8.3 Enumeration. e e e 289
8.4 FileHandling 289
8.4.1 DataStructures e 290
8.4.2 Functions 290
8.5 Control Structures 912
8.5.1 Conditional 291
8.5.2 Unconditional 292
8.5.3 lterative 293
854 Random 294
8.6 Listrearrangement 529
8.6.1 Binaryfunctions 295
8.6.2 Numerical 295
8.6.3 General 297
8.6.4 Combinatorics 299
8.7 Predicates e 303
8.7.1 Primitive 303
8.7.2 Booleancombinators 304
8.7.3 Predicatesonlists. 305
8.8 Generalizedsetoperations 306
Natural numbers 308
9.1 Predicates e e e 308
9.2 Unary e 309
9.3 Binary 310
9.4 LiSts e 312
Integers 313
10.1 Notesonusage o v i i i it e 313
10.2 Predicates e e e e e e 313
10.3 Unary Operations i i e e e e 431
10.4 BinaryOperations e 143
10.5 Multivalued e 315
Binary converted decimal 317
11.1 Predicates e e e e e e 317
11.2 Unary Operations o v vt i i 831
11.3 Binary Operations 193
11.4 Multivalued e 320
11.5 CONVEISIONS e e e e e e e e e e e e e 320

12

13

14

15

16

17

Rational numbers 321
122 Unary e e e e 321
12.2 BINArY . . . o o e 322
12.3 Formatting 323
Floating point numbers 325
13.1 Constants e e e e 325
13.2 General e 326
13.21 Unary e 326
13.2.2 Binary e e 327
13.3 Relational 328
13.4 Trigonometric e e 932
13.5 Exponential 329
13.6 Calculus e 330
13.7 Series 332
13.7.1 Accumulation. 332
13.7.2 Binary vectoroperations 333
13.7.3 Progressions 334
13.7.4 Extrapolation 335
13.8 Statistical 633
13.8.1 Descriptive 336
13.8.2 Generative 337
13.8.3 Distributions 338
13.9 Conversion e e e 338
Curve fitting 340
14.1 Interpolating function generatorsa. ... 340

14.2 Higher order interpolating function generators 342

Continuous deformations 352
15.1 Changesofvariables 523
15.2 Partial differentiation L 355
Linear programming 357
16.1 Matrix operations 573
16.2 Continuous linear programming 359
16.2.1 Datastructures 359
16.2.2 Functions 360
16.3 Integer programmingo e e e e 613
Tables 363
17.1 Shorttables 363
17.2 Longtables 366
17.3 Utilities e 367

18 Lattices
18.1 Constructors
18.2 Combinators
18.3 Induction patterns

19 Time keeping

20 Data visualization
20.1 Functions
20.2 Data structures
20.3 Examples

21 Surface rendering
21.1 Concepts
21.1.1 Eccentricity

21.1.2 Orientation

21.1.3 lllumination

21.2 Interface

22 Interaction
22.1 Theory of operation
22.1.1 Virtual machine interface
22.1.2 Source level interface
22.1.3 Referential transparency . .

22.2 Control of command line interpreters

22.2.1 Quick start
22.2.2 Remote invocation
22.3 Defined interfaces
22.3.1 General purpose shells
22.3.2 Numerical applications
22.3.3 Computer algebra packages
22.4 Functions based on shells
22.4.1 Front ends
22.4.2 Format converters
22.5 Defining new interfaces
22.5.1 Protocols
22.5.2 Clients
22.5.3 Shell interfaces
22.5.4 Interface example

vV

23

24

Compiler Internals 425

Customization 426
23.1 Pointers 426
23.1.1 Pointers with alphabetic mnemonics 428
23.1.2 Pointers accessed by escapecodes 429
23.2 Precedencerules 143

23.2.1 Addingarule 432
23.2.2 Removingarule 432
23.2.3 Maintaining compatibility 432
23.3 Type constructors e e e 334
23.3.1 Typeconstructorusage o v v v it 4 43
23.3.2 User defined primitive typeexample 437
23.4 Directives e e 440
23.4.1 Directivesettings 144
23.4.2 Output generating functions 442
23.4.3 Source transformation functions 443
23.4.4 User defined directiveexample 446
23.5 Operators e e e e 448
23.5.1 Specifications 448
2352 Usage e e 449
23.5.3 User defined operatorexample 53 4
23.6 Commandlineoptions 545
23.6.1 Optionspecifications 545
23.6.2 Global compiler specifications 456
23.6.3 User defined command line option example 459
23.7 HelptopiCs e 462
Manifest 464
241 COM . . . L e e 466
24.2 exXt .. e e 466
243 Pa0 . . e e e 467
24.4 0Pt . L e e e 468
24580l .. 469
24.61a0 e e 469
247 1CO . . e e 469
248 PSP - e e 470
2491ag e e 470
24.100g1 .. e e 471
24.110PS . . o e e e 471
24.12am ... e 471
24.138PE . L e e 472
24.12610 . . . e e e 472

24.1XIM L 473

24 06dir .. . e e e e e e e e 473
24.17en . .. e e e e e 473
24.08MU . . e 474
241901 . . e e 474
24.20mul . .. e e e e 474
24.21def ... e e e e e e 475
242200 . .. e e e e 475
24.2FUN . L e e e e 475
Changes 476
GNU Free Documentation License 477

1. APPLICABILITY AND DEFINITIONS 477
2. VERBATIM COPYING s s s e e e 479
3. COPYING IN QUANTITY e e e e e e 479
4. MODIFICATIONS e e 480
5. COMBINING DOCUMENTS e 482
6. COLLECTIONS OF DOCUMENTS o . 482
7. AGGREGATION WITH INDEPENDENTWORKS 482
8. TRANSLATION e e e e 483
9. TERMINATION e 483
10. FUTURE REVISIONS OF THISLICENSE 483

ADDENDUM: How to use this License for your documents 483

Part |

Introduction

10

Concurrently while your first question may be the most perti-
nent, you may or may notrealize it is also the most irrelevant

The Architect inThe Matrix Reloaded

Motivation

Who needs another programming language? The very ideeely li&k evoke a frosty re-
ception in some circles, justifiably so if its proponentsiasifficiently appreciative of a
simple economic fact. The most expensive thing about softvgathe cost of customiz-
ing or maintaining it, including the costs of training or meitment of suitably qualified
individuals. These costs escalate in the case of esotdtigase technologies, of which
unconventional languages are the prime example, and thlayaoily will take precedence
over other considerations.

1.1 Intended audience

While there is no compelling argument for general commédgployment of the tools and
techniques described in this manual, there is neverthalgesd reason for them to exist.
Many so called mature technologies from which organizatioow benefit handsomely
began as research projects, without which all progress soone standstill. Furthermore,
this material may be of use to the following constituenciesasly adopters.

1.1.1 Academic researchers

Perhaps you've promised a lot in your thesis proposal ortgapplication and are now
wondering how you'll find an extra year or two for writing thede to support your claims.
Outsourcing it is probably not an option, not just becausthefmoney, but because the
ideas are too new for anyone but you and a few colleagues terstashd. Textbook soft-
ware engineering methodologies can promise no improvemgmnoductivity because the
exploratory nature of the work precludes detailed planniAgtomated code generation
tools address only the user interface rather than the sutestd the application.

11

The language described in this manual provides you with la fratm rough ideas to
working prototypes in record time. It does so by keeping theu$ on a high level of
abstraction that dispenses with the tedium and repetitevogived to a greater degree in
other languages. By a conservative estimate, you'll wilteus one tenth the number of
lines of code in this language as in C or Java to get the samdojoé!

How could such a technology exist without being more widetypwn? The deal
breaker for a commercial organization would be the cost vhmr@ing, and the risk of
something untried. These issues pose no obstacle to youdeetsarning and evaluating
new ideas is your bread and butter, and financially you hattamgpto lose.

1.1.2 Hackers and hobbyists

This group merits pride of place as the source of almost esigmjificant advance in the
history of computing. A reader who believes that stretclirggimagination and looking
for new ways of thinking are ends in themselves will find sdmnreg of value in these
pages.

The functional programming community has changed conaidgrsince thdisp
era, not necessarily for the better unless one accepts ¢nage of the compiler writer as
policy maker. We are now hard pressed to find current reseatolity in the field that is
not concerned directly or indirectly with type checking ardorcement.

The subject matter of this document offers a glimpse of havwetional programming
might have progressed in the absence of this constrainttdeéaturprisingly, we find ever
more imaginative and ubiquitous use of higher order fumdtithan is conceivable within
the confines of a static type discipline.

1.1.3 Numerical analysts

Perhaps you have no great love for programming paradigniydouhave a real problem
to solve that involves some serious number crunching. Yduaweady be well aware
of many high quality free numerical libraries, suchlagack , Kinsol , fftw , gsl ,
etcetera which are a good start, but you don't relish the prospectritirvg hundreds of
lines of glue code to get them all to work together. Maybe gndbthat you'd like to
leverage some existing code written in mutually incompatdomain specific languages
that has no documented API at all but is invoked by a commaraititerpreter such as
Octave or Ror their proprietary equivalents.

This language takes about a dozen of the best free numeicatiés and not only
combines them into a consistent environment, but simplifiesalling conventions to the
extent of eliminating anything pertaining to memory mamaget or mutable storage. The
developer can feed the output from one library function deasty to another even if the
libraries were written in different languages. Furtherey@ny command line interpreter
present on the host system can be invoked and controlled bgciidn call from within
the language, with a transcript of the interaction returagthe result.

1'm a big fan of C, as all real programmers are, but | still winit want to use it for anything too complicated.

12

1.1.4 Independent consultants

Commercial use of this technology may be feasible undeaicedircumstances. One
could envision a sole proprietorship or a small team of acackly minded developers,
building software for use in house, subject to the assumjphiat it will be maintained only

by its authors. Alternatively, there would need to be a cotmmant to recruit for premium

skills.

Possible advantages in a commercial setting are rapid a&ttapto changing require-
ments or market conditions, for example in an engineeringaoing environment, and fast
turnaround in a service business where software is the iegakchnology. A less readily
guantifiable benefit would be the long term effects of moreative working conditions
for developers with a preference for advanced tools.

1.2 Grand tour

The remainder of this chapter attempts to convey a flavorHerkinds of things that

can be done well with this language. Examples from a variégpplication areas are
presented with explanations of the main points. These ebemape not meant to be fully
comprehensible on a first reading, or else the rest of the alamould be superfluous.

Rather, they are intended to allow readers to make an infbaeeision as to whether the
language would be helpful enough to be worth learning.

1.2.1 Graph transformation

This example is a type of problem that occurs frequently inDC#pplications. Given
a model for a system, we seek a simpler model if possible thattie same externally
observable behavior. If the model represents a circuit tgymeghesized, the optimized
version is likely to be conducive to a smaller, faster citcui

Theory

A graph such as the one shown in Figure 1.1 represents a sylséénmteracts with its
environment by way of input and output signals. For coneress, we can imagine the
inputs as buttons and the outputs as lights, each identifitdacunique label. When an
acceptable combination of buttons is pressed, the systangels from its present state to
another designated state, and in so doing emits signalseaeduired outputs.

This diagram summarizes everything there is to know abaisttstem according to
the following conventions.

e Each circle in the diagram represents a state.

e Each arrow (or “transition”) represents a possible chariggate, and is drawn con-
necting a state to its successor with respect to the change.

13

h,m/s,u,v

Figure 1.1: a finite state transducer

14

Figure 1.2: a smaller equivalent version

e Each transition is labeled with a set of input signal nameléowed by a slash, fol-
lowed by a set of output signal names.

— The input signal names labeling a transition refer to theiigphat cause it to
happen when the system is in the state where it originates.

— The output signal names labeling a transition refer to tlipuds that are emitted
when it happens.

e An unlabeled arrow points to the initial state.

Problem statement

Two systems are considered equivalent if their observaddt@vior is the same in all cir-
cumstances. The state of a system is considered unobsarétilly the input and output
protocol is of interest. We can now state the problem asviaio

Using whatever data structure you prefer, implement an idlgm that transforms a
given system specification to a simpler equivalent one siptes

For example, the system shown in Figure 1.1 could be tram&fdto the one in Figure 1.2,
because both have the same observable behavior, but theisasimpler because it has
only four states rather than nine.

15

Listing 1.1 concrete representation of the system in Figure 1.1

#binary+
Sys =
{
0 {{"at{p}: 0.{’c’m}{p}): 7}
8: E({’a’},{’p’}): 0,({cm}{p}: 2},
4:
{at{p,rh: 9,
{gr{sh: 3,
. {({’h’,’m’},{’s’,’u’,’v’}): 0},

({a m}{v}): 8,
(g’ ’hm}{u,v): 9},
E({'a’}.{’p'})i 6,({c,m}{p}: 1},

({a’'m}{v}): 8,

(Cg b/ mLLu,v): o),
9: {

({ah{p.r}: 9,

({'g}h{sh: 3,

(Chm s v): 8),
: E({'a’},{’U’,’V'})i 8},

({a’'m}.{v}): 6,

Gy myLu v): 43

= o

~N W

Data structure
A simple, intuitive data structure is perfectly serviceafar this example.

e A character string is used for each signal name, a set of tbeeath set thereof, and
a pair of sets of character strings to label each transition.

e For ease of reference, each state is identified with a unigtuead number, with O
reserved for the initial state.

e Atransition is represented by its label and its associaéstirmhtion state number.
e A state is fully characterized by its number and its set ofjoirtg transitions.
e The entire system is represented by the set of the repréiemstaf its states.

The language uses standard mathematical notation of bamckeparentheses enclos-
ing comma separated sequences for sets and tuples, respedhi colon separated pair
is an alternative notation optionally used in the languagedicate an association or as-
signment, as ix: y . White space is significant in this notation and it denotesirely
non-mutable, compile-time association.

16

Listing 1.2 optimization algorithm

#import std
#import nat

#library+
optimized =
[=&mnS; -+

"Hs\"&hS ++ (&, x+ T|[[&)+ -+ *= "&nS; "DrIXS/nleg$- &,
"= "THV'& =+ |=+ ==++ "bm+ *+mS+ -+ "&NnSiiDPSLrIXS+-

Some test data of the required type are prepared as showstind-1.1 in a file named
sys.fun . (This source file suffix is standard.) The compiler will gaasd evaluate such
an expression with no type declaration required, althougdwall be used later to cast the
binary representation for display purposes.

For the moment, the specification is compiled and storeduré use in binary form
by the command

$ fun sys.fun
fun: writing ‘sys’

The command to invoke the compilerfisn . The dollar sign at the beginning of a line
represents the shell command prompt throughout this makging the filesys is the
effect of the#binary+ compiler directive shown in the source. The file is namedr afte
the identifier with which the structure is declared.

Algorithm
In abstract terms, the optimization algorithm is as follows

e Partition the set of states initially by equality of outggitmansition labels (ignoring
their destination states).

e Further partition each equivalence class thus obtainedjowalence of transition
termini under the relation implied hitherto.

e Iterate the previous step until a fixed point is reached.

e Delete all but one state from each terminal equivalencesc{asth preference to the
initial state where applicable) rerouting incident traiosis on deleted states to the
surviving class member as needed.

The entire program to implement this algorithm is shown isting 1.2. Some com-
mentary follows, but first a demonstration is in order. To pdethe code, we execute

$ fun cad.fun
fun: writing ‘cad.avm’

17

assuming that the source code in Listing 1.2 is in a file catlad.fun . The virtual
machine code for the optimization function is written to lardiry file with suffix.avm
because of thélibrary+ compiler directive, rather than as a free standing exeteitab

Using the test data previously prepared, we can test tharjitbunction easily from the
command line without having to write a separate driver.

$ fun cad sys --main="optimized sys" --cast %nsSWnASAS

{
25 E({’a’},{’p’})i 0,({'c’’m}{p}: 1}

({a}{p’,r}: 4,
{'g1{shH: 3,
(Chm s u v o),
1: {
({a’ ' m}.{v}): 0,
(Cg' e meuvy: 4}
3: {{a}{u,v}): O}
This invocation of the compiler takes the library fdad.avm , with the suffix inferred,
and the data filsys as command line arguments. The compiler evaluates an expnes
on the fly given in the parameter to thenain option, and displays its value cast to the
type given by a type expression in the parameter to-tbast option. The result is
an optimized version of the specification in Listing 1.1 ampated by the library func-
tion, displayed as an instance of the same type. This resukgponds to Figure 1.2, as
required.

Highlights of this example

This example has been chosen to evoke one of two reactiangifireader. Starting from
an abstract idea for a fairly sophisticated, non-obviog®e@hm of plausibly practical
interest, we've done the closest thing possible to pullimgpeking implementation out of
thin air in three lines of code. However, it would be an untiesnent to say the code is
difficult to read. One might therefore react either with awem to such a notation because
of its unfamiliarity, or with a sense of discovery and wondeits extraordinary expressive
power. Of course, the latter is preferable, but at leastme thas been wasted otherwise.
The following technical points are relevant for the intekpeader wishing to continue.

Type expressions such as the parameter to theast command line option above, are
built from a selection of primitive types and constructaaslkerepresented by a single letter
combined in a postorder notation. The types for natural numbers, arglis for character
strings. S is the set constructor, antfthe constructor for a pair of the same type. Hence,
sS refers to sets of strings, asbWto pairs of sets of strings. The binary constructor
pertains to assignments. Type expressions are first clgsstsln the language and can
be given symbolic names.

18

Pointer expressions such as&nSiiDPSLIXS from Listing 1.2, are a computationally
universal language within a language using a postordetiontsimilar to type expressions
as a shorthand for a great variety of frequently occurrintgepas. Often they pertain to
list or set transformations. They can be understood in texfraswell documented virtual
machine code semantics, seen here in a riispe -like notation, that is always readily
available for inspection.

$ fun --main=""&nSiiDPSLrXS" --decompile
main = compose(
map field((0,&),(&,0)),
compose(
reduce(cat,0),
map compose(
distribute,
compose(field(&,&),map field(&,0)))))

Library functions ~ are reusable code fragments either packaged with the cenguiuser
defined and compiled into library files with a suffix.avm . The function in this example
is defined mostly in terms of language primitives except foe bbrary functionnleq
the partial order relational predicate on natural numbewsorted from thenat library.
Functions declared in libraries are made accessible bgithport compiler directive.

Operators are used extensively in the language to express functimmbming forms.
The most frequently used operators ardor functional composition, as in an expression
of the formf+ g, and;, as ing; f , similar to composition with the order reversed.
Another kind of operator is function application, expresbg juxtaposition of two ex-
pressions separated by white space. Semantically we hawdeatity (f+ g) x =

(g;) x =1 (g x) ,orsimplyf g x , as function application in this language is
right associative.

Higher order functions find a natural expression in terms of operators. It is coramni
to regard most operators as having binary, unary, and p&egess forms, so that an
expression such ag is meaningful by itself without a right operand. df is directly
applied to a functiorf , we have the resulting functiagy f . Alternatively, it would be
meaningful to composg; with a functionh, whereh is a function returning a function, as
in g;+ h . This expression denotes a function returning a functiomlar to the one that
would be returned bl with the added feature gf included in the result as a preprocessor,
so to speak. Several cases of this usage occur in Listing 1.2.

Combining forms ~ are associated with a rich variety of other operators, sdméch are
used in this example. Without detailing their exact sentahtive conclude this section
with an informal summary of a few of the more interesting ones

19

e The partition combinatot;= , takes a function computing an equivalence relation to
the function that splits a list or a set into equivalences#as

e The limit combinator;=, iterates a function until a fixed point is reached.

e The fan combinatof;” , takes a function to one that operates on a pair by applying
the given function to both sides.

e The reification combinator; , takes a finite set of pairs of inputs and outputs to the
partial function defined by them.

e The minimization operatds- , takes a function computing a relational predicate to
one that returns the minimum item of a list or set with respedt

e Another form of functional compositionrt ... +-, constructs the composition of an
enclosed comma separated sequence of functions.

e The binary to unary combinatofsand\ fix one side of the argument to a function
operatingonapaif/k y =f(ky) andf\k x =f(x,k) ,where itshould be
noted as usual that the expressidn is meaningful by itself and consistent with
this interpretation.

1.2.2 Data visualization

This example demonstrates using the language to manipautatelepict numerical data
that might emerge from experimental or theoretical ingsgions.

Theory

The starting point is a quantity that is not known with certgi but for which someone
purports to have a vague idea. To be less vague, the persongig claim draws a bell
shaped curve over the range of possible values and assartsg¢hunknown value is likely
to be somewhere near the peak. A tall, narrow peak leavesdess for doubt than one
that's low and spread odt.

Let us now suppose that the quantity is time varying, andith&ing term future values
are more difficult to predict than its short term values. Urded, we wish to construct
a family of bell shaped curves, with one for each instant metin the future. Because
the quantity is becoming less certain, the long term futunees will have low, spread
out peaks. However, we venture to make one mildly predictte¢ement, which is that
the quantity is non-negative and generally follows an iasneg trend. The peaks of the
curves will therefore become laterally displaced in additio being flatter.

It is possible to be astonishingly precise about being vagneé a well studied model
for exactly the situation described has been derived rigglyofrom simple assumptions.
Its essential features are as follows.

2apologies to those who might take issue with this greatlypéfiad introduction to statistics

20

A measurez of the expected value of the estimate (if we had to pick oned, its
dispersionv are given as functions of time by these equations,

z(t) = meM
o (e"Zt—1>

where the parameters, ;. ando are fixed or empirically determined constants. A couple
of other time varying quantities that defy simple intuitexgplanations are also defined.

0(t) = In(z(t)*) - %ln (Z(t)* + v(1))

At) = \/ In <1 + Z((Z)L)

These combine to form the following specification for thel Baaped curves, also known
as probability density functions.

S SN S Y UL IUAY
PO = = P(("5))

Whereas it would be fortunate indeed to find a specificatiahisfform in a statistical
reference, functional programmers by force of habit wiket@are to express it as shown
if this is the intent. We regargd as a second order function, to which one plugs in a time
valuet, whereupon it returns another (unnamed) function as atreBhis latter function
takes a value to its probability density at the given time, yielding thdllshaped curve
when sampled over a rangeof/alues?

Problem statement

This problem is just a matter of muscle flexing compared tgptleeious one. It consists
of the following task.

Get some numbers out of this model and verify that the cuogdsthe way they should.

Surface renderings

A favorite choice for book covers and poster presentatisnis render a function of two
variables in an eye catching graphic as a three dimensiamice. A library for that
purpose is packaged with the compiler. It features realg@tading and perspective from
multiple views, and generates readal#fgeX code suitable for inclusion in documents
or slides. Postscript and PDF renderings, while not diyestipported, can be obtained
through ETEX for users of other document preparation systems.

The code to invoke the rendering library function for thisdabis shown in Listing 1.3
and the result in Figure 1.3. Assuming the code is stored ile @aéimedviz.fun | itis
compiled as follows.

3Some authors will use a more idiomatic notation lje:; t) to suggest a second order function, but seldom use it censlist

21

Listing 1.3 code to generate the rendering in Figure 1.3

#import std
#import nat
#import flo
#import plo
#import ren
constants ----------—--= e

imean = 100. # mean at time O
sigma = 0.3 # larger numbers make the variance increase faste r
mu = 0.6 # larger numbers make the mean drift upward faster

functions of time ------------

expectation = times/imean+ exp+ times/mu
theta = minus™(In+ "&I,div\2.+ In+ plus)/sqr+expectatio n marv
lambda = sqrt+ In+ plus/1.+ divi/marv sqr+ expectation

marv = # variance of the marginal distribution
times/sqgr(imean)+ times”(
exp+ times/2.+ times/mu,
minus\1.+ exp+ //times sqgr sigma)
rho = # takes a positive time value to a probability density fu nction
"t". 0.2=/0.! "x". div(
exp negative div\2. sgr div(minus/In"x" theta "t",lambda " t),

times/sqrt(times/2. pi) times/lambda“t" "x")

image specifications -----—-- e

#binary+
#output dot'tex’ //rendering ('ihn+',1.5,1.)

spread =

visualization[
margin: 35.,
headroom: 25.,
picture_frame: ((350.,350.),(-15.,-25.)),
pegaxis: axis[variable: '\textsl{time}],
abscissa: axis[variable: '\textsl{estimate}],

ordinates: <

axis[variable: '$\rho%’,hatches: ari5/0. .04,alias: (10 001>,
curves: "&H(

* curve$[peg: "&hr,points: * "[& "H\"&l rho+ "&r],

|[=&r "&KO (ari41/75. 175.,ari31/0.1 .6))]

22

time

e 0.04

"~ 4003

o,
=7
=<
=257

* 0.02 P
$ 001

' 0.00

estimate

Figure 1.3: Probability density drifts and disperses wiithetas the estimate grows increasingly uncertain

$ fun flo plo ren viz.fun
fun: writing ‘spread’
fun: writing ‘spread.tex’

The output files inAIEX and binary form are generated immediately at compile time,
without the need to build any intermediate libraries or exables, because this application
is meant to be used once only. This behavior is specified bytilmary+ and#output
compiler directives.

The main points of interest raised by this example relatdeédiandling of numerical
functions and abstract data types.

Arithmetic operators ~ are designated by alphanumeric identifiers sudinass andplus
rather than conventional operator symbols, for obviousaesa.

23

Dummy variables enclosed in double quotes allow an alternative to the pumgbaatoric
variable-free style of function specification. For exampte could write

expectation "t" = times(imean,exp times(mu,"t"))
or
expectation = "t". times(imean,exp times(mu,"t"))

as alternatives to the form shown in Listing 1.3, where tlfr follows traditional math-
ematical convention and the latter is more along the linékaibda abstraction” familiar
to functional programmers.

Use of dummy variables generalizes to higher order funstidor which it is well
suited, as seen in the case of @ function. It may also be mixed freely with the
combinatoric style. Hence we can write

rho "t = 0.2=/0.! "x". div(...)

which says in effect “if the argument to the function retudry rho at"t" is zero, let
that function return a constant value of zero, but otherdesét return the value of the
following expression with the argument substituted ot .”

Abstract datatypes adhere to a straightforward record-like syntax consistiregsymbolic
name for the type followed by square brackets enclosing antdrseparated sequence
of assignments of values to field identifiers. The values @mfbany type, including
functions and other records. Thisualization ,axis , andcurve types are usedto
good effect in this example.

A record is used as an argument to the rendering functionusedais useful for it to
have many adjustable parameters, but also useful for tlaereders to have convenient de-
fault settings to spare the user specifying them needleBshyexample, the numbering of
the horizontal axes in Listing 1.3 was not explicitly spexifbut determined automatically
by the library, whereas that of the vertigahxis was chosen by the user (in thetches
field). Values for unspecified fields can be determined by amyputable function at run
time in a manner inviting comparison with object orientaticEnlightened development
with record types is all about designing them with intelligdefaults.

Planar plots

The three dimensional rendering is helpful for intuitiort bat always a complete picture
of the data, and rarely enables quantitative judgementstatbdn this example, the dis-
persion of the peak with increasing time is very clear, Bidrift toward higher values of
the estimate is less so. A two dimensional plot can be a @lefermlternative for some
purposes.

Having done most of the work already, we can use the sasualization data
structure to specify a family of curves in a two dimensioriat.gt will not be necessary to
recompile the source code for the mathematical model bediesdata structure storing
the samples has been written to a file in binary form.

24

Listing 1.4 reuse of the data generated by Listing 1.3 for an interpgl2tdimensional plot

#import std
#import nat
#import flo
#import fit
#import lin
#import plo

#output dot'tex’ plot
smooth =

“&H\spread visualization$i[

margin: 15.!,
picture_frame: ((400.,250.),-30.,-35.)!,
curves: “curves; * curvedi

points: "H(*+ “["&+ chord_fit0,ari300+ "&hzXbl)+ “points,
attributes: {linewidth’: '0.1pt'}]

Listing 1.4 shows the required code. Although it would begiae to use the original
spread record with no modifications, three small adjustments todtraade. These are
the kinds of settings that are usually chosen automatibaliyare nevertheless available to
a user preferring more control.

e manual changes to the bounding box (a perennial issuetigX images with no
standard way of automatically determining it, the defagithmly approximate)

¢ athinner than default line width for the curves, helpful wimeany curves are plotted
together

e smoothing of the curves by a simple piecewise polynomiarpalation method

Assuming the code in Listing 1.4 is in a file namsdooth.fun , it is compiled by
the command

$ fun flo fit lin plo spread smooth.fun
fun: writing ‘smooth.tex’

, The command line parametspread is the binary file generated on the previous run.
Any binary file included on the command line during compdatis available within the
source as a predeclared identifier.

The smoothing effect is visible in Figure 1.4, showing how tksulting plot would
appear with smoothing and without. Whereas discernibletfam a three dimensional
rendering are a helpful visual cue, line segments in a twedsional plot are a distraction
and should be removed.

A library providing a variety of interpolation methods isttibuted with the compiler,
including sinusoidal, higher order polynomial, multidinsgonal, and arbitrary precision

25

0.04

0.03

0.02

0.01

0.00 == | I I I
75.00 95.00 115.00 135.00 155.00 o

estimate
0.04
0.03

0.02

0.01

0.00 F=—

75.00 95.00 115.00 135.00 155.00 175.00
estimate

Figure 1.4: plots of data as in Figure 1.3 showing the effetsmnoothing

26

versions. For this example, a simple cubic interpolaticdmo¢d _fit O) resampled at
300 points suffices.

1.2.3 Number crunching

For this example, we consider a classic problem in mathealatinance, the valuation of
contingent claims (a stuffy name for an interesting probtemmparable to finite element
analysis). The solution demonstrates some distinctivieifes of the language pertaining
to abstract data types, numerical methods, and GNU Sciehiffrary functions.

Theory

Two traders want to make a bet on a stock. One of them makes mitorant to pay an
amount determined by its future price and the other pays agdeont. The fee is subject
to negotation, and the future payoff can be any stipulatadtfan of the price at that time.

Avoidance of arbitrage One could imagine an enterprising trader structuring afplastof
bets with different payoffs in different circumstancesisticat he or she can’t lose. So
much the better for such a trader of course, but not so for diaterparties who have
therefore negotiated erroneous fees.

To avoid falling into this trap, a method of arriving at muty&onsistent prices for an
ensemble of contracts is to derive them from a common soérpeobability distribution
for the future stock price is postulated or inferred from tharket, and the value of any
contingent claim on it is given by its expected payoff witspect to the distribution. The
value is also discounted by the prevailing interest ratdéoextent that its settlement is
postponed.

Early exercise If the claim is payable only on one specific future date, itsspnt value
follows immediately from its discounted expectation, babanplication arises when there
is a range of possible exercise date#n this case, a time varying sequence of related
distributions is needed.

Binomial lattices A standard construction has a geometric progression ofilgesstock
prices at each of a discrete set of time steps ranging froncdh&act’s inception to its
expiration. The sequences acquire more alternatives Wwethpassage of time, and the
condition is arbitrarily imposed that the price can changly ¢o one of two neighboring
prices in the course of a single time step, as shown in Figére 1

The successor to any price represents either an increaséabyoau or a decrease by
a factord, with ud = 1. A probability given by a binomial distribution is assigntedeach
price, a probabilityp is associated with an upward movement, gndith a downward
movement.

4A further complication that we don’t consider in this examd a payoff with unrestricted functional dependence oh pogsent
and previous prices of the stock.

27

141.40

125.9

SN

112.2 112.24

N

price 100.0 100.0

N

P
AL B

89.09

79.3

70.72

present future

Figure 1.5: when stock prices take a random walk

An astute argument and some high school algebra establisésviar these parameters
based on a few freely chosen constants, namlythe time elapsed during each step,
the interest rateS the initial stock price, and, the so called volatility. The parameter
values are

60\/ At

u g

d = e VAt
erAt_d

P = u—d

qg = 1-p

With n time steps numbered frolto n — 1, andk + 1 possible stock prices at step
numberk numbered fronD to &, the fair price of the contract (in this simplified world
view) is v9 from the recurrence that associates the following value' afith the contract
at timek in state;.

k f(SF) if k=n-—1

ho { max (f(Szk)v e At (pvfff + qv’““)) otherwise (1.1)

i

In this formula, f is the stipulated payoff function, angf = Su’d*~" is the stock price
at timek in state;. The intuition underlying this formula is that the value bétcontract

28

at expiration is its payoff, and the value at any time prioexpiration is the greater of its
immediate or its expected payoff.

Problem statement

The construction of Figure 1.5, known as a binomial latticefimancial jargon, can be
used to price different contingent claims on the same stivmoklg by altering the payoff
function f accordingly, so it is natural to consider the following tessk

Implement a reusable binomial lattice pricing library alng arbitrary payoff functions,
and an application program for a specific family of functions

The payoff functions in question are those of the form
f(s) = max(0,s — K)

for a constanf and a stock price. The application should allow the user to specify the
particular choice of payoff function by giving the value it

Data structures

A lattice can be seen as a rooted graph with nodes organizéel/els, such that edges
occur only between consecutive levels. Its connectionltagpois therefore more general
than a tree but less general than an unrestricted graph.

An unusual feature of the language is a built in type congbruior lattices with ar-
bitrary branching patterns and base types. Lattices inahguage should be understood
as containers comparable to lists and sets. For this examfdgmomial lattice of float-
ing point numbers is used. The lattice appears as one fieldénad whose other fields
are the model parameters mentioned above such as the timdwstgions and transition
probabilities.

As indicated above, some of the model parameters are frbéelyen and the rest are
determined by them. It will be appropriate to design the recata structure in the same
way, in that it automatically initializes the remaining fislwhen the independent ones are
given. For this purpose, Listing 1.5 uses a record dectaraif the form

(record mnemonic::
(field identifiey (type expression (initializing function

(field identifiey (type expression (initializing function

If no values are specified even for the independent fieldgettard will initialize itself to
the small pedagogical example depicted in Figure 1.5.
By way of a demonstration, the code is Listing 1.5 is compidgdhe command

$ fun flo lat crt.fun
fun: writing ‘crt.avm’

29

Listing 1.5 implementation of a binomial lattice for financial derives valuation

#import std
#import nat
#import flo
#import lat

#library+

crr =

S
\%
t

n
r

dt
up
dn
p

q
I

%eZ
%eZ
%eZ
%n
%eZ
%e
%e
%eZ
%eZ
%eZ
%eG

~s]|100.!
“v][0.2!
1.1
“n||4!
“r]|0.05!

[[Fdt "t&& div'/t float+ predecessor+ "n

[Fup "v&& exp+ times/v sqrt+ ~dt

V&& exp+ negative+ times™ /v sqrt+ “dt
-&7r,"dn,divi(minus™\"dn exp+ times+ “/r dt,minus+ ~

-&p,fleq\1.+ “p,minus/1.+ “p&-

"n&& "q&& || grid(

amer = # price of an american option on lattice ¢ with payoff f

("c",""). "&H\1"c" Ifold max|/*f" |[ninf! "&i&& -+
\div exp times/r"c" “dt "c",
iprod/<”q

euro = # price of a european option on lattice ¢ with payoff f
("c""f"). "&HVT'c" Ifold ||-+"f","&I+- "&r;

Vdiv exp times/r"c" “dt "c",
iprod/<"q

"&IiIhBZPFrSPStx+ num

“&h;+ /times+ “dn,
I'INCT/ &+ "&z;+ [ltimes+ ~“up),

“DIS(
fleq\;eps++ abs

“&t+ iotat+ "n))

"Cp CUS+-

c",p "c">+-

*+ TIINCNCH\'s "H/rep+™n :"\"&+ "&h;+ ™(

*++ minus *++ div;+ V-

"Ri&& -+

*+ <.“up,”dn>,

/up dn)&-

30

assuming it resides in a file named.fun . To see the concrete representation of the
default binomial lattice, we display one with no user defifietils as follows.

$ fun crt --main="crr&" --cast _crr
crr|
s: 1.000000e+02,
v: 2.000000e-01,
t: 1.000000e+00,
n: 4,
r: 5.000000e-02,
dt: 3.333333e-01,
up: 1.122401e+00,
dn: 8.909473e-01,
p: 5.437766e-01,
g: 4.562234e-01,
I <
[0:0: 1.000000e+02": <1.0,1:1>],
[
1:1: 1.122401e+02": <2:1,2:2>,
1:0: 8.909473e+01": <2:0,2:1>],

2:2: 1.259784e+02": <2:2,2:3>,
2:1: 1.000000e+02": <2:1,2:2>,
2:0: 7.937870e+01": <2:0,2:1>],

2:3: 1.413982e+02": <>,
2:2: 1.122401e+02": <>,
2:1: 8.909473e+01": <>,
2:0: 7.072224e+01": <>]>]

In this command, crr is the implicitly declared type expression for the recordogdn
mnemonic iscrr . The lattice is associated with the fidld and is displayed as a list
of levels starting from the root with each level enclosedquae brackets. Nodes are
uniquely identified within each level by an address of therfor : m, and the list of
addresses of each node’s descendents in the next leveMms gtats right. The floating
point numbers are the same as those in Figure 1.5, shownrhexponential notation.

Algorithms

Two pricing functions are exported by the library, one cep@nding to Equation 1.1, and
the other based on the simpler recurrence

% {f(Sf) if k=n-1

v, = .
e ™A (pul! 4+ quit!) otherwise

)

31

which applies to contracts that are exercisable only atrapn. The latter are known as
European as opposed to American options. Both of theseifursdiake a pair of operands
(¢, f), whose left side: is record describing the lattice model and whose right giikea
payoff function.

A quick test of one of the pricing functions is afforded by thibowing command.

$ fun flo crt --main="amer(crr& max/0.+ minus\100.)" --ca st
1.104387e+01

$ The payoff function used in this case would be expressgdgs= max(0, s — 100) in
conventional notation, and the lattice model is the defexdimple already seen.

As shown in Listing 1.5, the programs computing these famstitake a particularly
elegant form avoiding explicit use of subscripts or indicésstead, they are expressed
in terms of thdfold combinator, which is part of a collection of functional camhg
forms for operating on lattices defined in tla library distributed with the compiler.
Thelfold combinator is an adaptation of the standéstli combinator familiar to
functional programmers, and corresponds to what is calbedtKward induction” in the
mathematical finance literature.

The application program

Having made short work of the library, we’ll take the oppaity to under-promise and
over-deliver by making the application program computeardy the contract prices but
also their partial derivatives with respect to the modehpaaters. These are often a matter
of interest to traders, as they represent the sensitivigypadsition to market variables.

The source code shown in Listing 1.6 can be used to genemtgettired executable
program when stored in a file nameall.fun

$ fun flo crt cop call.fun --archive
fun: writing ‘call’

The --archive command line option to the compiler is recommended for lapge-
grams and libraries, and causes the compiler to perform slateecompression. In this
case it reduces the executable file size by a factor of fivédecong a slight advantage in
speed and memory usage. Recall itrat is the name of the user written library contain-
ing the binomial lattice functions, whildo andcop are standard libraries distributed
with the compiler.

As an executable program, it should be somewhat robust dhdxgdanatory in the
handling of input, even if it is used only by its author. Whamndked with missing param-
eters, it responds as follows.

$ call

usage: call [-parameter value] * [--greeks]
-s <initial stock price>
-t <time to expiration>
-v <volatility>

32

Listing 1.6 executable program to compute contract prices and padidlatives

#import std
#import nat
#import flo
#import crt
#import cop
usage = # displayed on errors and in the executable shell scri pt
:lusage: call [-parameter value] * [--greeks] "&t -[
-s <initial stock price>
-t <time to expiration>
-v <volatility>
-r <interest rate>
-k <strike price>]-
#optimize+
price = # takes a list of parameters to a call option price
<"s"Mt","v,"r","K">. levin_limit amer * x - (
crr$fs: "s"Lt: "t"Lv: "v'Lr: "r'ln: "&] * "&NIC|\ 8! =« iota4,
max/0.+ minus\"k")
greeks = # takes the same input to a list of partial derivative s
“|ITC&,printf/:%10.3f") *+ -+
IF&p <'delta’,'theta’,’'vega ’,’rho ’'/’dc/dk’,’gamma’> ,
“IrNCT(
“&h+ jacobian(1,5) "&INC+ price,
("h","t"). (derivative derivative price\"t") "h")+-
#comment usage--<",’last modified: '--__source_time_s tamp>
#executable (<'par'>,<>)
call = # interprets command line parameters and options
"&INC+ file$[contents: "&]+ -+
"CNNCT/-+printf/'price:%10.2f ,price+"&r+- "&I&& gree ks+ "&r,
“command.options; “/(any “keyword[='greeks’) -+
-&&itZBg,eql/16,all "&jz\'0123456789.-'+ ~&h&-?/%ep * usage!%,

“parameters *+ "&itZBFL+ gang *"* "keyword== * "&INCS ’stvrk’+-+-

33

Listing 1.7 executable shell script from Listing 1.6, showing usageardion information

#1/bin/sh

usage: call [-parameter value] * [--greeks]
-s <initial stock price>

-t <time to expiration>
-v <volatility>

-r <interest rate>

-k <strike price>
#
#
#
#

last modified: Tue Jan 23 16:14:13 2007

self-extracting with granularity 194

#\
exec avram --par "$0" "$@"
sSr{EloAJGhuMsttsp”wZekhsnopfozlfxHoOZ @iGjvwlyd ?Www HoyYnPjo...

....xZEMtpZiKaMS]Mca@ZSC@PUp=0@<

-r <interest rate>
-k <strike price>

This message serves as a reminder of the correct way of myatkifor example

$ call -s 100 -t 1 -v .2 r .05 -k 100
price: 10.45

if only the price is required, or

$ call -s 100 -t 1 -v .2 r .05 -k 100 --greeks

price: 10.45
delta: 0.637
theta: 6.412
vega : 37.503
rho 53.252
dc/dk: -0.532

gamma: 1141.803

to compute both the price and the “Greeks”, or partial dékrea, so called because they
are customarily denoted by Greek letters.
Several interesting features of the language are illuedriat this example.

Executable files are requested by théexecutable compiler directive, and are written
as shell scripts that invoke the virtual machine emulagram , which is not normally
visible to the user. The executable files contain a headarssine automatically generated
front matter and optional comments, as shown in Listing 1.7.

SReal users would expect a negative valueofoecause the value of the contract decays with time. Howéverprice here has
been differentiated with respect to the variablepresenting time remaining to expiration, which variegisely with calendar time.

34

Command line parsing and validation are chores we try to minimize. One way for an exe-
cutable program to be specified is by a function mapping a stati@ture containing the
command line options (already parsed) and input files totafisutput files. The com-
mand processing in this example program is confined to theHese lines, which verify
that each of the five parameters is given exactly once as endenumber. This segment
also detects thegreeks flag or any prefix thereof.

Series extrapolation is provided by thdevin_limit function, which uses the Levin-
transform routines in the GNU Scientific Library to estimie limit of a convergent series
given the first few terms. The convergence of the binomidéickmethod is improved in
this example by evaluating it for 8, 16, 32, and 64 time steykextrapolating.

Numerical differentiation IS also provided by the GNU Scientific Library, with the help o
a couple of wrapper functions. Tlierivative function operates on any real valued
function of a real variable, and can be nested to obtain Inigéevatives. Thgacobian
function, from thecop library distributed with the compiler, takes a p&ir, m) € N x N

to a function that takes a functigh: R™ — R” to the function/ : R™ — R™*™ returning
the Jacobian matrix of the transformatign Thejacobian function is convenient for
tabulating all partial derivatives of a function of manyiedes, and adds value to the GSL,
whose differentiation routines apply only to single valfigactions of a single variable.

1.2.4 Recursive structures

The example in this section demonstrates complex aritloptegrarchical data structures,
recursion, and tabular data presentation using analogueir&Git analysis as a vehicle.
These are a very simple class of circuits for which the foitaycrash course should bring
anyone up to speed.

Theory

Wires in an electrical circuit carry current in a manner agals to water through a pipe.
By convention, a current is denoted by the lefteand depicted in a circuit diagram by an
arrow next to the wire through which it flows.

The rate of current flow is measured in units of amperes. A@wmasion principle
requires the total number of amperes of current flowing imip @art of a circuit to equal
the number flowing out.

Series combinations This conservation principle allows us to infer that each ponent
of the circuit depicted in Figure 1.6 experiences the sarteeafaicurrent flow through it,
because all are connected end to end. The circle represdeisce that propels a fixed

61t doesn't take any deliberate contrivance to bump into adeaitlable type checking problem. The “type” of flagobian
function is(N x N) — ((R™ — R™) — (R™ — R™*"™)) for the particular values of andm given by the argument to the
function, which needn't be stated explicitly at compile &m

35

<_

IOU'[

Figure 1.6: resistors in series necessarily carry ideltizaents,li, = Iy = I for all k

rate of current through itself (a current source), and tigzagging schematic symbols
represent devices that oppose the flow of current through {hesistors).

Iin
%

R1§¢I1 R2§¢]2 Rngifn

<
[OUt

Figure 1.7: rules of current divisioffy, = Ioyt = > I, such thatRy I, is the same for alk

Parallel combinations A more interesting situation is shown in Figure 1.7, wheezé¢hare
multiple paths for the current to take. In such a case, soawtidn of the total current
will flow simultaneously through each path. If the resistalsng some paths are more
effective than others at opposing the flow of current, sméiéetions of the total will flow
through them. The effectiveness of a resistor is quantified keal number?, known as
its resistance, expressed in units of ohf¥ (The current through each path is inversely

36

proportional to its total resistance.

Aggregate resistance It is a consequence of this rule of current division that tfiective
resistance of a pair of resistors connected in parallel &gure 1.7 is the product of their
resistances divided by their sum (i.&; R,/ (R, + Ry), for individual resistanceg; and
R5). Although not directly implied, it is also a fact that théeadtive resistance of a pair of
resistors connected in series as in Figure 1.6 is the suneofitidividual resistances.

Normally in a circuit analysis problem the component valaresknown and the current
remains to be determined. The foregoing principles sufbadetermine a unique solution
for a circuit such as the one shown in Figure 1.8, where theentisource emits a current
of 10 amperes.

Reactive components For circuits containing only a single fixed current source @sistors
connected only in series and parallel combinations, it &y ¢aimagine a recursive algo-
rithm to determine the current in each branch. Before domgve can make matters a bit
more interesting by admitting two other kinds of compongatsinductor and a capacitor,
as shown in Figure 1.9, and allowing the current source tp wéh time.

For these components, it is necessary to distinguish betihedr transient and steady
state operation. An inductor will not allow the current thgh it to change discontin-
uously. Initially it will prohibit any current at all but gcaally will come to behave as a
short circuit (i.e., a wire with no resistance). A capaciiehaves in a complementary way,
allowing current to flow unimpeded at first but gradually mtog greater opposition until
the current direction is reversed.

Individual inductors and capacitors differ in the rate atahrthey approach their steady
state operation in a manner parameterized by a real numbe€’, known as their induc-
tance or capacitance, respectively. Without going intaidlabout the mathematics, suffice
it to say that analysis of RLC circuits with time varying soes is of a different order of
difficulty than purely resistive networks, requiring in geal the solution of a system of
simultaneous differential equations.

Complex arithmetic ~ Electrical engineers use an ingenious mathematical sitddcsolve
an important special case of RLC circuits algebraically bynplex arithmetic without
differential equations. A sinusoidally varying currentusce as a function of timewith
constant amplitudé,, frequencyw and phase

I(t) = Iy cos(wt + @)
is identified with a constant complex current
Iy cos(¢) + jlo sin(¢)

where the symbagj represents/—1.
A generalization of resistance to a complex quantity knosmgpedance accommo-
dates reactive components as easily as resistors.

37

10A

7.0292 § L2.85A 2790 § J7.15A

6.5902 § J1.63A 1.280 § }837A

4.55Q § J2.90A

. 3.89A . 3.21A
CT) o § ' M § ' 4.460 § 12.90A

4.32Q) § J2.90A

9.240Q) § 1272A 574Q § 14.38A
5.97Q § J2.90A

1.540 § 13.24A 4990 § J350A 2990 § 13.26 A

8.880) § 13.24A 4.650 § 1350A 7.38Q § 1326 A

Figure 1.8: any given resistor network implies a uniqueentrdivision

38

1

L C

T

Figure 1.9: An inductor, left, gradually allows current tovil more easily, and a capacitor, right, gradually
makes it more difficult

e Aresistor with a resistanc® has an impedance @t + 0.

e An inductor with an inductancé has an impedance gfv L, wherew is the angular
frequency of the source.

e A capacitor with a capacitanee has an impedance ef%.

The rules of current division and aggregate impedance fogsand parallel combina-
tions take the same form as those of resistance mentionee ahg.,7, 7, /(Z, + Z,) for
individual impedanceg’; and Z,, but are computed by the operations of complex arith-
metic. In this way, complex currents are obtained for anybinan a circuit, from which
the real, time varying current is easily recovered by exingadhe amplitude and phase.

Problem statement

We now have everything we need to know in order to implemertigorithm to solve the
following problem.

Exhaustively analyze an AC circuit containing a currentrsewand any series or parallel
combination of resistors, capacitors, and inductors.

It is assumed that all component values are known, and threes@isinusoidal with con-
stant frequency, phase, and amplitude. The analysis shimulgiven in the form of a
table listing the current and voltage drop across each caemgan phase and amplitude.
The voltage drop follows immediately as the complex prodafcthe current with the
impedance.

Data structures

An appropriate data structure for an RLC circuit made fromieseand parallel combina-
tions is a tree. A versatile form of trees is supported by #mgliage, wherein each node
may have arbitrarily many descendents. A tree may have désof the same type, or the
terminal nodes can be of a distinct type from the non-terfmodes.

In this application, each terminal node represents a coemtan the circuit, and each
non-terminal node is a letter, eithsr or ‘p for series or parallel combination, respec-
tively. The single back quote indicates a literal characterstant in the language.

The components are represented by pairs with a string oretharid a floating point
number on the right. The string begins wii L, or C followed by a unique numeri-
cal identifier, and the floating point number is its resis@annductance, or capacitance,
respectively.

39

|

L50

Figure 1.10: an RLC circuit made from series and parallelltioations

The notation for trees used in the language is
(root)™: < [(subtreg[, (subtreé]*] >

where thé: operator joins the root to a list of subtrees, each of a sirfolan, in a comma
separated sequence enclosed by angle brackets.

A nice complicated test case for the application is shownistihg 1.8, which repre-
sents the circuit shown in Figure 1.10. This particular eglenmas been randomly gener-
ated, but could have been written by hand into a text file. leah &pplication, the circuit
description would probably come from some other progranh stsca schematic editor.

Following a similar procedure to a previous example, thedata are compiled into a
binary file as follows.

$ fun circ.fun --binary
fun: writing ‘circ’

40

Listing 1.8 concrete representation of the circuit in Figure 1.10

circ =

0

'sh <

<

('C0,5.314278e+00)": <>,

('C1',5.198102e+00)™: <>,

('R2',2.552675e+00)": <>,

('L3',3.908299e+00)": <>,

('C4',8.573411e+00)": <>>,

o <

s™
s™
<

s™

uA o)

>

<('C5’,6.398909e+00)": <> (L6,1.991548e-01): <
<(C7',4.471445e+00)": <>,(C8'4.122309e+00)": <

<

<

('R9',4.076886e+00)": <>,
('L10,4.919520e+00)": <>,
('C11’,8.950421e+00)™: <>>,

p: <

<>
('L13',2.348442e+00)": <>,
('C14',9.192674e+00)™: <>,
(R15',3.864372e+00)™: <>>>,

('L12',2.409632e+00)™: <>,

(C18',5.737489e+00)": <>,
(L19',7.591762+00)": <>,
(R20',8.251754e+00)" <>>,

<

<
‘'s™: <('R25',7.977469e+00)": <>,('C26’,1.069105e+00)"

P

s: <

: <('L16%,9.290080e+00)™: <>,('R17’,6.017938e+00)"
D <

© <(C21’,2.025546e+00): <>,('C22',4.457961e+00)"
© <(L23,8.891783e+00)" <>,(C24’,7.943625e+00)"

‘p": <('R27',8.190201e+00)": <>,('R28',8.613024e+00)"
‘P <(L29',9.090409e+00)": <>,(’L30’,1.726259e+00)"

<

(C31’,2.183700e+00)": <>,
(R32',4.809035+00)": <>,
(C33,1.741527+00)": <>,
(R34",1.199544+00)": <>>>,

N

0w n n n

<

<
(R41,6.034300e-01)";

(L42',7.883596e-01)";

('L43",2.3819946+00)":

('C44',3.412634e+00)™:

P <

(R45',9.246853e+00)":

(L46",3.4358166+00)":
('L47",8.543310e+00)":
(L48",1.5378626+00)":
(L49’,3.412010e+00)":
<
(L507,2.899790e+00)" <>,
(L51’,7.088897e+00)" <>,

" <(R35',6.127510e+00)™: <>,('C36’,7.496868e+00)"
" <('L37',4.631129e+00)": <>,('C38’,1.287879e+00)"
" <('C39',2.842224e-01)": <>,('R40,7.653173e+00)"

<>>

<S>,

('R52',2.879279e+00)": <>>>>>

L <>>

D>
D >>>

>>
>>>,

L <>>

L <>

D>,

L <>>
D <>>
L <>>

41

Listing 1.9 RLC circuit analysis library using complex arithmetic

#import std
#import nat
#import flo

#library+
impedance = # takes a circuit and returns a tree

%CjXsjXDMk+ %ecseXDXCR ~“&arv™?(
“&ard2falrvPDPMV; "WW&v “/&d ‘s?=d(
“&vdrPS; c..add:-0,
“&vdrPS; :-0 c..divi/c.mul c..add),
"0+ “[&ardh case"&ardlh\0! {
‘R: c..add/0+0j+ “&ardr,
‘L: c.mul/0+1j+ times+"&alrdr2X,
‘C: c..mul/0-1j+ div/1.+ times+ &alrdr2X})

current_division("i","w") = # takes a circuit to a list
%jWmMk+ impedance/'w"; "&/"i"; "&arv?(
‘s?=ardl/"&falrvPDPML "ML/ &f “p\"&arv c..mul” *Df &al -+
c.vid® *D\"& c..add:-0,
“&arvdrPS; c..div/ * 1. +-,
"ANC/ &ardl “["&al c..mul+ “&alrdr2X)

phaser = # returns magnitude and phase in degrees of a complex number

“/..cabs times/180.+ div\pi+ ..carg

It is possible to verify that the circuit has been compiledectly by displaying the binary
file contents as a tree type.

$ fun circ --main=circ --cast %cseXD
‘ST <

‘p": <
('C0’,5.314278e+00)": <>,

(R52’,2.879279e+00)™: <>>>>>

The output is seen to match Listing 1.8.

Algorithms

Analysis of the circuit takes place in two passes, the fiestdrsing the tree to determine
the aggregate impedance of each subtree, and the seconapaitecthe current division.
A separate function for each is defined in Listing 1.9.

42

The impedance calculation uses a straightforward casens¢ait for terminal nodes
corresponding to the bullet point list on page 39. Workingnirthe bottom up, it then
performs a cumulative complex summation or parallel comtam on these results. Cu-
mulative operations on lists are accomplished withoutieitgbops or recursion by the
reduction combinator, denoted .

The current division calculation proceeds from the top dofeeding the total input
current from above to all subtrees in the case of a series io@atitn, or fractionally for
parallel combinations. The precise method used in therlatiee is to allocate an input
current of

1/Zy
7[in
>21/Z,
to thek-th subtree, wheré, is the given input current, and, is the impedance of thie-th
subtree calculated on the first pass.

Demonstration
To compile the code in Listing 1.9, we first invoke

$ fun flo rlc.fun --archive
fun: writing ‘rlc.avm’

The impedance function can be tested with an arbitrarilysehangular frequency of
1 radian per second and the previously prepared test dateiffde .

$ fun rlc circ --main="impedance(1.,circ)" --cast %cjXsjX D
(‘s,1.143e+00+5.550e-01))": <

(R52',2.879e+00+0.000e+00j)"; <>>>>>

Here it can be seen that complex numbers are a primitive tgfiaet! in the language,
with the type mnemonig. The type expressiotocjXsjXD describes trees whose non-
terminal nodes are pairs with characters on the left and omumbers on the right, and
whose terminal nodes are pairs with strings on the left amajpdex numbers on the right.
Although complex numbers are displayed by default with doiy digits of precision, the
full IEEE double precision format is used in calculationsd ather ways of displaying
them are possible.

To test the current division function, we choose an inputanitrof1 +05 and an angular
frequency ofl radian per second.

$ fun rlc circ --m="current_division(1+0j,1.) circ" -c %jW m
<
'CO”: (
2.821e-01+5.869e-03;,
1.104e-03-5.308e-02)),

43

'R52": (
3.036e-01+2.086e-01j,
8.741e-01+6.007e-01j)>

The result shows the current and voltage drop associatddesich component in the
circuit, as a pair of complex numbers. The result is givemaform of a list rather than a
tree.

Anonymous recursion

The usual way of expressing a recursively defined functiomast languages is by writ-
ing a specification in which the function is given a name arit$ ¢eelf. Factorials and
Fibonacci functions are the standard examples, which ameagssary to reproduce here.
The compiler is equipped to solve systems of recurrencesforetions or other seman-
tic domains in this way, but where functions are concernethesnotational economy is
preferable. A noteworthy point of programming style ilkaded by the code in Listing 1.9
is the use of anonymous recursion.

A proficient user of the language will find it convenient to segs recursive functions
in terms of a small selection of relevant combinators sucthasecursive conditional
denoted? , as shown in Listing 1.9.

Although a list reversal function is available already agienfive operation, we can
express one using this combinator and test it at the sameasrfalows.

$ fun --main="&a ?("&fatPRahPNCT,"&a) 'abc™ --cast %s
'cha’

Without digressing at this stage for a more thorough expiangan expanded view of the
same program obtained by decompilation gives some indicafithe underlying structure
of the algorithm.

$ fun --m=""&a"?("&fatPRahPNCT,"&a)" --decompile
main = refer conditional(
field(0,&),
compose(
cat,
couple(
recur((&,0),(0,(0,&))),
couple(field(0,(&,0)),constant 0))),
field(0,&))

On the virtual machine code level, a function of the farefier f applied to an ar-
gumentx is evaluated af{f,x) , so that the function is able to access its own machine
code as the left side of its operand, and in effect call itéelécessary. Although uncon-
ventional, this arrangement is well supported by otheruagg features, and turns out to
be the most natural and straightforward approach.

44

Virtual machine library functions

The complex arithmetic functions such@sadd andc..div are an example of the
general syntax for accessing external libraries linkedhéovirtual machine, which is

(library-name.. (function-name

Any library function linked into the virtual machine can bevoked in this way. Both
the library name and the function name may be recognizabtyctated or omitted if no
ambiguity results.

The selection of available library functions is site specifiecause it depends on how
the virtual machine is configured and on other free softwaaeis distributed separately.
An easy way to ascertain the configuration on a given hostirs/tike the command

$ fun --help library

library functions

which might display an output similar to Listing 1.10 on a iegjuipped platform.

Documentation about virtual machine library functiongluding their semantics and
calling conventions, is maintained with the virtual maehdistributionavram , and con-
tained in a reference manual provided in html, info, and gogit formats.

Local additions, modifications or enhancements to virtuachmne libraries can be
made by a competent C programmer by following well docuneptecedures, and will
be immediately accessible within the language with no moatifon or rebuilding of the
compiler required.

Tabular data presentation

To complete our brief, we need a listing of the amplitude amaise of the voltage and cur-
rent for each component in tabular form. These data araltwiextract from a complex
number by the hitherto unused functiphaser defined in Listing 1.9.

$ fun rlc --m="phaser 1+1.7320508j" --c %eW
(2.000000e+00,6.000000e+01)

The result is a pair of real numbers with the amplitude onéfteaind the phase in degrees
on the right.

Typesetting the table in a manner suitable for publicatiopresentation eventually
will require writing some unpleasarTeX code! It would be better for it to be done
automatically while the work is ongoing than manually thghtibefore a deadline. To
this end, the compiler ships with a library for generatifigeX tables from a less tedious
form of specification.

“I'm a big fan of BTEX because of the quality of the results, but there’s no dentfiat it takes work to get it right.

45

Listing 1.10virtual machine libraries displayed by the commé&ndun --help library

library functions

bes I Isc J K Ksc Y isc j ksc InKnu y zJO zJ1 zJnu

complex add bus cabs cacosh carg casinh catanh ccos ccosh cex p cimag clog conj
cpow creal create csin csinh csqrt ctan ctanh div mul sub vid

fftw b_bw_dft b_dht b_fw_dft u_bw_dft u_dht u_fw_dft

glpk interior simplex

gsldif backward central forward t_backward t_central t_fo rward

gslevu accel utrunc

gslint gagp gagp_tol qagx gagx_tol gng gng_tol

kinsol cd_bicgs cd_dense cd_gmres cd_tfgmr cj_bicgs cj_de nse cj_gmres cj_tfgmr
ud_bicgs ud_dense ud_gmres ud_tfgmr uj_bicgs uj_dense uj_ gmres uj_tfgmr
lapack dgeevx dgelsd dgesdd dgesvx dggglm dgglse dpptrf dsp ev dsyevr zgeevx

zgelsd zgesdd zgesvx zggglm zgglse zheevr zhpev zpptrf
Ipsolve stdform

math acos acosh add asin asinh asprintf atan atan2 atanh bus c brt cos cosh
div exp expml fabs hypot isinfinite islessequal isnan isnor mal
isubnormal iszero log loglp mul pow remainder sin sinh sqrt s trtod sub

tan tanh vid
minpack hybrd hybrj Imder Imdif Imstr

mpfr abs acos acosh add asin asinh atan atan2 atanh bus cbrt ce il
const_catalan const_log2 cos cosh dbl2mp div div_2ui eint e g equal_p
erf erfc exp expl0 exp2 expml floor frac gamma greater_p grea terequal_p
grow hypot inf inf_p integer_p less_p lessequal_p lessgrea ter_p Ingamma
log 10g10 loglp log2 max min mp2dbl mp2str mul mul_2ui nan nan _p nat2mp
neg nextabove nextbelow ninf number_p pi pow pow_ui prec roo t round
shrink sin sin_cos sinh sqgr sqrt str2mp sub tan tanh trunc une qual_abs

urandomb vid zero_p
mtwist bern u_cont u_disc u_enum u_path w_disc w_enum

rmath bessel_i bessel_j bessel_k bessel_y beta dchisq dexp digamma dlnorm
dnchisq dnorm dpois dt dunif gammafn Ibeta Igammafn pchisq p entagamma
pexp plnorm pnchisq pnorm ppois pt punif gchisq gexp glnorm g nchisq
gnorm gpois gt qunif rchisq rexp rlnorm rnchisq rnorm rpois r t runif
tetragamma trigamma

umf di_a col di_a trp di_t col di_t trp zi_a_col zi_a_trp zi_c_col zi_c_trp

Zi_t_col zi_t trp

46

Listing 1.11 demonstration of circuit analysis and tabular data prediemt

#import std
#import nat
#import flo
#import rlc
#import tbl

(# quick throwaway program to make a table of voltages and cur rents
through all components of an RLC circuit read from a binary fi le
named circ at compile time #)

#binary+

fregs = <0.1,1>

data = "&hnSPmSSK7p (gang current_division * 1+0j- * fregs) circ
title = 'componentwise analysis at two frequencies’

content = format/freqs data
#binary-
format = # takes frequencies and data to headings and columns

I(
S<ST0+ * -+
V&V ":(C&INCNVS <’amplitude’,’'phase’) * "&INCS <
‘current (mA)’,
'voltage drop (mV)'>,
"&INC+ '$lomega = '--+ --'$ rad/s'+ printf/'%0.1f+-,
Tr&nS "&mS; "&K7+ *=+ --+ phaser;$ 7[IINCC\"& times/1.e3)

#output dot'tex’ label'can’+ elongation title

can = table2 content

47

Thetbl library is geared toward generating tables with hiera@hieadings and
columns of numerical or alphabetic data. As Listing 1.11lieg) most of theAIEX code
generation is done by thtable function, which takes a natural number as an argument
specifying the number of decimal places (in this case 2), ratarns a function taking
a data structure describing the table contents. A couplarardunctions deal with the
practicalities of thdongtable format, needed for tables that are too long to fit on a
page.

The application in Listing 1.11 is based on the assumptiahghnerating the table will
be a one off operation for a particular circuit, rather thastifying the development of a
reusable executable as in a previous example. Althoughtnotlys necessary, some of
the intermediate data are saved to binary files during cangil for ease of exposition.
Compiling the application therefore has the following effe

$ fun flo tbl rlc circ fcan.fun
fun: writing ‘freqgs’

fun: writing ‘data’

fun: writing ‘title’

fun: writing ‘content’

fun: writing ‘can.tex’

The main points to note are thddta is computed by performing current division over
the list of frequencies specified fneqs , and transformed to a list of assignments of
strings to lists of pairs of complex numbers, as a quick ingpe shows.

$ fun data --m=data --c %jWLm
<
'CO" <
(
-5.997e-01+3.614e-01j,
6.800e-01+1.128e+00j),

2.821e-01+5.869e-03],
1.104e-03-5.308e-02))>,

'R52": <
(
1.086e-02+7.109e-02j,
3.125e-02+2.047e-01)),

3.036e-01+2.086e-01j,
8.741e-01+6.007e-01j)>>

The content , in the standard form required by thable function, contains a pair
whose left side is a list of trees of lists of strings, and whaght side is a list of either
lists of strings or lists of floating point numbers.

48

$ fun content --m=content --c %sLTLsLeLULX
(
<
<S>,
<'$\omega = 0.1$ rad/s’>": <
~
<'current (mA)>,
<<'amplitude’>": <> <'phase’>"; <>>),
~
<'voltage drop (mV)>,
<<'amplitude’>": <> <'phase’>": <>>)>,
<'$\omega = 1.0$ rad/s’>": <
~
<'current (mA)>,
<<amplitude’>": <> <'phase’>": <>>),
~
<'voltage drop (mV)>,
<<'amplitude’>": <> <'phase’>" <>>)>>,

'CO’,

3.449765e+01,
3.449765e+01>>)

Although the trees representing the table headings cowlel len written out manually, a
proficient user will prefer the style shown in Listing 1.11evl possible because it is both
shorter and more general, requiring no modification if teedif frequencies is extended
or changed in a subsequent run.

The resulting table is shown below.

Table 1.1: componentwise analysis at two frequencies

w = 0.1rad/s w = 1.0rad/s

current (mA) voltage drop (mV) current (mA) voltage drop ()nV

amplitude phase amplitude phase amplitude phase amplitudehase
Co 700.18 148.93 1317.54 58.93 282.16 1.19 53.10 -88.81
C1 684.87 148.93 1317.54 58.93 276.00 1.19 53.10 -88.81
R2 516.14 58.93 1317.54 58.93 20.80 -88.81 53.10 -88.81
L3 3371.13 -31.07 1317.54 58.93 1359 -178.81 53.10 -88.81
C4 1129.58 148.93 1317.54 58.93 455.21 1.19 53.10 -88.81
C5 751.36 0.00 1174.20 -90.00 1101.28 0.00 172.10 -90.00
L6 751.36 0.00 14.96 90.00 1101.28 0.00 219.33 90.00

49

Table 1.1: componentwise analysis at two frequencies iftoad)

w = 0.1rad/s w = 1.0rad/s
current (mA) voltage drop (mV) current (mA) voltage drop ()nV
amplitude phase amplitude phase amplitude phase amplitudehase

Cc7 248.64 0.00 556.07 -90.00 101.28 -180.00 22.65 90.00

c8 248.64 0.00 603.16 -90.00 101.28 -180.00 24.57 90.00

R9 111.87 -77.02 456.08 -77.02 22.10 -87.52 90.11 -87.52
L10 927.09 -167.02 456.08 -77.02 18.32 -177.52 90.11 -87.52
C11 408.21 12.98 456.08 -77.02 806.56 2.48 90.11 -87.52
L12 293.97 -156.84 70.84 -66.84 39.16 -177.35 94.37 -87.35
L13 301.63 -156.84 70.84 -66.84 40.18 -177.35 94.37 -87.35
Ci4 65.12 23.16 70.84 -66.84 867.52 2.65 94.37 -87.35
R15 18.33 -66.84 70.84 -66.84 24.42 -87.35 94.37 -87.35
L16 86.37 -84.44 80.24 5.56 16.67 -144.50 154.84 -54.50
R17 86.37 -84.44 519.79 -84.44 16.67 -144.50 100.30 -144.50
Ci18 63.29 -68.86 110.31 -158.86 16.63 -129.39 290 140.61
L19 63.29 -68.86 48.05 21.14 16.63 -129.39 126.23 -39.39
R20 63.29 -68.86 522.25 -68.86 16.63 -129.39 137.20 -129.39
c21 73.25 14.34 361.63 -75.66 256.94 2.56 126.85 -87.44
Cc22 73.25 14.34 164.31 -75.66 256.94 2.56 57.64 -87.44
L23 1422.67 14.34 1265.00 104.34 21.05 -177.44 187.13 487.4
C24 1422.67 14.34 1790.95 -75.66 21.05 -177.44 2.65 92.56
R25 22.28 132.96 177.73 132.96 167.17 44.75 1333.58 44.75
C26 22.28 132.96 208.39 42.96 167.17 44.75 156.36 -45.25
R27 33.42 81.44 273.73 81.44 154.95 19.00 1269.07 19.00
R28 31.78 81.44 273.73 81.44 147.34 19.00 1269.07 19.00
L29 10.41 81.44 9.46 171.44 48.24 19.00 438.56 109.00
L30 54.80 81.44 9.46 171.44 254.05 19.00 438.56 109.00
C31 15.88 163.23 72.74 73.23 246.62 42.97 11294 -47.03
R32 15.13 73.23 72.74 73.23 23.48 -47.03 112.94 -47.03
C33 12.67 163.23 72.74 73.23 196.68 42.97 112.94 -47.03
R34 60.64 73.23 72.74 73.23 94.15 -47.03 112.94 -47.03
R35 22.11 93.52 135.49 93.52 48.54 30.31 297.44 30.31
C36 22.11 93.52 29.49 3.52 48.54 30.31 6.48 -59.69
L37 1899 171.24 8.79 -98.76 77.18 -60.94 357.44 29.06
C38 1899 171.24 147.46 81.24 77.18 -60.94 59.93 -150.94
C39 3.85 158.97 135.50 68.97 35.32 53.75 12427 -36.25
R40 3.85 158.97 29.47 158.97 35.32 53.75 270.32 53.75
R41 103.15 78.34 62.24 78.34 370.47 -68.29 223.55 -68.29
L42 789.54 -11.66 62.24 78.34 283.57 -158.29 22355 -68.29
L43 261.31 -11.66 62.24 78.34 93.85 -158.29 223,55 -68.29
C44 21.24 168.34 62.24 78.34 762.91 21.71 22355 -68.29
R45 8.28 83.60 76.56 83.60 42.65 63.27 394.35 63.27
L46 222.84 -6.40 76.56 83.60 114.78 -26.73 394.35 63.27
L47 89.62 -6.40 76.56 83.60 46.16 -26.73 394.35 63.27
L48 497.87 -6.40 76.56 83.60 256.43 -26.73 394.35 63.27
L49 224.40 -6.40 76.56 83.60 11558 -26.73 394.35 63.27

L50 714.06 -8.68 207.06 81.32 365.74 -55.50 1060.58 34.50

50

Table 1.1: componentwise analysis at two frequencies iftoad)

w =0.1rad/s w = 1.0 rad/s
current (mA) voltage drop (mV) current (mA) voltage drop ()nV

amplitude phase amplitude phase amplitude phase amplitudehase

L51 292.09 -8.68 207.06 81.32 149.61 -55.50 1060.58 34.50
R52 71.91 81.32 207.06 81.32 368.35 34.50 1060.58 34.50

1.3 Remarks

Not every capability of the language has been illustratethisichapter, but at this point
most readers should have a pretty good idea about whethewtrd to know more. In any
case, grateful acknowledgement is due to all those who hacayisly read this far with
an open mind. The assumption henceforth is that readers rehsiih reading have made
a commitment to learn the language, so that less space rebdslevoted to motivation.

1.3.1 Installation

The compiler is distributed in @ar archive or in an unofficial Debiardeb package,
available from

http://www.basis.uklinux.net/ursala
In order for it to work, it depends on trevram virtual machine emulator, available from
http://www.basis.uklinux.net/avram

Please refer to thevram documentation for installation instructions.

Some optional external libraries usabledyam are recommended but not required,
notably thempfr library for arbitrary precision arithmetic. Arbitrary prision floating
point numbers are normally a primitive type in the langudoyet are disabled without this
library8

Nomenclature

Since its earliest prototypes, the name of the compiler k@nfun , and this name is
retained because of its brevity and the ease typing it on av@omd line. However, the
transformation from personal tool kit to a community projeecessitates a more recog-
nizable and searchable name in the interest of visibilitiie iame of Ursala has been
chosen for the language as of this release, which is mearj@asa-abbreviation for “uni-
versal applicative language”. This manual uses the wordldte refer to the language in
the abstractd.g, “a program written in Ursala”) anflin in typewriter font to refer to the
compiler.

8Arbitrary precision natural and rational numbers and fixegtision floating point numbers are available regardless.

51

Root installations

The compiler may be installed either system-wide or for a@ividual user. For the former
case, the system administrator (i.e., toet user) needs to place the executable and
library files under apporpriate standard directories. Ore&i&n or Ubuntu system, this
action can be performed automatically by executing

$ dpkg -i ursala-base_0.1.0-1_all.deb
$ dpkg -i ursala-source_0.1.0-1_all.deb

asroot . For a Unix or GNU/Linux system that is not Debian compatililee system
administrator should unpack thiar archive and copy the files as shown.

$ tar -zxf ursala-0.1.0.tar.gz

$ cp ursala-0.1.0/bin/ * [usr/local/bin

$ mkdir /usr/local/lib/avm

$ chmod ugo+rx /usr/local/lib/avm

$ cp ursala-0.1.0/src/ *.avm /usr/local/lib/avm
$ cp ursala-0.1.0/lib/ *.avm /usr/local/lib/avm

Use of these standard directories is advantageous bec¢aviBailow the virtual machine
to locate the library files automatically without requiritinge user to specify their full paths.

Non-root installations

If the compiler is installed only for an individual user, tlileraries and executables should
be unpacked as above, but can be moved to whatever directbeeuser prefers and
can access. The virtual machine will not automatically clelibraries in non-standard
directories, but on a GNU/Linux system it can be made to do/sedy of theAVMINPUTS
environment variable. For example, if the user wishes teestocollection of personal
library modules unde8HOME/avm the command

$ export AVMINPUTS="..$HOME/avm"

either executed interactively or intaash initialization script will enable it. The syntax
for equivalent commands may differ with other shells.

Porting

There is no provision for installation on other operatingteyns (for example Microsoft
Windows), but volunteer efforts in that connection are waie. Other solutions (short of
free software advocacy in general) such as emulation or ueedygnus tools are also
an option but are beyond the scope of this document.

Virtual machine code applications are entirely portablang platform on which the
virtual machine is installed, subject only to the requirebtlat any optional virtual ma-
chine modules used by the application are also installeth@matrget platform. Even this
modest requirement can be flexible if the developer makesiusen-time detection fea-
tures and replacement functions.

52

1.3.2 Organization of this manual

Anyone wishing to use Ursala effectively should read Parbllanguage elements and Part
[Il on standard libraries, whereas only those wishing to ifyool enhance the compiler
itself should read Part IV on compiler internals. Becauseléimguage is much more ex-
tensible than most, the latter group should also read th®tése manual first to establish
that the enhancements they require are not more easilynelthy less heroic means. Part
Il assumes a working knowledge of Part I, and Part IV assumguru-level knowledge
of Parts Il and IlI.

The chapters in Part 1l are meant to be read sequentially astadading, with each
covering a particular topic about the language. Althougé wray argue for a more intu-
itive order of presentation, this need must be balancechagthat of maintainability of
the document itself, in anticipation of possible contribns by other authors over the life
of the project. If any chapter in Part Il becomes particylanugh going on a first reading,
the reader is invited to jump to the concluding remarks of thapter for a summary and
proceed to the next one.

A convention is followed whereby minimal amounts materialynbe introduced out of
turn where necessary for continuity if they are useful foegplanation of a topic at hand,
but are nevertheless fully documented in their appropdhspter even if some repetition
occurs.

Whereas the main text can be read sequentially, certainfcagments designated as
example programs may depend on material not yet introducte goint where they are
listed. These can be skipped on a first reading without logswfinuity. It is considered
more important to demonstrate optimal use of all relevamglage features at all times
than to insist on continuity in the examples.

1.3.3 License

The compiler and this documentation are Copyright 20020 Dennis Furey. This
document is freely distributed under the terms of the GNUWeMecumentation License,
version 1.2, with no front cover texts, no back cover text&l ao invariant sections. A
copy of this license is included in Appendix B.

The compiler and supporting modules are distributed adegrtb Version 3 of the
General Public License as published by the Free Softwaradadion. Anyone is allowed
to copy, modify, and redistribute the software or works dedti from it under compat-
ible terms, whether commercially or otherwise, but not totit into a closed source
product or to encumber it with Digital Restrictions Managerhdirected against the end
user. Please refer to the GPL text for full details. If yonkhyou have an ethical jus-
tification for distributing it under different terms (e.gonfidentiality of medical records,
defiance of oppressive regimegceterd, contact the author or the current maintainer at
ursala-support@basis.uklinux.net

Use of the compiler incurs no obllgatlon in itself to distrib anything. Moreover,
applications compiled by the compiler are not necessaglydtive works and theoreti-
cally could be distributed under a non-free license. Howes@mpiled applications that

53

are distributed under a non-free license must avoid depeeden any functions found in
the.avm supporting modules distributed with the compiler, suchhesstandard library
std.avm , because an effect of compilation would be to copy the lijpcade into them.

End users of applications developed with the compiler wéed a virtual machine
to execute them. Whether the applications are free or netetis no legal impediment
to usingavram for this purpose, provided it is distributed according te terms of its
license, the GPL, and provided the license for the appbogiermits disassembly, without
which it can’t be executed. No individual is able to autheraternative distribution terms
for avriam because it depends on contributions by many copyright nelde

54

Part |l

Language Elements

55

So we need machines and they need us. Is that your point,
councillor?

Neo inThe Matrix Reloaded

Pointer expressions

Much of the expressive power of the language derives fromrmaise formalism to encode
combinations of frequently used operations. These comenthd general name of point-
ers or pointer expressions, although this term does notuadely convey the versatility

of this mechanism, which has no counterpart in other modammguages. This chapter
explains everything there is to know about pointer expoessi

2.1 Context

Syntactically a pointer expression is a case sensitivegtf letters or digits appearing
as a suffix of an operator to qualify its meaning in some waye bncepts of opera-
tors, operands, and operator suffixes are developed mdyarfChapters 5 and 6, but in
order to discuss pointer expressions, two particularlguvaht operators are necessary to
introduce in advance.

e The ampersand operatdr, with no suffix evaluates to the identity pointer, and with
a suffix evaluates to the pointer that the suffix describes.

e The field operatof; , is a prefix operator taking a pointer as an operand, and &esu
to the function induced by it.

A distinction is made between a pointer and the function aediby it (e.g., the identity
pointer versus the identity function), because it is pdesind often useful to manipulate
or transform pointers directly in ways that are not appliedb functions. This distinction
is also reflected in the underlying virtual machine codeesentation.

56

Listing 2.1 the left deconstructor function the hard way

#library+

Xy = "X

2.2 Deconstructors

The simplest kinds of functions induced by pointers are kmeariously as projections,
deconstructions, or generalized identity functions, buhis manual the term deconstruc-
tors is preferred.

2.2.1 Specification of a deconstructor

A deconstructor is a function that takes some type of aggeatgta structure as an argu-
ment, and returns some component of its argument as a result.

To illustrate this concept, we can consider the problem gfi@gmenting a program to
compute the following function.

flz,y) =2

That is to say, the function should take a pair of operand$yeturn the left side.
One way of implementing it in Ursala would be with dummy vates, as shown in
Listing 2.1. To see that this implementation is perfectlyreot, we compile it as shown,

$ fun dum.fun
fun: writing ‘dum.avm’

and now try it out on a few examples.

$ fun dum --main="f('foo’,’bar’)" --cast
'foo’

$ fun dum --main="f(123,456)" --cast
123

$ fun dum --main="f()" --cast
fun:command-line: invalid deconstruction

Conveniently, the function is naturally polymorphic, ar t-cast option is smart
enough to guess the result type if it's something simple. flinetion inherently raises
an exception if its argument isn't a pair of anything, butdilicthe compiler does a rea-
sonable job of exception handling.

2.2.2 Deconstructor semantics

Expressing a deconstructor function in this way amountsriting an equation for the
compiler to solve, and it is instructive to exhibit the saduatdirectly.

57

$ fun dum --main=f --decompile
main = field(&,0)

This result shows the virtual machine code for the left dstrmctor function, which con-
sists of thefield combinator, a common feature of all deconstructor funeticorre-
sponding to thé operator in the language, and the expres¢gf) , which represents
a pointer to the left.

The notation used to display the pointer in the decompileteas actually a syntacti-
cally sugared form of a type of ordered binary trees with gnygples for leaves. The zero
represents the empty tuple and the ampersand represeniisd pmpty tuples, which
can be made explicit with an appropriate cast. (More abgue tyasts is explained in
Chapter 3.)

$ fun --main="(&,0)" --cast %hhzZW
((0.0).0)

Pointer expressions therefore store no information oten that which is embodied in
their shape. Their role is simply to specify the displacetd a subtree with respect
to the root of an ordered binary tree of any type. The poingérring to the right of

a pair would bg0,&) , the pointer to the right of the left of a pair of pairs would be
((0,&),0) , and so on.

2.2.3 Deconstructor syntax

A primary design goal of this language to be as concise aslpesRather than using
nested tuples, equations, or verbose mnemonics, the kfigimt deconstructor functions
can be expressed directly@® and™&r , respectively, using builtin pointer expressions.
These equivalences can be verified as shown.

$ fun --main="&I" --cast %t
(&,0)

$ fun --main="&r" --cast %t
(0.&)

$ fun --m=""&l" --decompile
main = field(&,0)

$ fun --m=""&r" --decompile
main = field(0,&)

$ fun --m=""&l ('foo’,’bar’)" --c
'foo’

Nested deconstructors

Further benefits of this syntax accrue in more complicatedwigtructions. To get to the
left of the right of a pair of pairs, we writ&lr , to get to the right of the right or the left
of the left, we writ€’&rr or"&ll , respectively, and so on to arbitrary depths.

58

$ fun —-m="g&ll ((a,b),(c,'d))" -
; fun —-m="g&lr ((a’,b),(c'd))" --c
£ fun -m="&rl ((a'’'b),(c’, d))" --c
i fun -—-m="&rr ((a’'b),(c’'d))" —-c

Compound deconstructors

Deconstruction functions can also be made to retrieve niane one field from an argu-
ment, by using a tuple of pointers.

$ fun --m=""(&lIr,&rl) (('a’,;’b’),(c’,’d’))" --c
(bc)
$ fun --m=""(&rl,&Ir) (('a’,’b),(c’,'d))" --c
(c.'b)
Note that the order of the pointers in the tuple determine®tider in which the fields are
returned.
When a tuple of deconstructors is used, the result type isidered a tuple. To express
the notion of a compound deconstructor returning a list,larcoan be used.

$ fun --m=""&r:&l (<1,2,3>,0)" --c
<0,1,2,3>

$ fun --m=""&h:&tt <0,1,2,3>" --c
<0,2,3>

The pointer on the left side of the colon accounts for the leédlde result, and the one on
the right accounts for the tail.

The colon has other uses in the language. In pointer expressi must be without
any adjacent white space to ensure correct disambiguation.

Nested compound deconstructors

A form of relative addressing takes place when a compoundratiaictor is nested.

$ fun --m="(0,(&r&) ((a' 'b’),(c’ d))" --c
(d'’c)

In this example, th&l and&r deconstructors refer not to the whole argument but to the
part on the right, due to their offset within the pointer wdnérey occur.

A better notation for compound deconstructors is introdusieortly, using construc-
tors. However, the notation shown here is applicable iragedituations where the alter-
native isn’t, namely whenever pointer expressions aregdesed by user defined identi-
fiers.

59

deconstructors

constructor primary secondary

type class operation mnemonic operation mnemonic ope@ratimnemonic

pairs Cross X left I right r

lists cons C head h tail t

sets - - element e subset u
assignments assign A name n meaning m
trees vertex \% root d subtrees Y

jobs join J function f argument a

Table 2.1: pointer expressions for constructors and déxagsters

Miscellaneous deconstructors

A way to get the same field out of both sides of a pair of pairs isse thé deconstructor
as follows.

$ fun --m=""&bl ((a','b’),(c’,/d))" --c
(a’'c)
$ fun --m=""&br ((a',’b’),(’c’,;d))" --c
(b''d)
The identity deconstructor,, refers to the whole argument, as does an empty pointer
expression.

$ fun --m=""& 'me™ --c
lmel

$ fun --m=
'myself’

n~

& 'myself" --c

See Section 2.3.2 for motivation.

2.2.4 Other types of deconstructors

Pairs aren't the only aggregate data type in Ursala. Theralao lists, sets, assignments,
trees, and jobs. Each has its own operator syntax and its eaondtructors corresponding
to & and&r, as shown in Table 2.1. The deconstructors are the main noateresent.
Here is an example of each.

$ fun --main="&h <'a’;’b’>" --cast

a
$ fun --main="&t <'a’,’b’>" --cast
<'bh'>

$ fun --main=""&e {a’,’b’}' --cast
lal

$ fun --main=""&u {'a’,/’b’}" --cast %S

60

{b’}
$ fun --main=""&n ’a’: 'b™ --cast

a

$ fun --main=""&m ’'a’; 'b’" --cast

lbl

$ fun --main=""&d ’'a”:<’b”: <>>" --cast
lal

$ fun --main="&vh ’a”:<’b’": <>>" --cast %T
b <>

$ fun --main=""&f "&J('a’,’b’)" --cast

1a1

$ fun --main=""&a "&J('a’,’b’)" --cast

lbl

Note that the subtrees of a tree, referenced&wy, are a list of trees, the head of the list
of subtrees, obtained Bvh , is a tree, but&vhd would refer to the root node in the
first subtree. This expression mixes tree deconstructdhsanlist deconstructor, which is
perfectly valid. Any types of deconstructors can be mixetthexsame expression, with the
obvious interpretation.

The concept of different classes of aggregate types is dacf the language rather
than the virtual machine. On the virtual machine level, gjr@gate data types are rep-
resented as pairs, all primary deconstructors listed ideTald have the representation
(&,0) , and all secondary deconstructors have the represent@ti&n . Use of the ap-
propriate deconstructor for a given type is not enforcedr éxample,”&r <x,y,z>
could be written in place df&t <x,y,z> , and both would evaluate toy,z> . Need-
less to say, the latter is preferred because well typed co@asier to maintain unless
there is a compelling reason for writing it otherwise, b thnguage design stops short
of insisting on it to the point of overruling the programmer.

2.3 Constructors

The next simplest form of pointer expressions are the coagtrs, as shown in Table 2.1,
namelyX, C, V, A, andJ. Each constructor complements a pair of deconstructods, an
serves the purpose of putting two fields together into anexge type.

2.3.1 Constructors by themselves

One way for these constructors to be used is in functions agathX, which take a pair
of arguments and return the aggregate as a result. Eachfdite following expressions

61

is equivalent to the other.

~&X(X!y) = (X’y)
"&C(x,<y>) = <Xy>
“&V(X,Y) = Xy
"&A(X,Y) = XYy

e There is no operator notation in the language for the jobtroc®r,J.

e The usage of&X in this way is always superfluous, because its argumentesdyr
a pair, so it serves as the identity function of pairs.

Another way for these constructors to be used is with an ermgiyment() , in which
case they designate the empty instance of the relevant Bgpgeexample;&C() = <>.
A notion of empty tuples, trees, assignments, and jobs ifi@adout there is no particular
notation for the latter three.

2.3.2 Constructors in expressions

The real reason for these constructors to exist is to be uspdinter expressions, which
make it easy for data to be taken apart and put together inferefit way. A pointer
expression containing a constructor has a left subexpmstllowed by a right subex-
pression, followed by the constructor, with no intervenspgce. The subexpressions can
be deconstructors or nested expressions with constructors

For example, the pointer expression shown below interobmtite sides of a pair.

%$
$ fun --main=""&rlX (1.,2.)" --cast
(2.000000e+00,1.000000e+00)

This one repeats the first item of a list, using the hithertmotivated identity deconstruc-
tor, i .

%$

$ fun --main=""&hiC <’foo’,’bar’>" --cast

<'foo’,’foo’,’bar’>

This one takes the head of a list of pairs with its left andtrgjties interchanged.

$ fun --main=""&hrlX <(1,2),(3,4),(5,6)>" --cast
(2,1)

2.3.3 Disambiguation issues

In more complicated cases, a minor difficulty arises. If wasider the problem of a
pointer expression to delete the second item of a list, wdttignk to write&httC , with
the intent that the left subexpressiomiand the right one it . However, this idea won't
work.

62

$ fun --main=""&httC <0,1,2,3>" --cast
fun:command-line: invalid deconstruction

The problem is that th€ constructor applies only to the two subexpressions imme-
diately preceding itit , and theh is interpreted as the offset for the rest. The result is
equivalent to the nested compound deconstrudf#in&t,0) , which attempts to de-
construct the first item of the list (in this ca®@, and additionally attempts to create a
badly typed list whose head is the same as its tail. The exeegtdue to the first issue.

It would be possible to fall back on the usafe:&tt demonstrated on page 59, but
this problem justifies a more comprehensive solution witredra punctuation. The
constructor can be used in this connection to group two fareegions into an indivisible
unit. The meaning oftP is the same as that ¢f , but the former is treated as a single
subexpression in any context.

Revisiting the example with the correct pointer expressisgge, we have

$ fun --m=""&httPC <’a’,’b’,’c’,’d’,e’>" --c

<1a1,lc1’1d1’1e1>

These constructors can be arbitrarily nested.

$ fun --m=""&htttPPC <’a’,’b’,’c’,’d’,’e’>" --c

<1a1,ldl’lel>

Because repetitions are frequent, a natural number exqur@sslecimal can be substituted
in any pointer expression for that number of consecutiveisences of th® constructor.

$ fun --m=""&httt2C <'a’,’b’,’c’,’d’,/’e’>" --c
<a,)d e>

2.3.4 Miscellaneous constructors

Two further pointer constructor§ and| are also defined. Each of these requires two
subexpressions, similarly to the constructors discusbedea

Glomming

The simplest way to give a semantics for theonstructor is as follows. For any function
of the form"& uvX that returns a result of the forifa,(b,c)) when applied to an
argument, the function’& uvGreturns the resuli(a,b),(a,c)) when applied to the
samer. That is, a copy of the left is paired up with each side of tgatri

One consequence of this semantics is t8#G can be written as a shorter form of
“&IrIPXIrrPXX . If a pointer expression begins wittG | it can be shortened further
by omitting the initiallr because they are inferred.

63

expression equivalent effect ¢(u, b), (¢, d))

&bbl &IIPTIPXIrPrrPXX ((a,c), (b,d))
&briXI &IrPrrPXIPrIPXX ((b,d), (a,c))
&rlIXbl &rPIIPXrrPIrPXX ((e,a), (d,b))
&rIXrIXI &rrPIrPXrIPIIPXX ((d,b), (¢, a))

Table 2.2: using for rotations and reflections of a pair of pairs

Pairwise relative addressing

Thel constructor has four practical uses shown in Table 2.2, disameany generaliza-
tions of those obtained by usimgX in place ofb and/or any single valued deconstructor
in place ofr or | . Other generalizations can be used experimentally but #ffsct is
unspecified and subject to change in future revisions.

2.4 Pseudo-pointers

The pointer expression syntax is such a convenient way dfifypey constructors and

deconstructors that it has been extended to more generidos. Pointer expressions
describing more general functions are called pseudo-@amb this manual. The virtual
machine code for a pseudo-pointer is not necessarily ofaitme field f. For example,

$ fun --main=""&L" --decompile
main = reduce(cat,0)

However, pseudo-pointers can be mixed with pointers in #mesexpression, as if they
were ordinary constructors or deconstructors. For example

$ fun --m=""&hL" --d
main = compose(reduce(cat,0),field(&,0))

For the most part, it is not necessary to be aware of the undgnirtual machine code
representation, unless the application is concerned witgram transformation. Most
operators in Ursala that allow pointer expressions as ssff@so allow pseudo-pointers.
The exception is th& operator, which is meaningful only if its suffix is really aipter.

$ fun --main="&L" --cast %t
fun:command-line: misused pseudo-pointer

As a matter of convenience, there is an exception to the é&weepvhich is the case
of a function of the forni& p. Recall that thé operator maps a pointer operand to the
function induced by it. The semantics of this expressionrepés a pseudo-pointer is the
function specified by, even thougl&p would not be meaningful by itself.

64

meaning example

L list flattening &L <<1>,<2,3>,<4>> = <1,2,3/4>
N empty constant &N x =0

s listto set conversion "&s <'c’,’'b’,’b’;a’> = {a, b, 'c}
x list reversal "&x <3,6,1> = <1,6,3>

y leaditemsofalist "&y <a',)’b’’c,d> = <a,b,/c>
z lastitem of a list "&z <'a'’b’’c,d> = <d>

Table 2.3: pseudo-pointers represent more general fursctimn deconstructors

2.4.1 Nullary pseudo-pointers

Some pseudo-pointers may require subexpressions to erédead in a pointer expression,
similarly to constructors such &andC, while others are analogous to primitive operands
like t andr in the algebra of pointer expressions. Examples of therlate shown in
Table 2.3.

Some of these, such as the lead and last items of a list, areusbeomplements to
operations expressible by pointers, and are defined as @gmidters only because they
are inexpressible by the virtual maching&d combinator. Others may seem unrelated
to the kinds of transformations lending themselves to goiexpressions, but in fact were
chosen as pseudo-pointers precisely because they ocquefriy in the same context.

List flattening

The L pseudo-pointer describes the function that converts aflists into one long list
by forming the cumulative concatenation of the items. Thisction is also useful on
character strings, which are represented as lists of desisac

Empty constant

The N can be used in a pointer wherever it is convenient to have staonempty value
stored in the result. One example would be a usage™8itérX which takes a pair of
operandgx,y) andreturng0,y) ,with any value ok replaced by). A more frequent
usage is in the expressié&iNC , which forms the cons of the argument with the empty
list, thereby returning a unit listx> for any argumenx.

List to set conversion

Sets are represented in the language as lexically ordetsdhith no duplicates. TH&s
function takes any list as an argument and returns the st iléims, by sorting them and
removing duplicates.

65

List reversal

The reversal of a list begins with the last item, followed bg second to last, and so
on back to the first. A fast, constant space implementatidisbfeversal at the virtual
machine level is accessible by th&x function. List reversal is often needed in practical
algorithms.

Lead items of a list

The"&y function takes a list as an argument and returns the lisiredalaby deleting the
last item. The length of the result is one less than the leofythe original. An exception
is thrown if this function is applied to an empty list.

Last item of a list

The"&z function takes a list as an argument and returns the last it@ms function is
implemented by a constant number of virtual machine opmratbut actually takes a time
proportional to the length of the list. An exception is raise the case of an empty list as
an argument.

A small example of rolling a list to the right are as follows.

$ fun --m=""&zyC ’'abcd™ --c
'dabc’

One way of rolling to the left would be by reversal before aftdrarolling to the right.

$ fun --m=""&xzyCx ’abcd
'beda’

--C

Although each ok, y, andz requires a list reversal when used by itself, the compiler
automatically performs global optimizations on pseudoysy expressions that some-
times remove unnecessary operations.

$ fun --main=""&xzyCx" --decompile

main = compose(
reverse,
couple(field(&,0),compose(reverse,field(0,&))))

Note that the virtual machinetgverse function appears only twice rather than three or
four times in the compiled code.
Example program

A small example demonstrating a couple of these operationentext is shown in List-
ing 2.2. This example uses some language features not yetlirted, and may either
be skipped on a first reading of this manual or read with gacbanprehension by the
following explanation.

66

Listing 2.2 some pseudo-pointers and a pointer in a practical setting

#import std
#comment -[This program reads a text file from standard inpu t and
writes it to standard output with all tab characters replace d by the

string '<tab>'.]-
#executable &

showtabs = * "&L+ =* ("&h skip/9 characters)?=/<tab>"! "&INC

Listing 2.3 executable file from Listing 2.2

#l/bin/sh

This program reads a text file from standard input and

writes it to standard output with all tab characters replac ed by the
string '<tab>'.

#\

exec avram "$0" "$@"

ulzMOt[QV]uGmzISgcr>=d\nT\

The application is meant to display text files containing ¢hlracters in such a way
that the tabs are explicit, as opposed to being displayegeaes. It does so by substituting
each tab character with the strirtab> .

The algorithm applies a function to each character in the filee function maps the
tab character to thetab>" character string, but maps any other character to the string
containing only that character, usingiNC .

When this function is applied to every character in a strthg,result is a list of char-
acter strings, which is flattened into a character string8ly. This operation is applied to
every character string in the file.

One other pointer expression in this exampl&ls which is used to define a compile-
time constant. The tab character is the ninth character lfeuad from zero) in the list
of characters defined in the standard library, which is caegbas the head of the list of
characters obtained by skipping the first nine. This contprtas performed at compile
time and does not require any search of the character tahle &me.

To compile the program, we run the command

$ fun showtabs.fun
fun: writing ‘showtabs’

This operation generates a free standing executable, asshd.isting 2.3

A peek at the virtual machine code is easy to arrange for einguminds (possibly
to the detriment of the obfuscation research community)e @kecutable code stored in
binary format can be accessed like any other data file durswupaequent compilation.

$ fun showtabs --m=showtabs --decompile

67

combinator usage interpretation

reduce(f, k) <> k

reduce(f, k) <a,b, ¢, d> fCfCa, b), f(e, d)
map(f) <a...z> <f(a)...f(2)>
conditional(», f,9) x« if p(x) thenf(z) elseg(x)
compose(f, g) f(g(x))

constant(k) =« k

compare(x, y) if x = y thentrue elsefalse
cat(< xo...2,><Yo..-Ym>) <Zg...Ym>

couple(f,g) = (f(x), g())

Table 2.4: informal and incomplete virtual machine quiderence

main = map compose(
reduce(cat,0),
map conditional(
compose(
compare,
couple(constant <0,&,0,0,0>field &)),
constant '<tab>’,
couple(field &,constant 0)))

The strange looking constant is the concrete representatithe tab character. An intu-
itive listing of some other combinators in this code is showiTable 2.4, but are more
formally documented in thavram reference manual.

The following small test file will be the input.

$ cat /etc/crypttab
<target name> <source device> <key file>
cswap /dev/hda3 /dev/random

Most of the spaces shown above are due to tabs. We can noweuserntipiled program to
display the tabs explicitly.

$ showtabs < /etc/crypttab
<target name><tab><source device><tab><tab><key file>
cswap<tab>/dev/hda3<tab>/dev/random

The input file, incidentally, is not valid as a real crypttab.

2.4.2 Unary pseudo-pointers

The versatility of pointer expressions is further advanmgd selection of pseudo-pointers
representing functional combining forms, shown in Tabk 2Unlike ordinary pointer
constructors, these require only a single subexpressidrthb identity pointeri , is in-
ferred as a subexpression if nothing precedes them in the&sipn. The semantics of

68

meaning example

F filter combinator "&tFL <<1,2>,<3>,<4,5>> = <1,24,5>

S map combinator "&frXS <(0,1),(2,3)> = <(1,0),(3,2)>

Z negation "&iZS <true,false,true> = <false,true,false>
g listconjunction "&lg <(1,’a’),(0,’b")> = 0

k listdisjunction “&rk <(x’,'y"),(z’,”)> = true

o tree folding "&dvLPCo ‘a":<'b™0,'c™:0> = ‘’abc’

Table 2.5: unary pseudo-pointers provide functional ceratairs within pointer expressions

most of these pseudo-pointers should be nothing new toiumadtprogrammers, but are
nevertheless explained in this section.

Logical operations

Some of these pseudo-pointers involve logical operatiors pperations pertaining to
whether something is true or false). The standard librafinde constantsrue and
false , which are represented respectively(@g)) and() , and can also be written
as&ando.

Most standard functions returning a logical value will retone of the above, but any
value of any type can also be identified with a logical valuenply lists, empty tuples,
empty sets, empty strings, empty instances of trees, jolessignments, and the natural
number zero are all logically equivalentfedse in this language. Any non-empty value
of any type including functions, characters, real numlaand,type expressions is logically
equivalent tarue .

This convention simplifies the development of user definedipates by removing the
need for explicit conversion to logical values. For examgie predicate to test for non-
emptiness of a list is simply the identity functidi, . This function obviously will return
the whole list, but when it's used as a predicate, returnifegwhole list is the same as
returningtrue if the list is non-empty, anéalse otherwise.

Filter combinator

The F pseudo-pointer requires a pointer or function computingradigate as a subex-
pression, in the sense described above. The result is adamapping lists to lists, that
works by applying the predicate to every item of the input &isd retaining only those
items in the output for which the predicate returns a nonigmglue.

For example, the functiof&iF or simply”&F removes the empty items from a list.
The function shown in Table 2.5 takes a list of lists and reesdhe items containing only
a single item (and hence empty tails). It also flattens thaltrasingL.

69

Map combinator

The map pseudo-pointer, denot8drequires a subexpression operating on the items of a
list, and specifies a function that operates on a whole lisigplying it to each item and
making a list of the results. Maps in functional languagessar commonplace as loops in
imperative languages.

Negation

Negation is expressed by tFepseudo-pointer, and has the effect of inverting the logical
value returned by the function or pointer in its subexp@ssiThat is, false values are
changed to true and true values are changed to false.

List conjunction

The g pseudo-pointer expresses list conjunction, which is theratpn of applying a
predicate to every item of a list and returning a true valwand only if every result is true
(with truth understood in the sense described above).

A single false result refutes the predicate and causesdgloedm to terminate without
visiting the rest of the list. There is a slight advantagexecgition time if it occurs close
to the beginning of the list.

List disjunction

A complementary operation to the above, list disjuncti@natedk, involves applying a
predicate to every item of a list and returning a true res$alhy of the individual results is
true. The list traversal halts when the first true result imited.

Relationships among these logical operations follow wetikn algebraic laws, which
the compiler uses to perform code optimization on point@ressions.

Tree folding

This operation is somewhat more involved than the otherse ffée folding pseudo-
pointer, denotea, requires a subexpression representing a function thhbwilised to
obtain a result by traversing a tree from the bottom up.

The function described by the subexpression is expecteakeod tree as an argument,
whose root is the node of the input tree currently being etsiand whose subtrees are
the list of results computed previously when the subtre¢seturrent node were visited.
This list will be empty in the case of terminal nodes. The le®iurned by the function
can be of any type.

The function is not required to cope with the case of an empg.t If the whole
argument is an empty tree, then the result iegardless of the function. If the argument is
not empty but some subtrees of it are, those will appear asvadues in the list of subtrees
passed to the function when their parent node is visited.

70

The simple example di&dvLPCo shown in Table 2.5 may help to make the matter
more concrete. This function will take a tree of anything amake a list of the nodes in
the order they would be visited by a preorder traversal.

e The subexpression contains the funcfi&dvLPC .

e This function forms a list as the cons of the results of the fwuactions™&d and
“&VLP .

e The"&d function accesses the root datum of the subtree currenihg vésited.

e The"&vL function takes the list of results previously computed tog subtrees,
“&v , which will be a list of lists, and flattens them into one listiwi.

¢ With the root on the left and the resulting list from the sebs on the right, the result
for whole tree is obtained by the cons operation,

The example therefore shows that a tree of characters iseddpg@ character string.

Correct parsing

Some attention to detail is required to use these pseudugueicorrectly. Because the
subexpression of a unary pseudo-pointer is always reqgezkept in the case of an im-
plied identity deconstructor at the beginning of an expoggsthere is no need to use the
P constructor to make them an indivisible unit as describeskiction 2.3.3. For example,
writing hFP instead ohF is unnecessary. In fact, it is an error, and worse yet, it tmgh
be flagged during compilation if another subexpressiongates it, which thé will then
include.

On the other hand, it may well be necessary to group the subgsipn of a unary
pseudo-pointer using. For example, the expressidhS is not equivalent ttihPS.

Writing complicated pointer expressions can be error pmren for an experienced
user of Ursala. Learning to read the decompiled listingstmaa helpful troubleshooting
technique.

2.4.3 Ternary pseudo-pointers

There are two ternary pseudo-pointers, denoted byd Q Each of them requires three
subexpressions to precede it in the pointer expressionfirdiasubexpression represents
a predicate, the second represents a function to be apptieel predicate is true, and the
third represents a function to be applied if the predicafalse.

Semantics

The conditional combinator in the virtual machine directly supports thigi@ion
for both pseudo-pointers, as shown in Table 2.4. The lowsegadditionally wraps the
resulting virtual machine code in tlefer combinator, which has the property

Vi V. (refer f)(z) = f(C&I (f,x))

71

That is to say, thg in a function of the fornrefer f accesses the original argument to
the outer functiomefer f by "&a, and accesses a copy of itself T8f . Recall from
Table 2.1 thaf&f and”&a are the deconstructors associated with the job constructor
"&J .

Non-self-referential conditionals

An example of th& pseudo-pointer is given by the functid®INrZQ , defining a binary
predicate that returns a true value if and only if neithet®bperands is true.

$ fun --m=""&INrZQS <(0,0),(0,1),(1,0),(1,1)>" --c %bL
<true,false,false,false>

The function is shown here mapped over the list of all possgdmbinations so as to
exhibit its truth table. Conditional combinators are usetno places, one for th@ and
one for theZ.

$ fun --main=""&INrZQ" --decompile
main = conditional(
field(&,0),
constant O,
conditional(field(0,&),constant O,constant &))

Recursion

It is impossible to give a good example of thepseudo-pointer without introducing a
binary pseudo-pointeéR. This pseudo-pointer requires two subexpressions to pesitén
the pointer expression where it occurs, unless it is at tiggnbeng of the expression, in
which case the subexpressidnsare inferred.

The R pseudo-pointer occurring in a pointer expression of thenfa& faR has the
following property.

Vi Va.Ve. & faR () = (& f x) (&I (& f x,"& a x))

This property holds for any pointer expressighanda, not necessarily identical to the
deconstructor§ anda.

The purpose of th& pseudo-pointer is to perform a “recursive call’ to a funottbat
is given as some part of the argument, by applying it to sorhergiart of the argument.
In operational terms, the first subexpressjoshould manipulate to produce the virtual
machine code for a function to be called, and the second pubssion: should construct
or retrieve some component ofto serve as the argument in the recursive call.

When the recursive call is performed, the function obtaimgd is applied not just to
the argument obtained hy but to the job containing both the function and the argument
In this way, the function has access to its own machine codeamn make further recursive
calls if necessary. This mechanism is inherent inRigeseudo-pointer.

72

Self-referential conditionals

As an example of thg pseudo-pointer, we can implement the following functioatth
performs a truncating zip operation. The truncating zip paa of lists forms the list of
pairs obtained by pairing up the corresponding items froenligts. If one list has fewer
items than the other, the trailing items on the longer listignored. That is, for a pair of
lists

(<x07x1 - ..T}n>, <y07y1 s ym>>

the result of the truncating zip is the list of pairs

<(.T0, y0)7 (xh yl) cee (.T}k, yk>>

wherek = min(n, m).
The specification for this function i&alrNQPabh2fabt2ZRCNqg , which is first
demonstrated and then explained further.

$ fun --m=""&alrNQPabh2fabt2RCNq ('ab’,’cde’)" --c
<(‘a,'c),('b,'d)>

Recall that character strings enclosed in forward quoesegpresented as lists of charac-
ters, and that individual character constants are expitesseg a back quote.
The virtual machine code for the function is as follows.

$ fun --m=""&alrNQPabh2fabt2RCNq" --decompile
main = refer conditional(
conditional(field(0,(&,0)),field(0,(0,&)),constant O),
couple(
field(0,(((&,0),0),(0,(&,0)))),
recur((&,0),(0,(((0,&),0),(0,(0,&)))))),
constant 0)

Therecur combinator in the virtual code directly corresponds toRtpseudo-pointer for
the important special case of subexpressions that aregpgirather than pseudo-pointers.

e The three main subexpressions altNQP , abh2fabt2RC , andN.
e The predicatalrNQP tests whether both sides of the argument are non-empty.

e The third subexpressioN is applied when the predicate doesn’t hold (i.e., when at
least one side of the argument is empty), and returns an drapty

e The middle subexpressioabh2fabt2RC , is applied when both sides of the argu-
ment are non-empty.

— The C pseudo-pointer makes this subexpression return a listevhead is com-
puted byabh2 and whose tail is computddbt2R
— The pair of heads of the argument is accessedlh? .

— Arecursive call is performed babt2R , with the function and the pair of tails.

73

meaning example
B conjunction “&hBF <0,1,2,3> = <1,3>
D left distribution “&zyD <0,1,2> = <(2,0),(2,1)>
E comparison “&bIrE ((0,1),(1,1)) = (false,true)
H function application "&IrH ("&x,’abc’) = ’cha’
M mapped recursion “&aaNdCPfavPMVNg 17:<27:0,37:0> = 27:<470,67:0>
O composition "&bIrEPIrGO (1,(1,2)) = (true,false)
R recursion "&aafatPRCNq 'ab’ = <ab'/b>
T concatenation “&rlT (‘abc’,'def’) = ’defabc’
U union of sets “&rlU ({a’,;’b'}{b’,’c'}) = {a','b,c}
W pairwise recursion “&afarlXPWaq ((0,&),(&,&)) = ((&,&),(&,0))
Y disjunction "&IrYk <(0,0),(0,1),(0,0)> = true
c intersection of sets “&lrc ({'a’,’b’},{’b’,'c’}) = {b}
j difference of sets "&hthPj <{a’,’b’},{’b’,’c’}> = {a’}
p zip function “&Irp (<1,2>,<3,4>) = <(1,3),(2,4)>
w membership “&nmw ‘b: ’abc’ = true

Table 2.6: binary pseudo-pointers add greater utility timigo expressions

2.4.4 Binary pseudo-pointers

An assortment of pseudo-pointers taking two subexpresgimvides a diversity of useful
operations. The two subexpressions should immediatetepeethe binary pseudo-pointer
in a pointer expression, but may be omitted if they are thedsttuctordr and are at the
beginning of the expression (e.g&p may be written fof&lrp).

The alphabetical list of binary pseudo-pointers is showable 2.6, but they are
grouped by related functionality in this section for exposi purposes. The areas are list
operations, recursion, set operations, logical operatiand general purpose functional
combinators.

List operations

To start with the easy ones, there are three frequently usedgderations provided by
binary pseudo-pointers.

T —concatenation Both subexpressions are expected to return lists whenatealuand the
result fromT is the list obtained by concatenating the first with the sdcon
The concatenation of two lists . . . z,,) and(yo . . . y,) is defined as the list

(o Tpy Yo - Ym)

containing the items of both, with the order and multipligteserved, and with the items
of the left preceding those of the right. More formally, itisAes these equations.

ET(<>, y) =y
"&T(&C(h, 1), v) “&C(h,&T(t, y))

74

Note that concatenation is not commutative,&T shown in Table 2.6 differs from
"&T , which is short fof &IrT

D — left distribution ~ The second subexpression of thg@seudo-pointer is expected to re-
turn a list, and each item of it is paired up with a copy of theutereturned by the first
subexpression. Each pair has the first subexpression’ osthe left and the list item
on the right. The complete result is a list of pairs in ordethef list returned by the right
subexpression.

More formally, theD pseudo-pointer is that which satisfies these equationsienthe
subexpressionls are implicit.

&D(x,<>) = <>
"&D(z,"&C(h, t)) = "&C((=z, h),"&D(=z, t))

p — zip function Both subexpressions are expected to return lists of the samgéh, and
the result of thg pseudo-pointer is the list of pairs made by pairing up theesponding
items. A specification in a similar style to those above wdédds follows.

"&p(<>,<>) = <>
&p(&C(7, 1),&C(y,u) = "&C((, y),&p(1, u))

This function contrasts with the truncating zip functioredsn a previous example
(page 73) by being undefined if the lists are of unequal length

$ fun --m=""&p(<1,2,3>,<1,2,3,4>)" --C
fun:command-line: invalid transpose

Recursion

Each of the following three pseudo-pointers uses the firgegoression to retrieve the
code for a function to be invoked, which must be already iehem the argument, and
the second subexpression to retrieve the data to which jigbeal. They differ in calling
conventions for the function.

R-recursion The simplest form of recursion pseudo-pointris introduced on page 72
in connection with the recursive conditional pseudo-paiqt but briefly repeated here for
completeness.

To evaluate a pointer expression of the foi@faR with an argument, the function
"& f x retrieved by the first subexpression is applied to the"b("& f z,”& a x).
Both the function and the data are passed to the functionadfuhther invocations of
itself are possible.

A simple example of tail recursion as in Table 2.6 is the folltg.

$ fun --m=""&aafatPRCNq 'abcde™ --c
<'abcde’,’bcde’,'cde’,'de’,’'e’>

75

The recursive callfatPR applies the function to the tail of the argument, while the en
closing subexpressiaafatPRC forms the list with the whole argument at the head and
the result of the recursive call in the tail. The alternatubexpressioN returns an empty
listin the base case.

M- mapped recursion This variation on the recursion pseudo-pointer may be monee:
nient for trees and other data structures where a functiappdied recursively to each of
a list of operands. The first subexpression retrieves thetifum as above, but the second
subexpression retrieves a list of operands rather thaofesbperand. The mapping of the
function over the list is implicit.

To be precise, a pointer expression of the f6&nfaMapplied to an argument will
return a list of the form

(& fa) (&I (&S x,00)) ... (& f x) (&I (& [2,a0)))

where"&a z = (aqg ... a,).

Normally a recursively defined function is written with thesamption that thé&f
field of its argument is a copy of itself, which this semanacsommodates without the
programmer distributing it explicitly over the list. Othése, it would be necessary to
write "& faDIrRSP to achieve the same effect@s faM with the difficulty escalating in
cases of nested recursion or other complications.

The example in Table 2.6 uses this pseudo-pointer to traxzetiee of natural numbers
from the top down, returning a tree of the same shape with léaille number at each
node. It relies on the fact that natural numbers are reptedeas lists of bits with the
least significant bit first, so any non-zero natural numbertwadoubled by the function
"&NiC , which inserts another zero bit at the head.

In the expressiomaNdCPfavPMVNg, the recursive callavPM has the function ad-
dressed by and the list of subtrees addressedavyP as subexpressions to tMpseudo-
pointer. The double of the root is computedddydCP, and the resulting tree is formed by
theV constructor.

W- pairwise recursion This pseudo-pointer is similar to the above except thatiirgvely
applies a function to each side of a pair of operands ratlaertiheach item of a list. That
is, a pointer expression of the fori& faWapplied to an argument will return a pair of
the form

(& f2) (&I (&fx,@),(&fz) (&I (&[x,a,)))

where"& a = = (a;, a,).

Set operations

As mentioned previously, sets are represented as ordetsdilith duplicates removed.
Three pseudo-pointers directly manipulate sets in thimfdrhe subexpressions associated
with these pseudo-pointers are each expected to return a set

76

U - union of sets This pseudo-pointer returns the union of a pair of sets, Wbantains

every element that is a member of either or both sets. Thét raay be incorrect if either
operand does not properly represent a set as an orderedthsiivduplicates. However,
any list can be put into this form by tleepseudo-pointer, as described on page 65.

c —intersection of sets This pseudo-pointer returns the set of elements that arembers
of both sets. It will also work on unordered lists and listataoning duplicates.

j —difference of sets This pseudo-pointer returns the set of elements that areb@enof
the set obtained from the first subexpression and not merobénsse obtained from the
second. It will also work on unordered lists and lists camtag duplicates.

Logical operations

There are four binary logical operations implemented byidsepointers. Logical values
are understood in the sense described on page 69. That thjrapgmpty is false and
anything non-empty is true.

B — conjunction This pseudo-pointer performs a non-strict conjunctioniclwhs to say
that it returns a true value if and only if both of its subexgsiens returns a true value, but
it doesn't evaluate the second subexpression if the firsiofadse.

In the case of a false valu@,is returned, but in the alternative, the value of the second
subexpression is returned, as the virtual machine codesshow

$ fun --m=""&B" --d
main = conditional(field(&,0),field(0,&),constant 0)

An application can take advantage of this semantics, fom@ka, by using&ihB to re-
turn the head of a list if the list is non-empty, and a valueaybzotherwise. The function
“&ihB will also test whether a natural number is odd without cagisin invalid decon-
struction when applied to zero.

Y —disjunction This pseudo-pointer performs a non-strict disjunction imanner anal-
ogous to the previous one. That is, it returns a true valuéhte of its subexpressions
returns a true value, but doesn’t evaluate the second ohe first one is true.

If the first subexpression is true, its value is returned.e@tiise, the value of the second
subexpression is returned.

E — comparison This pseudo-pointer compares the results returned by dasstvbexpres-
sions, both of which are always evaluated, and returns &\@l& (true) if they are equal
or zero otherwise. Unlike the preceding pseudo-pointednéas not necessarily return the
value of a subexpression.

77

Equality in this context is taken to mean that the two resh#ftge the same virtual
machine code representation. It is possible for two valliesfi@rent types to be equal if
their representations coincide. It is also possible for #amantically equivalent instances
of the same abstract data type to be unequal if their repiasams differ. Functions can
also be compared, and only their concrete representatiercoasidered.

The criteria for equality do not include being stored in thene memory location on
the host, this concept being foreign to the virtual code s#its, so any two structurally
equivalent copies of each other are equal. However, cosgrars supported by a virtual
machine instruction whose implementation transparergtgcts pointer equality (in the
conventional sense of the words) and manages shared dattusts so that comparison
is a fast operation on average.

It may be a useful exercise for the reader to confirm that theviing code could be
used to implement comparison in a pointer expression if rewmt built in.

$ fun --m=""&alParPfabbIPWIrBPNQarZPq" --decompile
main = refer conditional(
field(0,(&,0)),
conditional(
field(0,(0,&)),
conditional(
recur((&,0),(0,(((&,0),0),(0,(&,0))))),
recur((&,0),(0,(((0,&),0),(0,(0,&))))),
constant 0),
constant 0),
conditional(field(0,(0,&)),constant 0,constant &))

Everything about this example is explained in one previeatien or another. Remember-
ing where they are is part of the exercise. Note that the cdemipas optimized the code
by exploiting the non-strict semantics of tBepseudo-pointer to avoid an unnecessary
recursive call, thereby allowing the algorithm to termeas soon as the first discrepancy
between the operands is detected.

w— membership This pseudo-pointer tests whether the result returnedsbijrét subex-
pression is a member of the list or set returned by its secAridie value &) is returned
if it is a member, and a false valu@)(is returned otherwise.

Membership is based on equality as discussed above. Thadofi&w is semanti-
cally equivalent t6&DIrEk but faster because it is translated to a single virtual nmechi
instruction.

Functional combinators

These two pseudo-pointers correspond to general opesabioriunctions, composition
and application.

78

H — function application The left subexpression is expected to return the functiod,the
right subexpression is expected to return an argument éfuhction. The result is ob-
tained by applying the function to the argument. There areestictions on types.

This pseudo-pointer is similar to thiepseudo-pointer, but more suitable for functions
that are not recursively defined and therefore don’t needltdlemselves. The difference
betweenH andR is that the latter applies the function to a job containing flinction
itself along with the argument, wherebsapplies it just to the argument. Althoudt
seems a simpler operation, its virtual machine code is mamgpticated because it is less
frequently used and not directly supported.

O - composition Functional composition is the operation of using the oufpoitn one
function as the input to another. The composition pseudotpiotakes two subexpressions
representing functions or pointers and feeds the output tiee second one into the first
one. Thatis to say, an expression of the f6&ry ¢gOapplied to an argumentis equivalent
to"& f (&g (z)).

The pseudo-pointer for composition rarely needs to be useticély because the
pointer expressiorfgOis usually equivalent t@ fP, or justgf where there is no am-
biguity. Note that the order is reversed. However, therenis case where they are not
equivalent, which is ify is not a pseudo-pointer and not equivalent to an identitpteoi
such as&lrV or"&J . For example &rIXIP x is not equivalent té&l “&rIX z and
hence not t6&IrIXO =«

$ fun —-m="&rXIP ((a’,b),(c,’d))" —-c

(c/)
$ fun --m=""¢&l “&rlX (('a’,’b’),(’c’,’d"))" --c
(cd)

$ fun --m=""&IrIXO (('a’,’'b’),(c’,’d"))" --c
(c'd)

The difference is that&rIXIP refers to the pair of left sides of a reversed pair of pairs,
whereas&l “&rIX refers to the left side of a reversed pair, hence the riglet sith the
other hand, the equivalence holds in the cas&bfXIP , because is a pseudo-pointer.

$ fun --m=""&hzX| <(a’,’b’),(c’,;d)>" --c

(a,b)
$ fun --m=""&lhzXO <(a’,'b),(c’,;d)>" --c
(a,b)

$ fun --m=""&l “&hzX <(a,b),(c’,d)>" --c
(a/b)

This function could be expressed simplyT&h .

In informal terms, the effect of juxtaposition (or the ingtiP constructor) where point-
ers are concerned is to construct the pointer obtained laghattg a copy of the right
subexpression to each leaf of the left. Where pseudo-psiate concerned it is reversed
composition. A formal semantics for this operation is befittto compiler developers. A

79

real user of the language is advised to acquire an intuitemet on the informal descrip-
tion and to display the decompiled virtual code when in doubt

To summarize, although this distinction in the meaning gfgposition between point-
ers and pseudo-pointers is usually appropriate in pradieeO pseudo-pointer can be
used in effect to override it when it isn’t, because it représ composition in either case.

2.5 Escapes

There are many more operations that might be worth encodipginter expressions than
there are letters of the alphabet, even with case sengijtand it is useful for compiler
developers to have an open ended way of defining more of themsdlution is to express
all further pointers and pseudo-pointers by numerical gscades preceded by the letter
Kin the pointer expression. Because the remaining opesasignless frequently required,
this format is not too burdensome for normal use.

Recall from Section 2.3.3 that numerical values are alsaxmgéul in pointer expres-
sions as abbreviations for sequences of consecBtisenstructors. To avoid ambiguity
when such a sequence immediately follows an escape codeaimi the letteP must
be used explicitly in such cases. However, a usage sudfi7B2 is acceptable as an
abbreviation folK7PPP. That is, only the firsP following the escape code needs to be
explicit.

A list of escape codes is shown in Table 2.7. The remaindehisfsection explains
each of them. Because new escape codes are easy for any eodepiloper or aspiring
compiler developer to add to the language, there is a chédmatehis list is incomplete
for a locally modified version of the compiler. A fully up to teasite specific list can be
obtained by the command

$ fun --help pointers

but this output is intended more as a quick reminder than agplxie documentation. If
undocumented modifications have been made, the likely stsspee resident hackers and
gurus. If the output from this command shows that existingrafjons are missing or
numbered differently, then the compiler has been ineptidifiexd or deliberately forked.

Although these operations are classified by their arity ibld&.7 and in this section,
it is worth pointing out that the arity is more a matter of cention than logical necessity.
For example, the transpose operati&7, which reorders the items in a list of lists, is
defined as a unary rather than a nullary pseudo-pointer. Ulexpressiory in a pointer
expression of the fornfK7 represents a function with which this operation is comppsed
as one would expect, but the unary arity means that it is lessacy and incorrect to write
fK7Pto group them together when used in a larger context, urttiégasituation for nullary
pointers (cf. Section 2.3.3 and further remarks on pageTHis convention usually saves
a keystroke because the transpose is rarely used in isolatio if it were, then like other
unary pseudo-pointers it could be written without a subeggion as&K7 , which would
be interpreted a&iK7 , with the identity deconstructar inferred.

80

arity code

meaning

nullary 8 random draw from a list
22 address enumeration
27 alternate list items including the head
28 alternate list items excluding the head
30 first half of a list
31 second half of a list
unary 1 all-same predicate
2 partition by comparison
6 tree evaluation bgdrPvHo
7 transpose
9 triangle combinator
11 generalized intersection combinator
13 generalized difference combinator
15 distributing bipartition combinator
17 distributing filter combinator
20 Dbipartition combinator
21 reduction with empty default
23 address map
24 partial reification
33 triangle squared
binary 0 cartesian product
3 substring predicate
4 prefix predicate
5 suffix predicate
10 generalized intersection by comparison
12 generalized difference by comparison
14 distributing bipartition by comparison
18 subset predicate
19 proper subset predicate
25 unzipped partial reification
26 total reification
29 merge of lists
32 map to alternate list items
34 depth first tree leaf tagging
35 preorder tree trunk tagging
36 preorder tree tagging
37 postorder tree trunk tagging
38 postorder tree tagging
39 inorder tree trunk tagging
40 inorder tree tagging
41 level order tree leaf tagging
42 level order tree trunk tagging
43 level order tree tagging

Table 2.7: pseudo-pointers expressed by escape codesfofti&n

81

2.5.1 Nullary escapes

There is currently two nullary escapes, as explained below.

8 — random list deconstructor

K8 can be used like a deconstructor to retrieve a randomly chitesa of a list or element
of a set. The argument must be non-empty or an exceptiorsisdai

Functional programmers will consider this operation angiure” feature of the lan-
guage, because the output is not determined by the input.igithe result will be differ-
ent for every run.

$ fun --m=""&K8S <’abc’,'def’,'ghi>" --c
ael’
$ fun --m=""&K8S <’abc’,'def’,'ghi>" --c
'cfh’

They will justifiably take issue with the availability of Su@n operation because it inval-
idates certain code optimizing transformations. For eXapipis not generally valid to
factor out two identical programs applying to the same asgnirit their output is random.

$ fun --m=""&K8K8X ’abcdefghijkimnopgrstuvwxyz™ --c
(r,'D)

$ fun --m=
(‘a,'a)

The first example above performs two random draws from list,the second performs
just one and makes two copies of it.

Despite this issue, the operation is provided in Ursala aban assortment of random
data generating tactics varying in sophistication. Randedtesting is an indispensable
debugging technique, and the code optimization facilibiethe compiler are able to rec-
ognize randomizing programs and preserve their semantics.

The intent of this operation is that all draws from the list agually probable. Draws
from a uniform distribution are simulated by the virtual rhae’s implementation of the
Mersenne Twister algorithm. For non-specialists, thedmottine is that the quality of
randomness is more than adequate for serious simulatidnavaest data generation, but
not for cryptological purposes.

&Ka8iiX ’'abcdefghijkimnopgrstuvwxyz™ --c

22 — address enumeration

TheK22 pseudo-pointer can be used as a function that takes anydsan argument and
returns a listy of the same length as, wherein each item is value of the forfm,0) .
The left sidea is either&, (a’,0) or (0, '), for and’ of a similar form. Furthermore,
each member of is nested to the same depth, which is the minimum depth red|dor
mutually distinct items of this form, and the itemspére in reverse lexicographic order.
Here is an example.

82

$ fun --main=""&K22 ’abcdef" --cast %tL
<

((((&,0),0),0),0),
(((0,&),0),0),0),
(((0,(&,0)),0),0),
(((0,(0,8)),0),0),
((0,((&,0),0)),0),
((0,((0,£),0)),0)>

This function is useful for converting between lists andees, which are a container
type explained in Chapter 3. The following example dematesrthis use of it, but should
be disregarded on a first reading because it depends on @demtures documented in
subsequent chaptets.

$ fun -m="H(="|[& !, "&)=>0 "&K22ip 'abcdef" --c %cN
[

4:0:
4:1:
4:2:
4:3:
4:4:.
4:5:

SD o0 oW

27 — alternate list items including the head

TheK27 pseudo-pointer extracts alternating items from a lististgqwith the head. Itis
equivalent to the pointer expressianBPahPfatt2RCaq

$ fun --m=""&K27 ’'0123456789™ --c
‘02468’

28 — alternate list items excluding the head

The K28 pseudo-pointer extracts alternating items from a listtistgquwith the one after
the head.

$ fun --m=""&K27 0123456789 --c
13579’

30 —first half of a list
TheK30 pseudo-pointer takes the firgt/2| items from a list of length.

$ fun --m=""&K30S <’123456789’,’abcd’>" --s
1234
ab

1Thebash commandset +H may be needed to get this example to work.

83

The algorithms implementing this operation and the follogvbne do not rely on any
integer of floating point arithmetic.

31 — second half of a list
TheK31 pseudo-pointer takes the finfal /2] items from a list of length.

$ fun --m=""&K31S <’123456789’,’abcd’>" --s
56789
cd

Note that if a list is of odd length, the latter part obtaingdk81 will be longer than the
first part obtained byX30. An easy way of taking the latteérn /2| items instead would be
to usexK30x . Whether the length of a listis even or odd, the identifi@K30K31T z =

x holds.

2.5.2 Unary escapes

In this section, the unary escapes shown in Table 2.7 araiegol and demonstrated.

1 — all-same predicate

An escape code df takes a subexpression computing any function or deconstratall,
applies it to each member of an input list or set, and retutnseavalue &) if and only if
the result is identical in all cases. For an empty argumastrésult is always true. If the
result of the function in the subexpression differs betwaentwo members, a value 6f
is returned.

A simple example shows the use of this pseudo-pointer tokciwbether every string
in a list contains the same characters, disregarding tihear@r multiplicity, by using the
s pseudo-pointer introduced on page 65.

$ fun --m=""&sK1 <’abc’,’cbba’,’cacbh’™>" --c
&
$ fun --m=""&sK1l <’abc’,’cbba’,’cacc™>" --c
0

In the latter example, the third string lacks the letberand therefore differs from the
others.

2 — partition by comparison

The K2 pseudo-pointer requires a subexpression representingciida applicable to the
items of a list, and specifies a function that partitions gwutrlist into sublists whose
members share a common value with respect to the function.

This simple example shows how a list of words can be groupedsublists by their
first letter.

84

Listing 2.4 This is a job for&K6 .

#import std
#import nat

#comment -[
toy example of a self-describing algebraic expression repr esented by a
tree of type %sfOZXT]-

nterm =
(+,sum=>0)": <

(*',product=>1)" <('3",3!)": <>,('4,41)": <>>,
(-, difference+"&hthPX)™: <('9’,90)": <>,('2",2!)": < >>>

$ fun --m="&hK2x <'ax’,ay’,’'bz’,cu’,’cv’>" --C

<<'ax',ay’>,<bz’>,<cu’,/cv>>

If the order of the lists in the result is of no concern, thé&eversal) operation at the end
of "&hK2x can be omitted to save time. In this example, it enforces tmalition that
the lists in the result are ordered by the first occurrencengfd their members in the
input. This ordering would maintain the correct represgonaf the input were a set and
the output were a set of sets.

The function represented by the subexpression may be dppilidtiple times to the
same item of the input list in the course of this operatiothdéfcomputation of the function
is very time consuming and result is not too large, it may beewedficient to compute
and store the result in advance for each item, and removeeitwadrds. Although the
compiler does not automatically perform this optimizatibrwan be obtained similarly to
the example shown below.

$ fun --m=""&hiXSIK2rSSx <'ax’,’ay’,’'bz’,cu’,’cv'>" -- c
<<’ax',ay’>,<bz’><cu’,cv>>

The function (in this case only) has its result paired with the each input itemt¥(S ,
and the partitioning is performed with respect to the lafesof each pair (which conse-

guently stores the function result) I8 . Then the right side of each item of each item
of the result (containing the original input data) is extealcbyrSS.

6 — tree evaluation

A convenient method for representing algebraic expressmorr any semantic domain is
to use a tree of pairs in which the left side of each pair castai symbolic name for an

operator in the algebra and the right side is its semantictiom. The semantic function

takes the list of values of the subtrees to the value of thdewvinee. This representation
is convenient because it allows expressions of arbitrgrggyto be evaluated by a simple,
polymorphic tree traversal algorithm, and also allows theg to be manipulated easily. It
has applications not just for compilers but any kind of syfido@omputation.

85

The value in terms of the embedded semantics for an algebxgiession using this
self-describing representation could be obtainet®mrPvHo , but is achieved more con-
cisely by"&iK6 orjust"&K6 . The symbolic names are ignored by this function, but are
probably needed for whatever other reason these dataws&sdcire being used.

A simple example is shown in Listing 2.4, although it depeadsome language fea-
tures not previously introduced. It is compiled by the comoha

$ fun kdemo.fun --binary
fun: writing ‘nterm’

and the results can be inspected as shown.

$ fun nterm --m=nterm --c %sfOXT
(+,188%f0i&)": <

(*’,243%fO0i&),

<('3,6%f0I&)": <>,(4',6%f0I&)": <>>),
“

(-',515%fOi&),

<('9',8%f0I&)": <>,(2,5%f0i&)" <>>)>

This data structure represents the expresgion 4) + (9 — 2) over natural numbers, and
can be evaluated as follows.

$ fun nterm --m=""&K6 nterm" --c %n
19

The expressions in the right sides of the tree nodes in Iggid are functions operating
on lists of natural numbers or constant functions returmatyral numbers, and the cor-
responding expressions in the output above are the samediusdisplayed in “opaque”

format, which shows only their size in quits.

7 — transpose

The K7 pseudo-pointer takes a subexpression representing dadameturning a list of
lists and constructs the composition of that function wkik transpose operation. The
transpose operation takes an input list of lists to an odipiuof lists whose rows are the
columns of the input. For example,
$ fun --m=""&iK7 <’abcd’,’efgh’,ijkI',;’mnop’>" --c
<’aeim’,’bfjn’,’cgko’,’dhlp’>

e Alllists in the input are required to have the same numbetenns, or else an excep-

tion is raised.
e This operation is useful in numerical applications for §jposing a matrix.

e This is a fast operation due to direct support by the virtuathine.

2quaternary digits, each equal in information content to e

86

9 — triangle combinator

Escape number 9 is the triangle combinator, which takesdifunas a subexpression and
operates on a list by iterating the functionimes on the:-th item of the list, starting with
zero. This small example shows the triangle combinator vsed function that repeats
the first and last characters in a string.

$ fun --m="&hizNCTCK9 <(a),(b)’,(c), (d)>" --c
<'(@)","((0))","(((c))), ((((d)))>

11 — generalized intersection combinator

A pointer expression of the fornfiK11 represents generalized intersection with respect
to the predicate’. Ordinarily the intersection between a pair of lists or setthe set of
members of the left that are equal to some member of the rijie. generalization is to
allow other predicates than equality.

The subexpression €11 is a pseudo-pointer computing a relational predicate. The
result is a function that takes a pair of sets or lists, anagrnstthe maximal subset of the
left one in which every member is related to at least one memibthe right one by the
predicate.

Generalized intersection is not necessarily commutatabse the predicate needn’t
be commutative. It doesn’t even require both lists to be efshme type. By convention,
the result that is returned will always be a subset or a sutllike left operand.

This example shows generalized intersection by the merhipepsedicate with thev
pseudo-pointer.

$ fun --m=""&wK11 (‘abcde’,<’cz’,’xd’,'ye’,'wf’,’ug’>)
‘cde’

The effect is to return only those letters in the strialgcde’ that are members of some
string in the other operand.

13 — generalized difference combinator

The generalized difference pseudo-poinkel3, is analogous to generalized intersection,
above, in that it subtracts the contents of one list from la@obased on relations other
than equality.

The subexpression 813 is a pseudo-pointer computing a relational predicate. The
result is a function that takes a pair of sets or lists, Thetion returns a subset of the left
one with every member deleted that is related to at least a@mbar of the right one by
the predicate, and the rest retained.

A similar example is relevant to generalized differenceereithe relational operator is
wfor membership.

$ fun --m=""&wK13 (‘abcde’,<’cz’,’xd’,’ye’,'wf,’ug’>)
1ab1

87

The lettersc , ‘d , and‘e , have been deleted because they are members of the strings
'cz’ ,’xd” ,andye’ ,respectively.

15 — distributing bipartition combinator

Escape number 15 is used for partitioning a list or set intmsubsets according to some
data-dependent criterion.

e The subexpression of the pseudo-pointer represents adarsimputing a binary
relational predicate. Call ji.

e The result is a function taking a pair as an argument, whdssitie is a possible left
operand tg, and whose right side is a list of right operands. Denote theraent by
(@, (Yo - - - Yn))-

e The computation proceeds by forming the list of pairs of g#fedide with each mem-
ber of the right side((x, yo) . . . (x, yn))-

e The relational predicateis applied to each pairr, ys).

e Separate lists are made of the pdirsy;) for which p(z,y;) is true and the pairs
(x,y;) for whichp(z, y,) is false.

e The result is a pair of list§(y; ...), (y;...)), with the list of right sides of the true
pairs the left and the false pairs on the right.

An illustrative example may complement this description.this example, the rela-
tional predicate is intersection, expressed bydlpseudo-pointer, and the function bipar-
titions a list of strings based on whether they have anyrkeite common with a given
string.

$ fun --m=""&cK15 (‘abc’,<’ox’,’be’,’ny’,/at’>)" --c
(<’be’at’>,<’ox’,’ny’>)

The strings on the left in the result have non-empty intéises with’abc’ , making the
predicate true, and those on the right have empty intemseti

A more complicated way of solving the same problem withdi5 would be by the
pointer expressionrDIrcFrS2XrlrjX . TheK15 pseudo-pointer is nevertheless use-
ful because it is shorter and easier to get right on the fiyst tr

17 — distributing filter combinator

This pseudo-pointer behaves identically to the distrifmybipartition pseudo-pointer, ex-
plained above, except that only the left side of the resulttisrned (i.e., the list of values
satisfying the predicate).

Any pointer expression of the forrfiK17 is equivalent tof K15IP , but more efficient
because the false pairs are not recorded.

The following example illustrates this point.

88

$ fun --m=""&cK17 (abc’,<’ox’,’be’,’ny’ at>)" --c
<'be’,at’>

If only the alternatives are required, they are easily olgdiby negating the predicate.

$ fun --m=""&cZK17 (‘abc’,<'ox’,’be’,’ny’, at’>)" --c
<'ox’,’ny’>

This example uses the pseudo-pointer for negation, exgdaon page 70.

20 — bipartition combinator

This pseudo-pointer is a simpler variation on the distifiibipartion pseudo-pointer de-
scribed on page 88. The subexpressfoappearing in the contextk20 in a pointer ex-
pression can indicate any function computing a unary pegdicThe effect is to construct
a function taking a lis{z, . .. z,,) and returning a pair of list§(x; ...), (z;...)). Each

of thez’s in the result is drawn from the argumepy, . . . x,,), but eachr; in the left side
satisfies the predicatg and eaclx; in the right side falsifies it. Here is a simple example
of the K20 pseudo-pointer being used to bipartition a list of natutathbers according to
oddness.

$ fun --main=""&hK20 <1,2,3,4,5>" --cast %nLW
(<1,3,5>,<2,4>)

This same effect could be achieved by the filtering pseudot@d- explained on page 69
and the negation pseudo-poinEexplained on page 70.

$ fun --m="&hFhZFX <1,2,3,4,5>" --c %nLW
(<1,3,5>,<2,4>)

Although semantically equivalent, the latter form is leBgent because it requires two
passes through the list and evaluates the predicate twieabb item. It also contains two
copies of the code for the same predicate.

21 — reduction with empty default

This pseudo-pointer is useful for mapping a binary openatieer a list. The list is par-
titioned into pairs of consecutive items, the operationpgli@d to each pair, and a list is
made of the results. This procedure is repeated until théslieduced to a single item,
and that item is returned as the result. If the list is injt&inpty, then an empty value is
returned. To be precise, a pointer expression of the f&mK?21 for a binary pointer op-
eratoru is equivalent td'&iatPfaaitBPahthP uPfatt2RCaqPRahPgB , but more
efficient.

This example shows how the union pseudo-pointer (page #/peaised to form the
union of a list of sets of natural numbers.

89

$ fun --m=""&UK21 <{1,2}{3,4},{5},{6,3,1}>" --c %nS
{4,2,6,1,5,3}

This example shows a way of concatenating a list of strings.

$ fun --m="&TK21 <'foo’,’bar’,’baz’>" --c %s
'foobarbaz’

A simpler method of concatenation is by i@ pseudo-pointer (page 65).

23 — address map

The subexpressiofiin a pointer expression of the forf& fK23 is required to construct a
list of (keyvalue) pairs wherein each key is an address of the form describezhimection
with the address enumeration pseudo-pointer on page 8Zuehér explained in Chap-
ter 3. All keys must be the same size. The result is a very tasttion mapping keys to
values. Here is an example using the concrete syntax foeasldiype constants.

$ fun --m=""&pK23(<5:0,5:1,5:2,5:3,5:4>abcde’) 5:1" - -C
‘b

24 — partial reification

This pseudo-pointer is similar to the address map pseuddgrcexplained above but
doesn’t require the keys to be addresses. Here is an example.

$ fun ~m="(map "&pK24(abcde’ vwxyz) 'bad" -c
"Wvy

33 —triangle squared

The K33 pseudo-pointer operates on a list of lengthy first making a list ofn copies
of it, and then applying its operandimes to thei item, numbering from zero. An ex-
pressionfK33 is equivalent taiDIS fK9, but is implemented using only linearly many
applications of the operangl

$ fun --m=""&K33 '0123456789™ --s
0123456789
0123456789
0123456789
0123456789
0123456789
0123456789
0123456789
0123456789
0123456789
0123456789

90

Using K33 with an explicit or implied identity function is equivaletd usingiiDIS
Using it with they pseudo-pointer (lead of a list) has this effect.

$ fun --m=""&yK33 '0123456789™ --s
0123456789
012345678
01234567
0123456
012345
01234

0123

012

01

0

2.5.3 Binary escapes

This section explains and demonstrates the binary escajes tisted in Table 2.7. Each of
these requires two subexpressions to precede it in thegvarpression where it is used,
unless it is at the beginning of the expression, in which taseleconstructols can be
inferred.

0 — cartesian product

For theKO pseudo-pointer, both subexpressions are expected tosggpriinctions re-
turning lists or sets, and the result returned by the whopgession is the list of all pairs
obtained by taking the left side from the left set and thetrigide from the right set.
Repetitions in the input may cause repetitions in the output

The following is an example of the cartesian product psepmioter.

$ fun --m=""&lyPrtPKO ('abc’,<0,1,2,3>)" --c %cnXL
<(‘a,1),('a,2),('a,3),('b,1),('b,2),(‘'b,3)>

The left subexpressidgP by itself would returriab’ from this argument, and the right
subexpressiont would return<1,2,3> . The result is therefore the list of pairs whose
left side is one ofa or‘b , and whose right side is one bdf 2, or 3.

3 — substring predicate

This pseudo-pointer detects whether the result returneth&yfirst subexpression is a
substring of the result returned by the second, and retutnseavalue &) if it is. The
operation is polymorphic, so the subexpressions may redither character strings, or
lists of any other type.

For a string to be a substring of some other string, it is resmgdor the latter to contain
all of the characters of the former consecutively and in #maesorder somewhere within

91

it. Hence,'cd’ is a substring ofbcde’ , butnotof'c d° ,’'dc’ or’c’ . The empty
string is a substring of anything.

The following example illustrates this operation with tredghof the distributing filter
pseudo-pointer explained in the previous section.

$ fun --m=""&K3K17 (‘cd’,<’c d’,’dc’,’bcd’,’cde’>)" --c
<’bcd’,’cde’>

4 — prefix predicate

The prefix pseudo-pointe4, is a special case of the substring pseudo-pointer exglaine
above, which requires not only the result returned by thé sitbexpression to be a sub-
string of the result returned by the second, but that it shaplpear at the beginning, as
illustrated by these examples.

$ fun --m=""&K4 (‘abc’,’abcd’)" --c %b

true

$ fun --m=""&K4 (‘abc’,’ab’)" --c %b
false

$ fun --m=""&K4 (‘abc’,’xabc’)" --c %b
false

5 — suffix predicate

The K5 pseudo-pointer is a further variation on the substring geeaointer comparable
to the prefix, above, except that the substring must appehae &nd.

$ fun --m=""&K5 (‘abc’,’abcd’)" --c %b

false

$ fun --m=""&K5 (‘abc’,’xabc’)" --c %b
true

$ fun --m=""&K5 (‘abc’,’ab’)" --c %b
false

10 — generalized intersection by comparison

The K10 pseudo-pointer provides an alternative means of spegifganeralized inter-
section to the form discussed on page 87 for the frequenttyrong special case of a
predicate that compares the results of two separate fursctibeach side. Any pointer ex-
pression of the fornh fPr gPEK11 can be expressed alternativelyag<10, thus saving
several keystrokes and allowing fewer opportunities foorer

The argument is expected to be a pair of lists. The first sulesspn operates on items
of the left list, and the second subexpression operategorsiof the right list. The result
returned byK10 will be a subset of the left list in which the result of the fssbexpression
for every member is equal to the result of the second subsgiore for some member of
the right list.

92

This simple example shows generalized intersection forcdse of a pair of lists of
pairs of natural numbers. The criterion is that the left ©ila member of the left list has
to be equal to the right side of some member of the right list.

$ fun --m="&IrK10 (<(1,2),(3,4)>,<(5,1),(6,7)>)" --c
<(1,2)>

That leaves only1,2) , because the left sid&, is equal to the right side ¢b,1)

12 — generalized difference by comparison

This pseudo-pointer is a binary form of generalized diffiees wheref gK12 is equivalent
to the unary formt fPr gPEK13discussed on page 87. The predicate compares the results
of the two subexpressionsand g applied respectively to the left and the right side of a
pair. Because the comparison and relative addressing ateithere is no need to write
| fPr gPEwhen the binary form is used.

A similar example to the above is relevant.

$ fun -m=""&Irk12 (<(1,2),(3,4)><(5,1),(6,7)>)" --c
<(3,4)>

In this examplel plays the role off andr plays the role of;. The pair(1,2) is deleted
because its left side is the same as the right side of one pitingin the other list, namely
(5.1)

14 — distributing bipartition by comparison

The binary form of distributing bipartition, expressedky4, performs a similar function
to the unary fornrK15 explained on page 88. Instead of a single subexpressioasemr
ing a relational predicate, it requires two subexpressieash operating on one side of
a pair of operands, whose results are compared. Hence, gepekpression of the form
fgK14 is equivalent td fPr gPEK15.

An example of this operation is the following, which compsattee right side of the left
operand to the left side of the each right operand to decidaewvimey belong in the result.

$ fun --m="&rMK14 ((0,1),<(1,2),(3,1),(1,4)>)" --c
(<(1,2),(1,4)>,<(3,1)>)

The items in left side of result havk on the left, which matches the on the right of
(0,1)

16 — distributing filter by comparison

The K16 pseudo-pointer is similar t&14, except that only the list items for which the
comparison is true are returned. That fgK16 is equivalent tof gK14IP but more
efficient.

$ fun --m=""&rlK16 ((0,1),<(1,2),(3,1),(1,4)>)" --c

<(1,2),(1,4)>

93

18 — subset predicate

The K18 pseudo-pointer computes the subset relation on the resfulke two pointers
or pseudo-pointers that appear as its subexpressions.eldt®n holds whenever every
member of the left result is a member of the right, regardtégkeir ordering or multi-
plicity. If the relation holds, a value of tru&) is returned, and otherwiseGvalue is
returned. These examples show the simple case of a testfdeftiside of a pair of sets
being a subset of the right.

$ fun --main=""&Irk18 ({’b’,;d'},{'a’,’b’,’c’,’d})" -- C
&

$ fun --main=""&IrkK18 ({’b’,’d’},{'a’,;’b’,’c’})" --c

0

19 — proper subset predicate

The proper subset pseudo-pointid 9 tests a similar condition to the subset pseudo-
pointer explained above, except that in order for it to hitlcequires in addition that there
be at least one member of the right result that is not a menfltbedeft (hence making
the left a “proper” subset of the right). These examples destrate the distinction.

$ fun --main="&IrK19 ({’b’,)d'},{a’,’b’,’c’,/’d})" -- C
&

$ fun --main=""&IrK19 ({'b’,’d’},{'b’,;’d'})" --c

0

$ fun --main=""&Irk18 ({'b’,’d’},{'b’,;’d'}" --c

&

25 — unzipped partial reification

This pseudo-pointer is similar to the partial reificatiorpdo-pointer explained on page
90, except that each of the subexpressifgnsn an expressiofi& fgK25 is required to
construct a list of the same length, wifhconstructing the list of keys anglconstructing
the list of values. The result is a fast function mapping keyslues. Here is an example.

$ fun --m="(map "&IrK25(abcde’,'vwxyz’)) 'cede™ --c
'Xzyz’'

26 — total reification

For this pseudo-pointer, the subexpressian the expressiorf gK26 is required to con-
struct a list of(keyvalue) pairs, and the subexpressigexpresses a function literally. The
result is a fast function mapping keys to values, but alse &blmap any non-key to
"& g x. Here is an example in whichis the identiy function.

$ fun --m="(map "“&piK26('abcde’,'vwxyz')) 'bean
'wzvn’

--C

94

The input'n is not one of the key& through‘e , so it is mapped to itself in the result.
Another choice foy might beN, which would cause any unrecognized input to be taken
to an empty result.

29 — merge of lists

TheK29 pseudo-pointer takes the lists constructed by each of d®perands and merges
them by alternately selecting an item from each. It is notunegl that the lists have equal
length.

$ fun --m=""&K29 (‘abcde’,'vwxyz’)" --c
'avbwcxdyez’
$ fun --m=""&rK29 (abcde’,'vwxyz’)" --c
'vawbxcydze’

The expressioK27K28K29 is equivalent to the identity function, because the two gube
pressions extract alternating items from the argument;kvaire then merged.

32 — map to alternate list items

A function of the form™& f¢K32 with pointer subexpressionsandg operates on a list
by applying"& f and"& ¢ alternately to successive items and making a list of theltesu
That is, a list(xg, 21, x9, x3 ...) is mapped tq"& f x¢, & g x1,& f x2,& g x3...). This
example shows alternately reversinxg é&nd taking tailst() of items in a list of strings.

$ fun --m=""&xtK32 <’abc’,’def,'ghi’,jkI'>" --s
cha

ef

ihg

N

34 - 43 —tree tagging

The escape codes from 34 through 43 support the simple aed oéeded operation of
uniquely labeling or numbering the nodes in a tree, whiclpstgp occasionally in certain
applications and would be otherwise embarrassingly diffiouexpress in this languade.
These pseudo-pointers are meant to appear in a pointerssixpmesuch as& fgKnn,

whose left subexpressigiwould extract a list from the argument, and whose right subex
pressiony would extract a tree. The result associated with the contibimés a tree having
the same shape as the one extracted,blyut with nodes constructed as pairs featuring
items from the given list on the left and corresponding nddas the given tree on the
right. In this sense, these operations are similar to thaipgping a pair of lists together to
obtain a list of pairs (as described on page 75), with a tragipd the role of the right list.

3The interested reader is referredpsp.fun in the compiler source distribution for their implemertas, or to the output of any
command of the fornfun --m=""&K nn" --decompile using one of the codes in this range.

95

Listing 2.5 anme-ary tree of natural numbers {moot) :< (subtree)

...>format, withO for the empty tree

#binary+

t =

"abcdefghijkimnopgrstuvw’

<>
<>
<>
<>
<>,

<>
<>
<>
<>
<>,

204" <
242" <
1347 <>,
0,
184": <
289" <
753"
561":
3257
852"
341"
3647 <>>,
2637 <>>,
3527 <
154" <
622" <
711"
201"
153%
3367
826"
5657 <>>,
4397 <>,
3047 <>>>

96

The tree tagging pseudo-pointers operate on trees andflisity type, but the lexically
ordered list of lower case letters and the tree of naturalbersishown in Listing 2.5 are
used as a running example. As indicated in previous examgiiesnotation for trees
shows the root on the left of eaCh operator, and a comma separated list of subtrees
enclosed by angle brackets on the right. Leaf nhodes have ptydist of subtrees, written
<>, and empty subtrees, if any, are represented as null vdiaesan be written a8.

By way of motivation, imagine that a graphical depictiontoé tree in Listing 2.5 is to
be rendered by a tool such as GrapH\izhich requires an input specification of a graph
consisting of set of vertices and a set of edges. Given ayfil@t obtained by compiling
the code in Listing 2.5, a simple way of extracting the vediavould be like this,

$ fun t --m=""&dvLPCo t" --c
<
204,
242,
134,
184,
289,
753,
561,
325,
852,
341,
364,
263,
352,
154,
622,
711,
201,
153,
336,
826,
565,
439,
304>

and the edges like thfs.

$ fun t --m=""&ddviFIS2DviFrSL3TXor t" --c
<

(204,242),

(204,352),

“http://www.graphviz.org
Sdecompilation may be instructive

97

(242,134),
(242,184),
(242,263),
(184,289),
(184,364),
(289,753),
(289,561),
(289,325),
(289,852),
(289,341),
(352,154),
(352,439),
(352,304),
(154,622),
(154,565),
(622,711),
(622,201),
(622,153),
(622,336),
(622,826)>

However, this approach depends on the assumption of eadh indthe tree storing a
unique value, which might not hold in practice. To addressi#sue, a unique tag could
easily be associated with each node in the list of nodestilse t

$ fun t | --m=""&p(l,”&dvLPCo t)" --c
<
(‘a,204),
(‘'b,242),
(‘c,134),
(‘'d,184),
(‘e,289),
(‘f,753),
(‘9,561),
(‘h,325),
('1,852),
(,341),
('k,364),
('1,263),
(‘m,352),
(‘n,154),
(‘0,622),
(‘p,711),
(‘9,201),
(‘r,153),

98

(‘'s,336),
('t,826),
(‘'u,565),
('v,439),
(‘w,304)>

but doing so brings us no closer to expressing the list of @dgambiguously, which is
where tree tagging pseudo-pointers come in. If we try theohg,

$ fun t | --m=""&K36(l,t)" --c %cnXT

(‘a,204)™: <
(‘b,242)™: <
(‘c,134)": <>,
“&V(),
(‘'d,184)": <
(‘'e,289)": <
(f,753)": <>,
(‘g,561)": <>,
(‘h,325)": <>,
(',852)": <>,
(,341)": <>>,
(‘k,364)". <>>,
('1,263)": <>>,
('m,352)": <
(‘'n,154)": <
(f'0,622)": <
(‘p,711)": <>,
(‘q,201)": <>,
(‘'r,153)": <>,
('s,336)": <>,
(‘1,826)7: <>>,
(‘u,565)": <>>,
(‘v,439)": <>,

(‘w,304)": <>>>

we get tags attached in place on the tree before doing amgygiée. We could then discard
the original node values while preserving the tree strigcéund guaranteeing uniqueness,

$ fun t | --m=""&K36dIPvVo(l,t)" --c %cT

N

‘a <
‘b7 <
‘cT <>,
"&V(),
‘dm: <
~

99

<f <>gh <>ChT < <L <),
‘K <>>,
I <>>,
‘m” <
‘N <
~
‘o,
<pti <> <> <>)'ST < <),
ut <>>,
V<>,
W <>>>

and proceed as before to extract the adjacency relation.

$ fun t | --m=""&K36dIPvVoddviFIS2DviFrSL3TXor(l,t)" --c
<

(‘a,'b),
(‘a,'m),
(‘b,‘o),
(‘b,'d),
(b,

(‘dje),
(‘d,’k),
(‘e,f),

(‘e,'0),
(‘e,'h),
(‘e,),

(‘e.9),

(‘'m,'n),
(‘'m,'v),
(‘'m,‘'w),
(‘n,0),
('n,'u),
(o,'p),
(o,'aq),
(0,1,

(‘o,'s),
(‘o,'t)>

The other pseudo-pointer escape codes in the range 34 thd@udjffer in the order of
traversal or by excluding terminal or non-terminal nodess@mmarized in Table 2.8. The
ten alternatives arise as follows.

e Atraversal can be either depth first or breadth first.

100

depth first

breadth first preorder postorder inorder

leaves 41 34 34 34
trunks 42 35 37 39
both 43 36 38 40

Table 2.8: summary of tree tagging pseudo-pointer escagesco

— breadth first traversals tag nodes in level order startiowg fthe root
— depth first traversals apply a contiguous sequence of taggdo subtree

o Ifit’'s depth first, it can be either preorder, postorder,rarder.

— preorder tags the root first, then the subtrees
— postorder tags the subtrees first, then the root
— inorder tags the first subtrree first, then the root, and themgmaining subtrees

e Whatever method of traversal is used, it can apply to the atrek, just the leaves,
or just the non-terminal nodes, but depth first traversatdyamy only to the leaves
are independent of the order.

Empty subtrees are almost always ignored, with the one #xcepeing the case of
an inorder traversal where the first subtree is empty. Alghotlne empty subtree is not
tagged, its presence will cause the root to be tagged aheih@ oémaining subtrees, as
these examples show.

$ fun --m=""&K40(xy’/a”:<’b":<>>)" --c %CcsSXT
(‘y”al)": <(‘X”b,)A: <>>

$ fun --m=""&K40('xy’,a”":<0,’b":<>>)" --c %csXT
(xa): <&V(,(y, b)Y <>>

An example of each of each case from Table 2.8 is shown in $&b&through 2.11.
In cases where the number of relevant nodess is less than the length of the list the
list has been truncated. Truncation is not automatic, argt beidone explicitly before the
tagging operation is attempted, or a diagnostic messageaaf ‘tag ” will be reported.
However, it is a simple matter to make a list of the leaves errtbn-terminal nodes in
a tree using the expressioi&LPiYo and“&vdvLPCBo , respectively, which can be
used to truncate the list of tags by something like this

~&IISPrK34(zipt(l,"&vLPiYo 1),1)

wherezipt is the standard library function for truncating zip.

101

whole tree K36) just leavesK34) just trunks K35)
(‘a,204)™: < 2047 < (‘a,204)™: <
(‘b,242)™: < 242" < (‘b,242)™: <
(‘c,134)": <>, (‘a,134)™ <>, 1347 <>,
0, 0, 0,
('d,184)™ < 184" < (‘c,184)": <
(‘e,289)™ < 2897 < ('d,289)™ <
(f,753)": <>, (‘b,753)™: <>, 753" <>,
(‘g,561)": <>, (‘c,561)": <>, 561" <>,
(‘h,325)™: <>, ('d,325)7 <>, 3257 <>,
(,852)": <>, (‘e,852)" <>, 8527 <>,
(,341)": <>>, (1,341)" <>>, 3417 <>>,
(‘k,364)": <>>, (‘9,364)": <>>, 3647 <>>,
(',263)": <>>, (‘h,263)": <>>, 2637 <>>,
(‘m,352)": < 352" < (‘e,352)7 <
(‘'n,154)™ < 154" < (f,154)": <
(‘0,622)™ < 622" < ('9,622)™ <
(‘p,711)": <> (,711)": <> 7117 <>,
(‘q,201)": <> (,201)": <> 201" <>,
(‘'r,153)": <> (‘'k,153)": <>, 153" <>,
('s,336)": <> (‘,336)": <> 3367 <>,
('1,826)": <>>, ('m,826)": <>>, 8267 <>>,
(‘'u,565)" <>>, (‘'n,565)" <>>, 5657 <>>,
('v,439)": <>, (‘0,439)™ <>, 4397 <>,
(p,304)" <>>> 3047 <>>>

(w,304)" <>>>

Table 2.9: three ways of pre-order tagging the tree in LgsHrb with letters of the alphabet

102

whole tree K43) just leavesK41) just trunks K42)

(‘a,204)™: < 2047 < (‘a,204)™: <
(‘b,242)™: < 242" < (‘b,242)™: <
('d,134)" <>, (‘a,134)™ <>, 1347 <>,
0, 0, 0,
(‘e,184)™ < 1847 < ('d,184)™ <
(,289)™: < 2897 < (,289): <
(‘n,753)": <>, (‘9,753)": <>, 7537 <>,
(‘0,561)% <>, (‘h,561)": <>, 5617 <>,
(‘p,325)": <>, (,325)": <>, 3257 <>,
(‘q,852)": <>, (,852)": <>, 852" <>,
(‘'r,341)": <>>, (‘k,341)": <>>, 3417 <>>,
(‘k,364)": <>>, (‘e,364)" <>>, 3647 <>>,
(',263)": <>>, ('b,263)": <>>, 2637 <>>,
(‘c,352): < 352" < (‘c,352): <
(‘9,154)™ < 1547 < (‘e,154)™ <
(,622)" < 622" < ('9,622)™ <
('s,711)": <>, (‘,711)": <>, 7117 <>,
(‘1,201)": <>, ('m,201)": <>, 201" <>,
(‘u,153)": <>, ('n,153)": <>, 153" <>,
('v,336)": <>, (‘'0,336)": <>, 3367 <>,
(‘w,826)": <>>, (‘p,826)~: <>>, 826" <>>,
('m,565)": <>>, ('f,565)": <>>, 5657 <>>,
(‘h,439)": <>, (‘c,439)": <>, 4397 <>,
(1,304)": <>>>> ('d,304)" <>>> 3047 <>>>

Table 2.10: three ways of level-order tagging the tree itithgs2.5 with letters of the alphabet

103

coverage

order whole tree ust trunks
t justt
d hol 38/K40 ks K37/K39
(w,204)" < (‘9.204): <
‘k,242)" < ‘c,242): <
(‘a,)134): <>, (134)1‘: <>,
(b,184); <
(‘a,289)":
7537 <>,
5617 <>,
3257 <>,
S S
3647 <>,
postorder 263" <>>,
(f,352): <.
(‘€,154)"; <
(‘d,622}A: <
7117 <>,
2017 <>,
1537 <>,
3367 <>,
8267 <>>,
5657 <>>,
4397 <>,
3047 <>>>
(‘1,204): < (‘d,204)": <
‘b,242)"; < ‘a242)": <
(‘a,)134)A: <>, ((1)3 T,
(1,184): < . (‘c,184): <.
('2$3)7'53<" <> (b'z%? < s
‘e’seﬂﬁ <> 5617 <>,
) < b
‘%3412: <5, 341" <>5
. (6|3 4)": <5>, 3647 <>>,
inorder %kz 3": <S> 63" <>>)
(u,352)" £ (‘9,3 2{: <
(‘'s,154)"; < (‘1,154)": <.
('n,622)7; < (‘e,622}- <
‘m,711)": <>, 7117 <>,
'0,201):" <>, 2017 <>,
‘p,153)": <>, 1537 <>,
‘q,336)7: <>, 3367 <>,
r.826) " <>>, 8267 <>>,
4%55 5 <> 4397 03 <>
v D> : ,
EW’,SOZ?)‘: <>>> 3047 <>5>

Table 2.11: four other ways of depth first tagging the treeigtihg 2.5 with letters of the alphabet

104

2.6 Remarks

Having read this chapter, some readers may be reconsidéengdecision to learn the
language, perhaps even suspecting it of being an elabawatiéqgal joke in the same vein
asbrainf *** or other esoteric languages. However, nothing could befer from the
truth, and there is good reason to persevere.

If the material in this chapter seems too difficult to rememlaeready reminder is
always available by the command

$ fun --help pointers

If you have more serious reservations, your documentatigmeer can only recom-
mend imagining the view from the top of the learning curveerghyou are lord or lady
of all you survey. The relentless toil over glue code for gvainor text or data transfor-
mation is a fading memory. The idea of poring over a thick naofi API specifications
full of functions with names likgetNextListElement and half a dozen parameters
seems ludicrous to you. No longer subject to such distrastigour decrees issue effort-
lessly from your fingers as pseudo-pointer expressioneatghed of thought. They either
work on the first try or are easily corrected by a quick insjpectf the decompiled code.
In view of what you're able to accomplish, it is as if decadésecsure time have been
added to your lifespan.

105

Cool down, big guy. I already told you, you’re not my type.
Curdy’s last line inStreets of Fire

Type specifications

The emphasis on type expressions to the tune of a whole chraptebe surprising for an
untyped language. In fact, they are no less important thanstmongly typed language,
but they are used differently.

e One use already seen in many previous examples is to casy loiata to an appro-
priate printing format.

e Another important use is for debugging. The nearest passifplivalent to setting a
breakpoint and examining the program state is accomplibfiedstrategically posi-
tioned type expression.

e Another use is for random test data generation during dpwedmt, whereby valid
instances of arbitrarily complex data structures can batedeto exercise the code
and detect errors.

e At the developer’s option, type expressions can even spaaif-time validation of
assertions in production code.

e Type expressions in record declarations can be used to idedylt values or initial-
ization functions for the fields without explicitly codiniggm.

e Certain pattern matching or classification predicates lagaatly expressed in terms
of type expressions using tagged unions.

e Type expressions are first class objects that can be stoned@mipulated like other
data, thereby affording the means for self-describing dtrtactures.

Type expressions also serve the traditional purpose ofradiosource level documen-
tation that does not contribute directly to code generati®ynbeing especially concise in
this language, they are superbly effective in this capdotyause they can be sprinkled

106

liberally and unobtrusively through the code. This bendtémcomes freely as a byprod-
uct of their other uses, when they are rephrased as comnfeatghe initial development
phase.

The things they don’t do are legislation and policy makingset$ are very welcome
to write badly typed code if they so desire, or to ignore theetgystem completely. Why
does the compiler let them? Aside from the obvious answaritlien’t their nanny, the
alternative is to restrict the language to trivial applicas with decidable type checking
problems, which would drastically curtail its utility.

3.1 Primitive types

Although they are not computationally universal, type esggions are a language in them-
selves. They have a simple grammar involving nullary, unamygl binary operators using
a postfix notation, similarly to pointer expressions ddsstiin the previous chapter. Type
expressions also provide mechanisms for self-referesitiattures and for combining lit-
eral and symbolic names, all of which require explanatiors therefore best to postpone
the more challenging concepts while dispensing with thg eass.

Primitive types are the nullary operators in the languaggmé expressions, and they
are the subject of this section. They can be understood erdEmtly of the rest of the
chapter. As in other languages, primitive types are thechaslding blocks of other data
structures, and have well defined concrete representaimhsyntactic conventions. Un-
like some other languages, this one includes primitivesypleose representations are not
necessarily fixed sizes, such as arbitrary precision nusnbemnctions are also a primitive
type, and are not distinguished by the types of their inputdput.

The type expression for a primitive type is of the fo# wheret is a single letter,
usually lower case. A list of primitive types is shown in T@BlL1. The table also indicates
that for some primitive types, a parsing function can bematiically generated, and shows
an example instance of the type in the concrete syntax réezedjby the compiler and by
the parsing function, if any.

3.1.1 Parsing functions

Before moving on to the discussion of specific primitive typae can take note of the
usage of parsing functions. For any of the primitive typeregpion$6a %¢ %e %E %n
%q %s %X %V, or %z there is a corresponding parsing function that can be szptkas
%ap %cp, etcetera by appending a lower cageto the expression. The parsing function
takes a list of character strings to an instance of the type.

An example of a parsing function is the following, which tséarms a list of character
strings containing a decimal number to the standard IEEHErigg@oint representation.

$ fun --main="%ep <'123.456’>" --cast %e
1.234560e+02

1Don't take my word for it. Read the opening soliloquy in anytk®ok on programming languages and weep.

107

type parser example
a address yes 15:4924
b boolean true
¢ character yes ‘c
e standard floating point yes 4.257736e+00
E mpfr floating point yes -2.625948E+00
f function compose(reverse,transpose)
g general data (5,<'N'>)
j complex floating point 5.089e-01+9.522e+00j
n natural number yes 21091921548812
0 opaque 140%0i&
g rational yes -1488159707841741/21667
s character string yes '2.I1$yTgKs4sqC’
t transparent (((0,(((&,0),0),(&,&))),0),0)
v binary converted decimal yes -21091921548812_
X raw data yes -{zxyr{tYGG\sFx<<W{DQVD=B<}-
y self-describing (-{iuUn<}-,-1530566520784/19)
Z integer yes -21091921548812

Table 3.1: primitive types

e Parsing functions are useful for operating on contentsxiffies and command line
parameters.

e They pertain only to this set of primitive types, not to typ@eessions in general.

e When thep is appended to a type expression, it is no longer a type esipresut a
function, and can be used in any context where a functionpsogpiate.

3.1.2 Specifics

The remainder of this section discusses each primitiveftgme Table 3.1 in greater detail.

a — Address

The address type is intended as a systematic notation fond&acting pointers, as dis-
cussed in the previous chapter. Recall that a deconstrigcefunction that extracts a
particular field from an instance of an aggregate type suehtagle or a list.

Addresses are denoted by a pair of literal decimal conssapmigrated by a colon, with
no intervening white space. For an address of the fermn, the numbem may range
from zero to2" — 1 inclusive.

The numbering convention used for addresses is best madivat an illustration. In
Figure 3.1, a balanced binary tree has a depthafd leaves numbered from 020 — 1.

A tree of this form would be the most appropriate containeafeet of data requiring fast
(logarithmic time) non-sequential access.

108

O W

eyt ey ey ey e ey eyt
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 3.1: a balanced binary tree of depttvith leaves numbered from 0 & — 1
(1]
17
1]
(17
10

Figure 3.2: descending twice to the right and twice to the thé address 4:12 points to the twelfth leaf in a
tree of depth 4 (cf. Figure 3.1)

The diagram shown in Figure 3.2 depicts the specific addrdss . This figure is also
a tree, albeit with only one branch descending from each .ndtiere is nevertheless a
distinction between whether a branch descends to the ledt thre right. The distinction
can be seen more clearly by casting the address to a diffigaat

$ fun --main="4:12" --cast %t
(0,(0,((&,0),0)))

Here we see a leaf node inside of four nested pairs, locatédeorght sides of the outer
two and the left sides of the inner two.
These observations are true of address type instancesenajen

e An address: : m corresponds to a tree with at most one descendent from eaeh no
e The total number of edges in the treenis

e Counting a left branch as 0 and a right branch as 1, the sequ#rmranches from
the root downward expressesin binary, with the most significant bit first.

¢ Following the same path from the root of a fully populatedabakd binary tree of
depthn would lead to then-th leaf, numbered from O at the left.

Note thatn : m is metasyntax. In the languageandm must be literal decimal constants.

109

b — Boolean

The boolean type has two instances, represent€@),8s and() for true and false,
respectively. These can also be writter&andO.

When a value is cast as a boolean type for printing, it will betpd either asrue or
false . Strictly speaking these are identifiers rather than lirastants, and will require
the standard librarngtd.avm or cor.avm to be imported in order to be recognized
during compilation. However, these libraries are impodatbmatically by default.

¢ — Character

The character type has 256 instances represented asrgbain@sen nested tuples Of

on the virtual machine level. The representation is desidoellow lexical comparison
of characters by the same algorithm as string comparisahtaensure that no character
representation coincides with that of any numeric type)édeg or character string.

For printable characters, literal character constantsbeaexpressed by the character
preceded by a back quote, asan, ‘b and‘c . For unprintable characters such as controls
and tabs, an expression lik&h skip/9 characters can be used for the character
whose ISO code is 9. The constahtaracters s the list of all 256 characters in lexical
order, and is declared in the standard librsiy.avm

When a value is cast as a character type for printing, the Qaote form will be used
if the character is printable, but otherwise an expresske127%cOi& is generated.
The initial decimal number is the ISO code of the characted, the rest of the expression
follows the convention used for display of opaque typesargeld later in this chapter. This
latter form can also be used as alternative to the expregsiotving thecharacters
constant described above.

e — Standard floating point

Double precision floating point numbers in the standard |EEfesentation are instances
of thee primitive type.

A full complement of operations on floating point numbers lisvided by external
libraries optionally linked with the virtual machine, andaimented in thavram refer-
ence manual.

$ fun --main="math..sqrt 3." --cast %e
1.732051e+00

As noted elsewhere in this manual, the ellipses operatakew virtual machine library
functions by name.

When data are cast to floating point numbers for printing, ls/@, an exponential
notation with seven digits displayed is used by default.plaig in user specified formats
following C language conventions is also possible throlghuse of library functions.

$ fun --m="math..asprintf('%0.2f",1.23456)" --c
'1.23’

110

When strings are parsed to floating point numbers with%ep parsing function, it
is done by the host machine’s C library functistitod , so any C language floating
point format is acceptable. However, floating point numiagnsearing in program source
text must be in decimal, and either a decimal point or an egpbis obligatory to avoid
ambiguity with natural numbers. If exponential notatioms$ed, thee must be lower case
to distinguish the number from thapfr type, explained below. There are no implicit
conversions between floating point and natural numbers.

Bit level manipulation of floating point numbers is possifie users who are familiar
with the IEEE standard, but it is not conveniently suppoitethe language. A floating
point number may be cast losslessly to a list of eight charaepresentations, where each
character’'s ISO code is the corresponding byte in the birepresentation.

$ fun --m="math..sgrt 3." --c %cL
<

170%cOi&,

‘L,

‘X,

232%cOi&,

‘Z,

182%cOi&,

251%cOi&,

u)>

E —npf r floating point

On platforms where the virtual machine has been built withpsut for thempfr library,

a type of arbitrary precision floating point numbers is afali¢ in the language, along with
an extensive collection of relevant numerical functionsluding transcendental functions
and fundamental constants. These numbers are not binagyatiohe with standard float-
ing point numbers, but explicit conversions between thesrsapported. Thepfr library
functions documented in thevram reference manual can be invoked directly using the
ellipses operator.

$ fun --m="mp..exp 2.3E0" --c %E
9.974182E+00

For a number to be specified in this format in a program souxe it should be writ-
ten in exponential notation with an upper c&s® ensure correct disambiguation. That is,
1.0EO denotes a number impfr format, butl.0e0 and1.0 denote numbers in stan-
dard floating point format. If a number is explicitly parsedthe mpfr parsing function
%Ep then this convention does not apply.

Calculations with numbers impfr format do not guarantee exact answers, but in non-
pathological cases, the roundoff error can be made aribytsanall by a suitable choice of
precision (up to the available memory on the host). By défd@o bits of precision are
used, which is roughly equivalent to the number of digitsrambelow.

111

$ fun --m=""&INC ..mp2str 3.14EQ" --s
3.1400E +00

There are several ways of controlling the precision.

o If a literal mpfr constant is expressed in a program source text or in the angiuim
the %Epparsing function with more than the number of digits coroegpng to 160
bit precision, the commensurate precision is inferred.

e Functions returning fundamental constants, suchgfs..pi , or random numbers,
such asmpfr..urandomb , take a natural number as an argument and return a
number with that precision.

e Thempfr..grow function takes a pair of operands, n) to a copy ofr padded
with »n additional zero bits, for ampfr numberz and a natural number.

e Thempfr..shrink function returns a truncated copy.

When the precision of a number is established, all subseaadsulations depending
on it will automatically use at least the precision of thatnter. If two numbers in the
same calculation have different precisions, the greatmigion is used. Of course, a chain
is only as strong as its weakest link, so not all bits in thenemsare theoretically justified
in such a case.

Low level manipulation ompfr numbers is for hackers only. As a starting point, try
casting one to the typnbnXXbnXcLXX

f — Function

Functions are a primitive type in the language, and all fienst are the same type. That
doesn’t mean all functions have the same input and outpwastyput only that this in-
formation is not part of a function’s type. This conventidioas more flexible use of
functions as components of other data structures, suclstastliees and records, than is
possible with more constrained type disciplines. For eXamfithe language insisted that
all functions in a list should have the same input and outgped, it would be practically
useless for modelling a pipeline or process network as afliginctions.

A value cast to a function type for printing will be expresseterms of a small set of
mnemonics defined in theor.fun library distributed with the compiler (Listing 3.1),
whose meanings are documented indlieam reference manual. This form very closely
follows the underlying virtual machine code representatiStrictly speaking, an under-
standing of the virtual machine code semantics is not a guesite for use of the language.
However, it may be helpful for users wishing to verify themderstanding of advanced lan-
guage features by seeing them expressed in terms of moedrees for small test cases.

The default output format for functions is actually a subsiethe language, and in
principle could be pasted into a file and compiled, assumithgethecor orstd library
is imported. However, functions expressed in this formdthve too large and complicated
to be of any use as an aid to intuition in non-trivial cases. s&ful technique to avoid

112

Listing 3.1 all programs expressible in the language can be reducedte sombination of these operations

#comment -[

This module provides mnemonics for the combinators and buil
functions used by the virtual machine. E.g., compose(f,g) =
which the virtual machine interprets as the composition of f

Copyright (C) 2007-2010 Dennis Furey]-
#library+
constants

false

0
true &

first order functions

cat = (&,&)

weight = (&,(&,(0,&)))
member = (&,(&,0))
compare =&

reverse = (&(0,&))
version = (&,(&,(0,(&,0)))
transpose = (&,(&,&))
distribute = ((&,0),0)

second order functions

fan = ((((0,&),0),0),(((((&,0),0),(0,&)),0),((0,&),0)
map = ((((0,&),0),0),(((((&,0),0),(0,&)),0),(&,0)))
sort = ((((0,&),0),0),(((((0,&),0),(&,0)),0),((0,&),0
race = (((&,&),((((0,(&,(&,0))),0),0),(0,&))).0)
guard = (((((&,0),0),(0,(&,0))),0),(0,(0,&)))

recur = (((((((&,0),0),(0,&)),0),(&,0)),0),(&,0))
field = (((&,0),0),(0,&))

refer = (((((((0,&),0),(&,0)),0),(&,0)),0),(&,0))
have = ((((0,&),0),0),(&,((0,(((&,0),0),(0,&))).&)))
assign = (((((0,&),0),(&,0)),0),(&,0))

reduce = ((((0,&),0),0),(((0,&),0),(&,0)))

mapcur = (((&,&),((((0,(&,(&,0))),0),0),(((0,&),0),(&
filter = (((&,&),((((0,(&,&)),0),0),(((0,&),0),(&,0))
couple = (((((0,(&,0)),0),(&,0)),0),(0,(0,&)))
compose = (((0,&),0),(&,0))

iterate = (((&,&),((((0,(&,&)),0),0),(0,&))),0)

library = ((((0,&),0),0),(((0,&),0),((0,&),0)))

interact = ((((0,&),0),0),((((0,(&,0)),0),0),(((((&.,0
transfer = (((&,&),((((0,(&,(0,&))),0),0),(0,&))),0)
constant = (((((&,0),0),(0,&)),0),(&,0))

conditional = (0,(((&,0),(0,(&,0))),(0,(0,&))))

note = (((&&),((((0,(&,(&,(0,&)))),0),0),(0,&))).0)
profile = (((&,&),((((0,(&,(&,&))),0),0),(((0,&),0),(

t in
((£,9).0)
and g.

)
)

0)))).0)

)),0)

),0),(0,&)),0),(&,0))))

&,0)))).0)

113

being overwhelmed with output when displaying data stmgsicontaining functions as
components is to use the “opaque” type operddpexplained later in this chapter.

For hackers only: Functions are first class objects in Ursala and can be mateuzimean-
ingfully by anyone taking sufficient interest to learn thetwal machine semantics. A
technique that may be helpful in this regard is to transfdremt to a tree representation of
type %sfOZXT by way of the disassembly functionfl , perform any desired transfor-
mations, and then reassemble them &6 or~“&drPvHo .

Casual attempts at program transformation are unlikelynjorove on the compiler’s
code optimization facilities, or to add any significant daifies to the languagé.

g — General data

This type includes everything, but when data are cast taypis for printing, an attempt
is made to print them as strings, characters, natural nisnbepleans, or floating point
numbers in lists or tuples up to ten levels deep. If this gitfiails, they are printed as raw
data, similarly to thex type.

e This is the type that is assumed when theast command line option is used
without a parameter.

e If thistype is used for a field in a record, it provides a lirdiferm of polymorphism.

e The type inference algorithm used during printing is worgsec exponential, and
should be used with caution for anything larger than abot &idits®> The worst
case arises when the data don’t conform to the above medttgpes.

j —Complex floating point

Complex numbers are represented in a compatible formatth&iC language ISO stan-
dard and with various libraries, suchfétsv andlapack . Thatis, they are two contigu-
ously stored IEEE double precision floating point numbert) the real part first.

When data are cast to complex numbers for printing, the forsnalways exponen-
tial notation with four digits displayed for each of the reart and the imaginary part.
However, complex numbers in a program source text may bénmgytonforming to the
syntax(re)[+|- |(im)[i |j] without embedded spaces. The real and imaginary parts must
be C style decimal floating point numbers in fixed or exporamtotation, and decimal
points are optional. Thie orj must be lower case and must be the last character.

Standard operations on complex numbers are provided yoiin@lex library as part
of the virtual machine, such as complex division.

$ fun --m="c..div(3-4i,1+2))" --c %j
-1.000e+00-2.000e+00j

2How’s that for throwing down the gauntlet?
3quaternary digits; 1 quit 2 bits

114

Although there are usually no automatic type conversionthénlanguage, standard
floating point numbers are automatically promoted to complenbers if they are used as
an argument to any of the functions in tbemplex library, as this example shows.

$ fun --m="c..div(1.,0+1))" --c %j
0.000e+00-1.000e+00j

A complex number can be cast to a list of characters, whiclaeiwlays be of length 16.
The first eight characters in the list are the representatighe real part and the second
eight are the representation of the imaginary part, as gigalan connection with standard
floating point types. There should not be any need for lowl leanipulations of complex
numbers under normal circumstances.

$ fun --m="2.721-7.489;" --c %cL

<
248%cOi&,
‘s,
227%cOi&,
165%cOi&,
155%cOi&,
196%cOi&,
5%c0Oi&,
‘@,
219%cO0i&,
249%cO0i&,
i,
188%cOi&,
244%cOi&,
29%c0i&,
192%cOi&>

n — Natural number

Natural numbers are encoded in binary as lists of booleatistiwe least significant bit
first. The representation of the numlfers the empty list, that ol is the list<&>, that
of two is <0,&> , and so on withk&,&>, <0,0,&> , and<&,0,&> ad infinitum The
number of bits is limited only by the available memory on tlesth There is no provision
for a sign bit, because these numbers are strictly non-ivegdthe most significant bit is
alwaysg&, so the representation of any number is unique. An exampteeakpresentation
can be seen easily as follows.

$ fun --m=1252919 --c %n

1252919

$ fun --m=1252919 --c %tL
<&,&,&,0,&,&,0,0,0,&,&,&%,&,0,0,0,&,&,0,0,&>

115

Listing 3.2 hexadecimal printing of naturals by bit twiddling

#import std
#import nat

#library+

hex = |['0" --C&y 16); block4; *yx -$digits--'abcdef’ pad0 iotal6

Some applications may take advantage of this represemtetiperform bit level op-
erations. For example, the functié&iNiCB doubles any natural number, the function
"&itB performs truncating division by two, and the functi@ihB tests whether a num-
ber is odd. The check for non-emptiness can be omitted totsaesf it is known that the
number is non-zero.

$ fun --m=""&NiC 1252919" --c %tL
<0,&,&,&,0,&,&,0,0,0,&,4&,&,&,0,0,0,&,&,0,0,&>
$ fun --m=""&NiC 1252919" --c %n
2505838

It is also possible to treat natural numbers as an abstrpethy using only the functions
defined in thenat library to operate on them.

$ fun --m="double 1252919" --c %n
2505838

Natural numbers expressed in decimal in a source text aneeded to this representa-
tion by the compiler. Anything cast as a natural number istpd in decimal. However, it
is always possible to print them in other ways, such as hexa@d¢as shown in Listing 3.2.
Some language features used in this listing will requiréerreading.

0 — Opaque

This type includes everything, and is used mainly as thedype untyped field in a record
or other data structure. When a value is displayed as an efggga, no information about
it is revealed except its size measured in quarternarysdgitits)?

$ fun --m="allworkandnoplaymakesjackadullboy™ --c %0
320%0i&

The number in the prefix of the expression is the size, andet$ieof it is the notation used
to indicate an opaque type instance.

This notation can also be used in a source text to repredaitriay random data of the
given size, which will be evaluated differently for everyngpilation.

4Due to some overhead inherent in the use of a list repregmmtat natural number requires one quit for efichit and two quits
for each& bit.

116

$ fun --m="16%0i&" --c %0

16%0i&

$ fun --m="16%0i&" --c %t
((((&,0),0),(0,((&,0),0))),((0,(0,&)),(&,&)))
$ fun --m="16%0i&" --c %t
(0,(0,(0,(((0,&),(&,&)),(((&,0),0),(0,&))))))

This usage is intended mainly for generating test data. @isly, if data cast as opaque
are displayed and copied into a source text to be recompgheds can be no expectation
of recovering the original data unless the size is zero or one

g — Rational

Exact rational arithmetic involving arbitrary precisicational numbers is possible using
theq type and associated functions in tfae library distributed with the compiler.

Rational numbers are represented as a pairs of integerspmétfor the numerator and
one for the denominator. Only the numerator may be negafiles example shows a
rational number case as a natufald type, and as pair of integer%og VY.

$ fun --main="-1/2" --cast %q
-1/2

$ fun --main="-1/2" --cast %zW
('112)

As the above example shows, standard fractional notatiessed for both input and output.
There may be no embedded spaces, and the numerator and datenmust be literal
constants (not symbolic names). The compiler will autooadly convert rational numbers
to simplest terms to ensure a unique representation.

$ fun --m="3/9" --c %q
1/3

The algorithm used for simplifying fractions does not eny@oy sophisticated factoriza-
tion techniques and will be time consuming for large numbers

Although rational numbers may be helpful for theoreticatkvoecause the results are
exact, they are unsuitable for most practical numericaliegjons because the amount of
memory needed to represent a number roughly doubles withagidition or multiplica-
tion. The arbitrary precision floating point typ)(implemented by thenpfr library is a
more appropriate choice where high precision is needed.

s — Character string

Used in many previous examples but not formally introdutiee character string type is
appropriate for textual data, and is expressed by the tekbsed in single quotes.

Character strings are (almost) semantically equivalelt®of characters, represented
as described in connection with thaype.

117

$ fun --m="abc™ --c %s

'abc’
$ fun --m="abc™ --c %cL
<‘a,'b,'c>

The only difference between character strings and listhafacters (aside from cosmetic
differences in the printed format) is that strings may contanly printable characters,
which are those whose ISO codes range from 32 to 126 inclusive

Literal quotes The convention for including a literal quote within a strirsgto use two
consecutive quotes.

$ fun --m="I"m a string™ --c
I"m a string’
As shown above, this convention is followed in the output ajuemted string as well,

although the extra quote is not really stored in the stringoitfof extra effort shows the
raw data.

$ fun --main="<'I"m a string’>" --show
I'm a string

As one might gather, theshow command line option dumps the value of the main
expression to standard output, provided that is a list ofasttar strings.

Dash bracket notation On a related note, an easier way of expressing a list of ctearac
strings is by the dash bracket notation.

$ fun --m="-[’m a list of strings]-" --show
I'm a list of strings

An advantage of this notation is that it allows literal qugt@nd in a source text (as opposed
to the command line) it may span multiple lines (as shown wabmment directives in
previous source listings).

A further advantage of the dash bracket notation is thatntloa nested in matched
pairs like parentheses.
$ fun --m="-[’'m -[<nested’>]- in it]-" --show
I’'m nested in it
Although it's of no benefit in this small example, the advgetaf nested dash brackets in
general is that the expression inside the inner pair is roptired to be a literal constant.
It can be any expression that evaluates to a list of charattegs. That includes those
containing symbolic names, more dash brackets, and aspbé@raounts of white space.

It is also possible to have multiple instances of nested @agbkets inside a single
enclosing pair, as shown below.
$ fun --m="-['m -[<’nested’>]- in-[<'to’>]- it]-" --s
I’'m nested into it

Note that the white space inside the second nested pair ggroficant.

118

t — Transparent

The transparent type includes everything, and is usefyl when the precise virtual ma-
chine representation of the data is of interest.

If data are cast to a transparent type for printing, they beldisplayed as nested pairs
of 0 and&. For example, if someone really wanted to know how a charatteng is
represented, the answer could be obtained as shown.

$ fun --m="hal™ --c %t

((&,((0,&),(0,&))),((&.(&.&)),((&((0,(0,(0,&))),0)),0)))

More practical uses are for displaying pointers or virtualchmne code when debugging
takes a particularly ugly turn. However, this output formgatckly grows unmanageable
with data of any significant size.

v — Binary converted decimal

This type provides an alternative representation for iete@s asign magnitude pair,
where the magnitude is a list of natural numbers (@% each in the range 0 through 9,
specifying the decimal digits of the number being represgnivith the least significant
digit at the head. The sign is a boolean value, equ@lftr zero and positive numbers and
& for negatives.

BCD numbers are written with a trailing underscore to dagtish them from naturals
(%n) and integers%32. For example, these are BCD numbers

-28093 9289 -2939 -46132_ -7691
unlike these, which are integers and naturals.
-14313 54188 61862 -196885 84531

The type identifieBovhas no mnemonic significance.

Similarly to the integer and natural types, the size of BClnbars is limited only by
the available host memory. However, for calculations imv@) numbers in the hundreds
of digits or more, there may be a moderate performance aagaim using the BCD repre-
sentation, especially if the results are to be displayecetoirdal. Mathematical operations
on numbers are provided by thed library distributed with the compiler.

x —Raw data

This type is similar to the transparent type in that it in@dscdbverything, but the display
format is meant to be more concise than human readable, liyngatree quits into each
character.

$ fun --m="dave™ --c %x
-{{cucl<Sb]><}-

119

The format of the text between the leadifg and trailing}- is the same one used by the
virtual machine for binary files, and is documented in éveam reference manual. This
fact could be exploited to paste the data from a binary file &nsource text and compile
it.>

The use for this type is also in debugging, when the value ofesdata structure dis-
played in the course of a run or a crash dump needs to be cdptassessly for further
analysis but its exact representation is either unknowrobreievant.

y — Self-describing

An instance of the self-describing type consists of a paiosehleft side is a compressed
binary representation of a type expression and whose rigétis an instance of the type
specified by the expression. Data in this format can be céglyagathout reference to the
base type and displayed correctly, because the neces$amnation about their type is
implicit. The compressed type expression is displayeduwnfoamat along with the data
So as to be machine readable.

Self describing types are a more sophisticated alterntadigeneral type%og because
they may include records or other complex data structuresbenprinted accordingly.
They are useful for binary files in situations when it mightterivise be difficult to re-
member the types of their contents. They may also afford evewtary form of support
for a (not recommended) programming style in which datayre-tagged and functions
are predicated on the types of their arguments (an ideagdathm the sixties and later
revived by the object oriented community). This approachildoequire the developer to
become familiar with the compiler internals.

The right way to construct an instance of a self-describypg is to use a type expres-
sion with Y appended, for examplé&pjY for a self describing complex number. Seman-
tically, the expression ending Mis a function rather than a type expression. It is meant
to be applied to an argument of the base type, (e.g., a complaber) and it will return
a copy of the argument with the compressed type expressiachad to it. This result
thereafter can be treated as a self-describing type instanc

$ fun --m="%jY 2-5j" --c %y
(-{{UF<}-,2.000e+00-5.000e+00j)

For reasons of efficiency, functions of the fof#Y perform no check that their ar-
guments are actually a valid instance of the t§feso it is possible to construct a self-
describing type instance that doesn’t describe itself aificcause an error when it is cast
as self describing.

$ fun --main="%cY 0" --c %xgX
(-{iu"\}-,0)

$ fun --main="%cY 0" --c %y
fun: invalid text format (code 3)

Ssurely a winning strategy for obfuscated code competitions
6Don’t do this unless you're an academic who’s hard pressedricexample to warn people about the dangers of non-tyge-saf
languages.

120

The above error occurs becaukes not a valid character instance.
For a correctly constructed self describing type instattoe original data can always
be recovered using the ordinary pair deconstructor funciér .

$ fun --m="&r (<{i{UF<}-,2.000e+00-5.000e+00j)" --C %j
2.000e+00-5.000e+00j

z — Integer

The integer type%32 pertains to numbers of the form- — 2, —-1,0,1,2.... For non-
negative integers, the representation is the same as tmattwfal numbers (page 115),
namely a list of bits with the least significant bit first, anch@n-zero most significant
bit. Negative integers are represented as the magnitudeturat form with a zero bit
appended. The following examples show a positive and a ivegateger cast as integer
types @02 and as lists of bits%tL).

$ fun --main="13" --cast %z

13

$ fun --main="-13" --cast %z
-13

$ fun --main="13" --cast %tL
<&,0,&,&>

$ fun --main="-13" --cast %tL
<&,0,&,&,0>

3.2 Type constructors

As a matter of programming style, most applications can tiglnem the use of aggregate
types and data structures. The way of building more elabdygtes from the primitive

types documented in the previous section is by type cortstisicType constructors in this
language fall into two groups, which are binary and unarye Bmary type constructors
are explained first because there are fewer of them and ¢hegsier to understand.

3.2.1 Binary type constructors

One way of using a binary type constructor in a type expressidy writing something
of the form%:vT", whereu andv are either primitive types or nested type expressions, and
T is the binary type constructor. Other alternatives are dwmnted subsequently, but this
usage suffices for the present discussion. In this conteahdv are considered the left
and right subexpressions, respectively.

The binary type constructors in the language are listed bleT8.2, and explained
below.

121

example

constructor expression instance
A assignment %seA 'Z@Ec+": 2.778150e+00
D dualtype tree %qjD -15008/1349": <6.924+3.646]": <>>
U free union %EcU Y
X pair %abX (9:275,false)

Table 3.2: binary type constructors

A — Assignment

The assignment type constructArpertains to data that are expressed according to the
syntax(name: (meaning or "&A((name, (meaning) as documented in the previous
chapter. The left subexpressiann a type expression of the forfdvA is the type of the
(name field, and the right subexpressioris the type of themeaning field. Although
the pointer construct6&A uses the same letter as the related type constructor, tmdy do
coincide for all other types.

The example in Table 3.2 demonstrates the case of a typessipnadescribing assign-
ments whose name fields are character strings and whosengédighils are floating point
numbers.

D— Dual type tree

TheDtype constructor pertains to trees whose non-terminalsackea different type from
the terminal nodes. In a type expression of the fétmD, the type of the non-terminal
nodes isu, and the type of the terminal or leaf nodewis

The example in Table 3.2 shows a tree using the notation

(root)™: < [(subtreg[, (subtreé]*] >

where the™: operator joins the root to a list of subtrees, each of a smidem, in a
comma separated sequence enclosed by angle brackets. &ot@rminal node, the list
of subtrees is non-empty, and for a terminal node, it is thptgiist, <>.

We therefore have the type express¥jD for trees whose non-terminal nodes are
rational numbers, and whose terminal nodes are complex axsniccordingly, one in-
stance of this type is a tree whose root node is the ratiomabeun-15008/1349 , and
that has one leaf node, which is the complex nunth@24+3.646]

U - Free union

The free union of two typesg andv, given by the expressidiuvU, includes all instances
of either type as its instances. When a value is cast as affiilea,uhe appropriate syntax
to display it is automatically inferred from its concret@resentation.

122

Free unions therefore work best when the types given by thexguessions have dis-
joint sets of instances. In many cases, this condition igyeaset. The concrete repre-
sentations of characters, strings, and rationals are rtytligjoint, and therefore always
allow unions between them to be disambiguated correctlyufdls and booleans are dis-
joint from characters and rationals. Floating point numspbeomplex numbers, amdpfr
numbers are also mutually disjoint, and disjoint from altlo above except strings. Ad-
dresses are disjoint from everything except for the degda@as®:0 , which coincides
the boolean value dfue . Tuples, assignments, and records in which the correspond-
ing fields are disjoint are necessarily also disjoint. Thist fcan be used to effect tagged
unions, but a better way is documented subsequently.

If the types in a free union are not mutually disjoint, prigiis given to the left subex-
pression. For example, a free union between naturals angstwvill interpret the empty
tuple() as either the empty striny or the number zero depending on which subexpres-
sion is first.

$ fun --m="()" --c %nsuU
0
$ fun --m="()" --c %snuU

X —Pair

The X type constructor pertains to values expressed by the syrtaek), (right)) . The
left subexpression in a type expression of the forfvX is the type of thegleft) field,
and the right subexpressieris the type of theright) field.

The example shows the expressbiabX representing pairs whose left sides are ad-
dresses and whose right sides are booleans. We therefaéhavs,false) as an
instance of this type.

Similarly to assignment types, the same let¥ris used for pointer expressions as in
"&IrX . The meanings are related but in general pointers haveiadaisét of mnemonics
from type expressions.

3.2.2 Unary type constructors

The remaining type constructors used in the language amy tyy@e constructors, which
specify types that are derived from a single subtype. Forettemples in this section,
type expressions of the forfuT" suffice, wherél” is a unary type constructor amds an
arbitrary type expression, whether primitive or based d¢reotonstructors.

A list of unary type constructors is shown in Table 3.3. Eatthem is explained in
greater detail below.

G- Grid

The Gtype constructor specifies a type of data structure that eambisioned as shown
in Figure 3.3. The data are stored at the nodes depicted ssahat a relationship among

123

example

constructor expression instance

G orid %nG <[0:0: 134628": <7:10>],[7:10: 3": <>]>
J job %cJ "&J/I44%fOi& ‘2

L list %bL <true,false,true>

N a-tree %cCN [10:145: ‘C,10:669: ‘1,10:905: ‘A]

O opaque %fO 2413%fOi&

Q compressed %sQ %Q('zQPGJ26")

S set %sS {Pfo’,’PzHYgmq’,'We& * '}

T tree %eT 3.262893e+00": <-9.536086e+00": <>>
W pair %EW (7.290497E+00,-9.885898E+00)

Z maybe %qZ 0

m module %gm <'zu’: 5/9,aj: 60/1,Pj: -1/24>

Table 3.3: unary type constructors

S/

TS
RIS 575

N Ko
RS XN L 77

RXEIIKL

XK S

K Axg R
8\

S A BRNRSESS

BTSN L7 >

% "’ o “‘
L5 N

N

S0

Figure 3.3: an ensemble of trees with subtrees shared arheny t

124

them is encoded by the connections of the arrows.

e The number of nodes and the pattern of connections varigsdre grid instance to
another. Not all possible connections nor any regular paiserequired.

e A common feature of all grids is a partition among the nodesebgls, such that
connections exist only between nodes in consecutive levidie number of levels
varies from one grid instance to another.

e Every node in the grid is reachable from a node in the firstl)esreown at the left,
which may contain more than one node.

This structure therefore can be understood as either actestiform of a rooted di-
rected graph, or as an ensemble of trees with a possibiligdices shared among them.
The purpose of such a representation is to avoid duplicatiaffort in an algorithm by
allowing traversal of a shared subtree to benefit all of iteators. In some situations, this
optimization makes the difference between tractability @ambinatorial explosion. Algo-
rithms exploiting this characteristic of the data struetare facilitated by functional com-
bining forms defined in th&at library distributed with the compiler. See Section 1.2.3
for a simple example of a practical application.

One of the few advantages of an imperative programming arad that structures
like these have a very natural representation wherein eaa stores a list of the memory
locations of its descendents. When a shared node is mutpbgted, the change is ef-
fectively propagated at no cost. A similar effect can be $ataa in the virtual machine’s
computational model as follows.

e An address (of the primitive typ®3 is arbitrarily assigned to each node.

e Each level of the grid is represented as a separate balaimaag tree (or as balanced
as possible) of the form shown in Figure 3.1, with the nodeiestin the leaves. The
path from the root to any leaf is encoded by its address, saldsess is not explicitly
stored.

e Each node contains a list of the addresses (in the above)s#rise nodes it touches
in the next level, which belong to a separate address space.

e The following concrete syntax is used to summarize all of thiormation.

<

(local address. (node™: < (descendent’s address .>,

1,

(local address. (node™: <>,
b

125

Table 3.3 shows a small example of a grid of natural numbeng)ukis syntax, where
there are two levels and only one node in each level. A largeamgle using a different
type @0sQ is the following.

<
[0:0: 'egi”: <8:67,8:144,8:170,8:206>],
[
8:206: 'def”: <10:648,10:757,10:917,10:979>,
8:170: 'fgh”™: <10:342,10:345,10:757,10:917>,
8:144: 'acf”: <10:342,10:757,10:978,10:979>,
8:67: 'deh”™: <10:345,10:648,10:917,10:978>],

10:979: ’'chj”: <4:0,4:9,4:10,4:15>,
10:978: ’'cgj”: <4:3,4:9,4:11,4:15>,
10:917: 'efi”: <4:0,4:9,4:11,4:15>,
10:757: 'adi””: <4:3,4:9,4:10>,
10:648: 'abh™: <4:0,4:10,4:11>,
10:345: ’cij”: <4:0,4:3,4:11,4:15>,
10:342: ’'aeg”: <4:3,4:10,4:11>],

4:15: ’bdi”: <>,
4:11: 'ehi”: <>,
4:10: 'acd”: <>,
4:9: 'ghj”: <>,
4:3: 'abc”: <>,
4:0: 'aei”: <>]>
Note that the addresses in the list at the right of each nadeetative to the address space

of the succeeding level, and that the pattern of connecisinsegular.
A few other points about grid types should be noted.

e A type of the form%Gis similar to a type€4TNL using constructors explained later
in this section, but not identical because the effect ofethaubtrees is not captured
by the latter. A typegalLANL is in some sense “upward compatible” withG, but
is displayed differently and implies no relationships agtme addresses.

¢ Although grids can have multiple root nodes, the combirsatiafined in thdat
library work only for grids with a single root.

e Grids of types that include everything (suctag %q %t, and%X and that also have
multiple root nodes might defeat the algorithm used to digphem by the-cast
option, because there is insufficient information to infex grid topology efficiently
from the concrete representation. They can still be usethictige if this information
is known and maintained extrinsically (or by inserting aqu root node).

e Badly typed or ambiguous grids that don’t cause an exceptiaybe displayed with
empty levels. Unreachable nodes are not displayed, butcdreype detected as type

126

errors by debugging methods explained subsequently, ptagisd by the upward
compatible type cast mentioned above.

e Compared to the grid type constructor, the rest are easy.

J —Job

As explained in the previous chapter, the style of anonymeasrsion supported by the
virtual machine and related pseudo-pointers implies thianetion of the fornrefer f
applied to an argumentevaluates tgf ("&J(f, x)) , where the expressio&J(f, z),
called a “job”, contains a copy of the recursive functiontpeut therefer combina-
tor) along with the original argument, Jobs are represented as pairs with the function
on the left and the argument on the right, but it is more mnemtmregard them as a
distinct aggregate type with its own constructor and dettaotrs,”&J , “&f , and™&a,
respectively.

Although a job has two fields, one of thefi&f , is always a function, and functions
in Ursala are primitive types. The type of a job is therefoeéedmined by the type of the
other field,”&a . The job type constructor is consequently a unary type coctstr, whose
base type is that of the argument field.

When a valué&J((functior}, (argument)) is cast as a job typ&J for printing, the
output is of the form

"&J (size%fOi& (text

where (sizé is a decimal number giving the size of the function measuneguits, and
(text is the display of the argument cast as the ®¥peThe opaque display format is used
for the function field because the explicit form is likely te too verbose to be helpful.

L — List

The list type constructot,, pertains to the simplest and most ubiquitous data streatur
functional languages, wherein members are stored totieilefficient sequential access.
As shown in many previous examples, the concrete syntaxlistria Ursala consists of a
comma separated sequence of items enclosed in angle l&racket

<item,, item;, ...item,>

There is also a concept of an empty list, which is expressedasAs explained in the
previous chapter, lists can be constructed by &@ data constructor, and non-empty lists
can be deconstructed by th&h and™&t functions.

It is customary for all items of a list to be of the same typee Tase type in a type
expression of the forr&L is the type of the items. A list cast to this type is displayed
with the items cast to the typd.

The convention that all items should be the same type, netidesay, is not enforced
by the compiler and hence easy to subvert. However, it isgsistasy and more rewarding
to think in terms of well typed code when a heterogeneousdiseeded, by calling it a
list of a free unions.

127

$ fun --m="<1,a’,2,3,'b’>" --c %nsUL
<1,/a’,2,3,'b’>

Free unions are explained in Section 3.2.1.

Because there is no concept of an array in this languageypeéteL (lists of floating
point numbers) is often used for vectors, &dLL (lists of lists of floating point numbers)
for (dense) matrices. The virtual machine interface toragienumerical libraries involv-
ing vectors and matrices, suchfiey and lapack , converts transparently between lists
and the native array representation. Hwveam reference manual also documents repre-
sentations for sparse and symmetric matrices as listsgalath all calling conventions
for the external library functions.

N-— A-tree

Although there are no arrays in Ursala, there is a contalreris more suitable for non-
sequential access than lists, namely the a-tree, mnenmmacifiressable tree.

The concrete syntax for an a-tree is a comma separated sEgaéassignments of
addresses to data values, enclosed in square bracketsyas ls&low.

[

ag. Tg,
ay. T,
Gp: Ty

The addresses follow the same syntax as the primitive address t@pa,namely a colon
separated pair of literal decimal constamtsy:, with m in the range) through2™ — 1. For
a valid a-tree, all addresses must have the saradue. The data; can be of any type.

A type expression of the for84N describes the type of a-trees whose data values are of
the type%. An example of an a-tree of ty@@qN containing rational numbers, expressed
in the above syntax, would be the following.

[
8:1: 0/1,
8:22: 1569077783/212,
8:24: 2060/1,
8:76: -21/1,
8:140: 9/3021947915,
8:187: -198733/2,
8:234: 10/939335417423]

The crucial advantage of an a-tree is that all fields are kgadcessible in logarithmic
time by way of a single deconstruction operation.

$ fun --m=""2:0 [2:0: fo0’,2:1: 'bar,2:2: 'baz’]" --c

128

'foo’
$ fun --m=""2:1 [2:0: foo’,2:1: 'bar’,2:2: 'baz’]" --c
‘bar’
$ fun --m=""2:2 [2:0: foo’,2:1: 'bar’,2:2: 'baz’]" --c
'‘baz’

As shown above, the deconstructor function is given simglyhie address of the field as
it is displayed in the default syntax.
This efficiency is made possible by the representation oé@stas nested pairs.

$ fun --m="[2:0: 'foo’,2:1: ’'bar’,2:2: 'baz’]" --c %sSWW
((foo’,’bar’),’baz’,”)
This output is actually a sugared form (ffoo’,’bar’),('baz’,”)) , which

shows more clearly that all data values are nested at the dapth, making them all
equally accessible.

$ fun --m="((foo’,’bar’),(’baz’,”))" --c %sN
[2:0: ’foo’,2:1: 'bar’,2:2: 'baz’]

Moreover, the addresses aren't explicitly stored at alt,ave an epiphenomenon of the
position of the corresponding data within the structuree dkeconstruction operation by
the address works because of the representation of adglpessds shown in Figure 3.2,
and the semantics of deconstruction operator,

The formatting algorithm for a-trees will infer the minimudepth consistent with valid
instances of the base type. If the base type is a free unierg th a possibility of ambigu-
ity. For example, if the data can be either strings or pairstiofigs, the expression above
is displayed differently.

$ fun --m="[2:0: foo’,2:1: 'bar’,2:2: 'baz’]" --c %ssWUN
[1:.0: (foo’,’bar’),1:1: (baz’,”)]

A few further remarks about a-trees:

e Other language features such as the assignment operat@re useful for manipu-
lating a-trees, and will require further reading. This isuaepfunctional combinator
despite its connotations.

e There is no reliable way to distinguish between unoccupoedtions in an a-tree
and locations occupied by empty values. Neither is displaytempts to extract
the former will sometimes but not always cause an invalicdstruction exception.
A-trees are best for base types that don’t have an emptynicstauch as tuples and
records.

e Experience is the best guide for knowing when a-trees aréwhbe trouble. Large
state machine simulation problems or graph searchingigiguos are obvious candi-
dates. An a-tree of states or graph nodes each containirgjaseacy list storing the
addresses of its successors might allow fast enough tedltersompensate for the
time needed to build the structure.

129

O- Opaque

The opaque type constructor can be appended to anyyaoeform the opaque typ&O.
These two types are semantically equivalent but displayiéerently when printed as a
result of the-cast command line option.

Opaque syntax When a value is cast as typ@QO, for any type expression(other tharc),

it is displayed in the form{size %0i& where(sizé is a decimal number giving the size
of the data measured in quits, ahd the same type expression appearing in the ¥t
For example,

$ fun --m="<1,2,3,4>" --c %nLO

17%nLOi&

$ fun --m="2.9E0" --c %EO
186%EQi&

$ fun --m=successor --c %fO
40%fOi&

Opaque semantics The reason for the unusual form of these expressions it thas ian ap-
propriate meaning implied by the semantics of the operatppearing in them (which are
explained further in connection with type operators). Tkgressions could be compiled
and their value would be consistent with the type and sizéhefdriginal data. How-
ever, because the original data are not fully determinedh&ekpression, it evaluates to a
randomly chosen value of the appropriate type and size.

$ fun --m=double --c %f
conditional(
field &,
couple(constant O,field &),
constant 0)
$ fun --m=double --c %fO
12%fOi&
$ fun --m="12%fOi&" --c %fO
12%fOi&
$ fun --m="12%fOi&" --c %f
race(distribute,member)
$ fun --m="12%fOi&" --c %f
refer map transpose

Note that in the last two cases, above, the expresk286fOi& is seen to have differ-
ent values on different runs. This effect is a consequendbeofandomness inherent in
its semantics. (It's best not to expect anything too protbfrom a randomly generated
function.)

130

Inexact sizes Some primitive types are limited to particular sizes that'tthe varied to
order, such as booleans and floating point numbers. In sw&sctne expression evaluates
to an instance of the correct type at whatever size is passibl

$ fun --m="100%e0i&" --c %eO
62%e0i&

Opaque characters Opaque data expressions will usually be evaluated diffgréor every
run, but an exception is made for opaque characters. In #sis,¢he numbe(size ap-
pearing in the expression is not the size of the data (whiahdvwalways be in the range of
3 through 7 quits for a character), but the ISO code of the aditer. It uniquely identifies
the character and will be evaluated accordingly.

$ fun --m="65%cOi&" --c %cC
‘A
$ fun --m="65%cOi&" --c %cC
‘A

However, a random character can be generated either by pasiaeter in excess of 255
or an operand other tha or both.

$ fun --m="256%cOi&" --c %cC
229%cOi&
$ fun --m="65%cQi(0)" --c %c
175%cOi&

Q- Compressed

Any type expression ending wit@Q represents a compressed form of the type preceding
the Q For example, the typ&sLQis that of compressed lists of character strings. The
compressed data format involves factoring out common guiessions at the level of the
virtual machine code representation.

e The compression is always lossless.
e It can take a noticeable amount of time for large data strestar functions.

e Compression rarely saves any real memory on short livedinua data structures,
because the virtual machine transparently combines shldatdwhen created by
copying or detected by comparison.

e Compression saves considerable memory (possibly ordemaghitude) for redun-
dant data that have to be written to binary files and read bgakabecause infor-
mation about transparent run time sharing is lost when tkee @@ written.

131

Listing 3.3 a list of non-unique character strings is a candidate forpgression

long = # redundant data due to a repeated line
-[resistance is futile

you will be compressed

you will be compressed]-

short = # compressed version of the above data

%Q long

Compression function The way to construct an instance of a compressed¥yQdrom an
instancer of the ordinary type& is by applying the functiod Qo =. The function%Q
takes an argument of any type and compresses it where pmshible thafoQby itself is
not a type expression but a function.

Extraction function ~ Extraction of compressed data can be accomplished by thaidan
%0QI. This function takes any result previously returnedb@and restores it to its original
form, except in the degenerate cas€a® O

The%QIlfunction can also be used as a predicate to test whethegitea@nt represents
compressed data. It will return an empty value if it does @oigl return a non-empty
value otherwise (normally the uncompressed data). Howéwdye consistent with this
interpretation%Ql %Q @valuates t& (true) rather tha®.’

Demonstration Not all data are able to benefit from compression, becausgédmts on the
data having some redundancy. However, lists of non-unigaeacter strings are suitable
candidates. Given a source flberg.fun containing the text shown in Listing 3.3, we
can see the effect of compression by executing a commandgptaglithe data in opaque
format with and without compression.

$ fun borg.fun --main="(long,short)" --c %00X
(504%0i&,338%0i&)

The output shows that the latter expression requires fewis &pr its encoding. If the
above example is not sufficiently demonstrative, the effect also be exhibited by the
raw data.

$ fun borg.fun --m="(long,short)" --c %xW

(
-{
{{m[{cu[t@[mZSjCxbxS\H[qCxbtTS d[qCtUz?=zF]zDAwH
S\['\>Ohm["Wgz<EJ>Svd[gzFCtdbvd["mjDStdbvB["]z

"The alternative would be to use a function like®.& & "=&,%Ql+- for decompression if compressed empty data are a possi-
bility, or theextract function from theext.avm library distributed with the compiler.

132

DSt>At"S"|zezf[EZ'AtNCvezJ[I=Z@]z>mTB[i=Z<b=CtB
[eJCI@[f=]w]x<@TBCe\M\E\<}-,

zkKzSzPSauEkcyMz=CtfCw]z?=z<mzoAtTS\>O]cv{ =ZfCt
ctdbzEjDStE[)zFCt S mjf[dUz@]z<]ZpAvctB[e=Z=Ctu
xt[<hR=]t>T@VNV\<}-)

Compressed data can be extracted automatically for pgiasnshown.

$ fun borg.fun --main=short --c %sLQ
%Q <

'resistance is futile’,

'you will be compressed’,

'you will be compressed>

where the output includé®Qas a reminder that the data were compressed, and to ensure
that the data would be compressed again if the output wer@iéein Decompression can
also be performed explicitly B36QI, whereupon the result is no longer a compressed type.

$ fun borg.fun --main="%QIl short" --c %sL

<
'resistance is futile’,
'you will be compressed’,
'you will be compressed>
S—Set

Analogously to the notation used for lists, a finite set caeXgessed by a comma sep-
arated sequence of its elements enclosed in braces. Therdgkeof a set can be of any
type, including functions, although it is customary to thof all elements of a given set
has having the same type, even if that type is a free union.b@ike typet in a set type
expressio®sS is the type of the elements.

Contrary to the practice with lists, the order in which theneénts of a set are written
down is considered irrelevant, and repetitions are notifsogmt. Sets are therefore repre-
sented as lists sorted by an arbitrary but fixed lexical itafollowed by elimination of
duplicates. These operations are performed transparentlye compiler at the time the
expression in braces is evaluated.

$ fun -m="{a’,/b}" --c %sS

{a, b}
$ fun --m="{b’/a’}" --c %sS
{a, b}

$ fun --m="{a/b,a’}" --c %sS
{a',/b}

Because sets and lists have similar concrete represergatiany list operations such
as mapping and filtering are applicable to sets, using thee samde. However, it is the

133

user’s responsibility to ensure that the transformatiaserves the invariants of lexical
ordering and no repetitions in the concrete representafiaset. One safe way of doing so
is to compose list operations with the list-to-set poifigs , documented in the previous

chapter on page 65.

T—Tree

The T type constructor is appropriate for trees in which each nmtehave arbitrarily
many descendents, and all nodes have the same type. Thegpaseta type expression
%T is the type of the nodes in the tree. This type constructorusay form of the dual
type tree type constructdd, explained on page 122. A type expressigi is equivalent
to %tD.

Tree syntax An instance of a tree typ#T is expressed in the syntax
(root)™: < [(subtreg[, (subtreé]*] >

with the root having typé&4. Each subtree is either an expression of the same form, or the
empty tree;&V() . For atree with no descendents, the syntax is
(root)™: <>
In either case above, the space aftertheperator is optional, but the lack of space before
it is required. An alternative to this syntax sometimes usegrinting is
" ((root) ,< [(subtree[, (subtree]*] >)
In the usage above, the space aftertheperator is required. It is also equivalent to write
"< [(subtreé[, (subtree]*] > (root)

In this usage, the absence of a space after theoperator is required, and the space
between the subtrees and the root is also required. (Caamsntegarding white space
with operators are explained and motivated further in Géraps)

Example As a small example, an instance of treengffr (arbitrary precision) numbers,
with type %ET can be expressed in this syntax as shown.

-8.820510E+00": <
-1.426265E-01": <
~
-6.178860E+00,
<3.562841E+00": <>,6.094301E+00": <>>)>,
5.382370E+00": <>>

134

W- Pair

TheWtype constructor is a unary type constructor describingspamwhich both sides have
the same type. A type expressi®gWis equivalent té&44tX. (The binary type constructor
X is explained on page 123.) The same concrete syntax appligsh is that a pair is
written ((left), (right)) , with (left) and (right) formatted according to the syntax of the
base type.

An example of a type expression using this construct@n¥)for pairs of natural num-
bers, and an instance of this type could be expressg?8518122164,35510938)

Z — Maybe

The Z type constructor with a base typé specifies a type that includes all instances of
%, with the same concrete representation and the same sgntha)so includes an empty
instance. The empty instance could be writteif)ar [] , depending on the base type.

$ fun --m="(1,2)" --c %nW

(1,2)

$ fun --m="(1,2)" --c %nWZ

(1,2)

$ fun --m="()" --c %nW

fun: writing ‘core’

warning: can’t display as indicated type; core dumped
$ fun --m="()" --c %nWZ

0

The core dump in such cases is a small binary file containinggndstic message and the
requested expression written in raw d&@) format.

The usual applications for a maybe type are as an optiondlifiel record, an optional
parameter to a function, or the result of a partial functidmew it's meant to be unde-
fined. Although floating point numbers of typgeand%Ehave distinct maybe typé&éeZ
and%EZ it is probably more convenient to uB&Nfor undefined numerical function re-
sults, which propagates automatically through subseqaatlations according to IEEE
standards, and does not cause an exception to be raised.

Some primitive types, such d&h %g %n %s %t, and%yx already have an empty
instance, so they are their own maybe types. Any types amtistt byD, G L, N, S, T,
andZ also have an empty instance already, so they are not altgitbeé B type constructor.

The types for whiclZ makes a difference abég %c %e %f, %j, %q %y, and%E any
record type, and anything constructedAyd, Q W or X. For union types, both subtypes
have to be one of these in order for théo have any effect.

m-— Module

Themtype constructor in a typ#mis mnemonic for “module”. A module of any ty3é
is semantically equivalent to a list of assignments of ggito that type%sAL, and the

135

syntax is consistent with this equivalence. An example ofoalue of natural numbers,
with type %nmis the following.

<
'foo’: 42344,
‘bar’: 799191,
'baz’: 112586>

Modules are useful in any kind of computation requiring dnt@kup tables, finite
maps, or symbol environments.
e Modules can be manipulated by ordinary list operationsh silscmapping and filter-
ing.
e The dash operator allows compile time constants in modalbs used by name like

identifiers. For example, ¥ were declared as the module shown above, ¥ifao
would evaluate t@d2344 .

e The#import directive can be used to include any given module into thepslen's
symbol table at compile time, in effect “bulk declaring” atiymputable list of values
and identifiers.

Usage of operators and directives is explained more thdiguig subsequent chapters.

3.3 Remarks

There is more to learn about type expressions than this ehapters, but readers who
have gotten through it deserve a break, so it is worth pauseng to survey the situation.

e All primitive types and all but three idiosyncratic type abructors supported by the
language are now at your disposal.

e While perhaps not yet in a position to write complete appiae, you have sub-
stantially mastered much of the syntax of the language byileg the syntax for
primitive and aggregate types explained in this chapter.

e The perception of different types as alternative desanstiof the same underlying
raw data will probably have been internalized by now, alontl whe appreciation
that they are all under your control.

e Your ability to use type expressions at this stage extends to

— expressing parsers for selected primitive types

— displaying expressions as the type of your choice using-test command
line option

— construction of compressed data and their extraction

8The compiler doesn’t have a symbol table as such, but thatiateer for Part IV.

136

— construction and extraction of data in self-describingrfar

e You've learned the meaning of the word “quit”.

137

A sane society would either kill me or find a use for me.
Anthony Hopkins as Hannibal Lecter

Advanced usage of types

The presentation of type expressions is continued and ededlin this chapter, focusing
specifically on several more issues.

e functions and exception handlers specified in whole or in patype expressions,
and their uses for debugging and verification of assertions

e abstract and self-modifying types via record declaratiansl their relation to literal
type expressions and pointer expressions

e a broader view of type expressions as operand stacks, vattetiuisite operators for
data parameterized types and self-referential types

4.1 Type induced functions

Several ways of specifying functions in terms of type exgpi@ss are partly introduced in
the previous chapter for motivational reasons, sugh &5l , Y, andi , butitis appropriate
at this point to have a more systematic account of these psrand similar ones.

The relevant type expression mnemonics are shown in Tabl&@#hese can be divided
broadly between those that are concerned with exceptiamalitons, useful mainly dur-
ing development, and the remainder that might have apmitaiin development and in
production code. The latter are considered first becaugeatieethe easier group.

4.1.1 Ordinary functions

In this section, we consider type induced functions for fomgn, parsing, recognition, and
the construction of self describing type instances, but finse that’s easier to understand
than to motivate.

138

mnemonic arity meaning

=

identity function

parsing function
exceptional input printer
instance recognizer
error messenger

printer

recursifier (forC or V)
self-describing formatter
i/o type validator

< <IVUVZ— OB X
NRPRRRRRR

Table 4.1: one of these at the end of a type expression ma&dgnction

k — Identity function

Thek type operator appended to any correctly formed type exjoress type induced
function transforms it to the identity function. It doesmtatter how complicated the
function or type expression is.

$ fun --main="%cjXsjXDMkK" --decompile

main = field &

$ fun --main="%nsSWnASASK" --decompile

main = field &

$ fun --main="%sLTLsLeLULXK" --decompile

main = field &

$ fun --main="%sLTLsLeLULXk -[hello world]-" --show
hello world

The application for this feature is to “comment out” type uiedd functions from a
source text without deleting them entirely, because they beauseful as documentation
or for future developmernit.

e As a small illustration, one could envision a source text trginally contains the
code fragmenfoo+ bar , wherefoo andbar are functions ane is the functional
composition operator.

¢ In the course of debugging, it is changedd@o+ %eLM+ bar for diagnostic pur-
poses, using th#type operator explained subsequently, to verify the outymumh
bar .

e When the issue is resolved, the code is changéda® %elLMk+ bar rather hav-
ing the diagnostic function deleted, leaving it semanlyocadjuivalent to the original
because the expression ending Witls now the identity function.

Without any extra effort by the developer, there is now a cemndocumenting the out-
put type ofbar and the input type ofoo as a list of floating point numbers. The same

Lor perhaps Komment out”

139

effect could also have been achievedfbyp+ (#%eLM+#) bar using comment de-
limiters, but the more cluttered appearance and extra lakest are a disincentive. The
resulting code would be the same in either case, becausttydemctions are removed
from compositions during code optimization.

p — Parsing function

The mnemoni@ appended to certain primitive type expressions resultperser for that
type, as explained in Section 3.1.1. The applicable type%oar%c %e %E %n %q %s
and%yx as shown in Table 3.1.

The parsing function takes a list of character strings tonatance of the type, and is
an inverse of the printing function explained subsequenthhis section. The character
strings in the argument to the parsing function are requioedonform to the relevant
syntax for the type.

| —Instance recognizer

For a type¥s, the instance recognizer is expres&¢t. Given an argument of any type,

the function%! returns a value dd if = is not an instance of the ty8é, and a non-zero
value otherwise. For example, the instance recognizerdtural numbersyonl, works as

follows.

$ fun --m="%nl 10000" --c %b
true
$ fun --m="%nl 1.0e4" --c %b
false

The determination is based on the virtual machine levelesgrtation of the argument,
without regard for its concrete syntax. Some values aramtgs of more than one type,
and will therefore satisfy multiple instance recognizers.

$ fun --m="%el 1.0e4" --c %b
true
$ fun --m="%cLI| 1.0e4" --c %b
true

All instance recognizer functions follow the same convamtvith regard to empty or
non-empty results, making them suitable to be used as @tediin programs. However,
for some types, the value returned in the non-empty caseussefal interpretation relevant
to the type.

Compressed type recognizers The compressed type instance recogni4€)l has to uncom-
press its argument to decide whether it is an instané.df it is an instance, and it's not
empty, then the uncompressed argument is returned as the te#’s an instance but it's
empty, ther& is returned. See page 131 for further explanations.

140

Function recognizers If the argument to the function instance recognizét can be in-
terpreted as a function, it is returned in disassembled s tree of typ&oesfOXT. The
right side of each node is the semantic function needed ssesable it, and the left side
is a virtual machine combinator mnemonic.

$ fun --m="%fl compose(transpose,cat)" --c %sfOXT
(‘compose’,48%f0i&)": <

(transpose’, 7%f0Oi&)™: <>,

(cat’,5%fOi&)": <>>

This form is an example of a method used generally in the lagguo represent terms
over any algebra. The semantic function in each node foltb@sonvention of mapping
the list of values of the subtrees to the value of the whole. tr€his feature makes it
compatible with thé &K6 pseudo-pointer explained on page 85, which therefore can be
used to resassemble a tree in this form.

$ fun --m=""&K6 %fl compose(transpose,cat)" --decompile
main = compose(transpose,cat)

Other function recognizers The job type recognize¥sJl behaves similarly to the function
recognizer. For an argument of the fofi&J(f, a), wherea is of typet, the result
returned will be a disassembled versionfofs above. The same is true of the recognizers
%fZ1 , %fOl, %fOZI, etcetera Recognizers of assignments and pairs whose right sides
are functions will also return the disassembled functiaedognized.

P — Printer

For any type expressior, a printing function is given b%éP, which will take an instance
of the type to a list of character strings. The output costaindisplay of the data in
whatever concrete syntax is implied by the type expression.

$ fun --m="%nLP <1,2,3,4>" --cast %sL
<’<1,2,3,4>>

$ fun --m="%tLLP <1,2,3,4>" --cast %sL
<'<<&>,<0,&>,<&,&>,<0,0,&>>">

$ fun --m="%DbLLP <1,2,3,4>" --cast %sL

<true>/,

' <false,true>,,

' <true,true>,,

' <false,false,true>>">

Note that the output in every case is cast to a list of strégk, because printing functions
return lists of strings regardless of their arguments oir gnigument types. On the other
hand, the-cast option isn’t necessary if the output is known to be a list ahsgfs.

141

$ fun --m="%bLLP <1,2,3,4>" --show
<

<true>,

<false,true>,

<true,true>,

<false,false,true>>

A few other points are relevant to printing functions.

¢ In contrast with parsing functions, which work only on a sisat of primitive types,
printing functions work with any type expression.

¢ In contrast with the-cast command line option, printing functions don’t check
the validity of their argument. They will either raise an egtion or print misleading
results if the input is not a valid instance of the type to batpd.

e Being automatically generated by the compiler from itsriméétables, printing func-
tions for non-primitive types are not as compact as the edgmt hand written code
would be, making them disadvantageous in production code.

¢ Printing functions for aggregate types probably shoulda’tised in production code
for the further reason that end users shouldn’t be requoetderstand the language
syntax.

Y — Self-describing formatter

The self describing formatteY, when used in an expression of the fo¥iY, is a function
that takes an argument of tyé to a result of typeoy, the self describing type. The
result contains the original argument and the type tag ddrikom%, as required by the
concrete representation for values of tyjog

This operation is briefly recounted here in the interest ofifathe explanations of
all type induced functions collected together in this settbut a thorough discussion in
context with motivation and examples is to be found startingpage 120.

4.1.2 Exception handling functions

It's a sad fact that programs don’t always run smoothly. Mee glitches, network down-
time, budget cuts, power failures, security breaches,laggny intervention, BWI alerts,
and segmentation faults all take their toll. Most of thesemqmena are beyond the scope
of this document. Programs in Ursala can never cause a ségioearfault, except through
vulnerabilities introduced by external libraries writierother language$However, there
is a form of ungraceful program termination within our remit

When the virtual machine is unable to continue executingognam because it has
called for an undefined operation, it terminates executimhraports a diagnostic message
obtained either by interrogation of the program or by defalliese events are preventable

2or by a bug in the virtual machine, of which there are none knand none discovered through several years of heavy use

142

in principle by better programming practice, and considenashes for the present dis-
cussion.

The supported mechanism for reporting of diagnostic messdgring a crash is ver-
satile enough to aid in debugging. Full details are docuetkint theavram reference
manual, but in informal terms, it is a simple matter to supprapper for any misbe-
having function adding arbitrarily verbose content to itsgthostic messages. It is also
possible to interrupt the flow of execution deliberately secareport a diagnostic given by
any computable function. Often the most helpful content dssplay of an intermediate
result in a syntax specified by a type expression. The funstdescribed in this section
take advantage of these opportunities.

C— Exceptional input printer

An expression of the forrC denotes a second order function that can be used to find
the cause of a crash. For a given functjgrthe function%C f behaves identically tg
during normal operation, but returns a more informativeremessage thafiin the event

of a crash.

e The content of the message is a display of the argument tlsapassed tg causing
it to crash, followed by the message reportedfbif any.

e The original argument passed fas reported, independent of any operations subse-
guently applied to it leading up to the crash.

e The argument is required to be an instance of the 8teand will be formatted
according to the associated concrete syntax.

e If the display of the argument takes more than one line, itejsasated from the
original message returned Byby a line of dashes for clarity.

The expressioProQy itself is equivalent t86gC which causes the argument to be reported
in general type format. This format is suitable only for shaajuments of simple types.

Intended usage The best use for this feature is with functions that fail intgtently for
unknown reasons after running for a while with a large datése reveal no obvious bugs
when tried on small test cases. Typically the suspect fanas deeply nested inside some
larger program, where it would be otherwise difficult to mfem the program input the
exact argument that crashed the inner function. More tips:

¢ If the program is so large and the bug so baffling that it’s isgdlole to guess which
function to examine, the type operator with a numerical s(#ig.,%Q %1, %2. . .)
can be used just like a crashing argument prif€, but with no type expression
required. The diagnostic will consist only of the literalmiber in the suffix. Start by
putting one of these in front of every function (with diffetenumbers) and the next
run will narrow it down.

143

Listing 4.1 toy demonstration of the crasher type operdtor,

#import std
#import nat

f = # takes predecessors of a list of naturals, but has a bug
map %nC predecessor # this should get to the bottom of it

t = (%nLC f) <25,12,5,1,0,6,3>

e In particularly time consuming cases or when the input typenknown, the usage
of %xCwill serve to capture the argument in binary format for fertlinalysis. The
output in raw data syntax can be pasted into the source tesgved to a binary file
with minor editing (see page 119).

e \ery verbose diagnostic messages can be saved to a file mgphe standard error
stream to it. Théash syntax is$ myprog 2> errlog , wheremyprog is any
executable program or script, including the compiler.

¢ Judicious use of opaque types, especially for argumentsicamg functions, can
reduce unhelpful output.

Unintended usage This feature isiothelpful in cases where the cause of the error is a badly
typed argument, because the type of the argument has to benkableast approximately
(unless one use®xCand intends to figure out the type later). TWdype operator ex-
plained subsequently in this section is more appropriatéhfat situation. An attempt to
report an argument of the wrong type will either show incarresults or cause a further
exception.

Example Listing 4.1 provides a compelling example of this featuream application
of great sophistication and subtlety. The functions supposed to take a list of nat-
ural numbers as input, and return a list containing the meskor of each item. The
predecessor function is undefined for an input of zero, and raises an di@epvith
the diagnostic messagermdtural out of range . This case slipped past the testing
team and didn’t occur until the dataset shown in the listirg wncountered in real world
deployment. The dataset is too large for the problem to beddny inspection, so the code
is annotated to elucidate it.

$ fun crsh.fun --c %nL
fun:crsh.fun:9:13: <25,12,5,1,0,6,3>

natural out of range

144

The output from the compilation shows two arguments disggdaypecause there are two
nested crashing argument printers in the listing. The auter%nLG pertains the whole
functionf , and properly shows its argument as a list of natural numbédrde the inner
one is specific to thpredecessor function and displays only a single number. The first
four arguments to thpredecessor function in the list were processed without incident
and not shown, but the zero argument, which caused the é¢sasipwn.

e Generally only the innermost crashing argument printer ig@ates the problem is
needed, but they can always be nested where helpful.

e The line and column numbers displayed in the compiler’s autpfer only to the
position in the file of the top level function application ogt®r that caused the error,
rarely the site of the real bug.

e When the bug is fixed, the crashing argument printers shautdhbnged té6nCkand
%nLCkinstead of being deleted, especially if the correct typesard to remember.

M- Error messenger

Whereas th€ type operator adds more diagnostic information to a fundtiat’s already
crashing, theMtype operator instigates a crash. This feature is usefdusssometimes
a program can be incorrect without crashing, but its intetiate results can still be open
to inspection. Often an effective debugging technique dogtbthe two by first identi-
fying an input that causes a crash with @eperator, and then stepping through every
subprogram of the crashing program individually usingNragperator.

Usage The evaluation of an expression of the fof#M x causesr to be displayed
immediately in a diagnostic message, with the syntax giwethe type%. However,
rather than applying an error messenger directly to an aegtima more common use is to
compose it with some other function to confirm its input orpauit

e If a function f is changed t&sM; f, the original f will never be executed, but
a display will be reported of the argument it would have haglfitst time control
reached it (assuming the argument is an instanéé)of

e If the function is changed tda:M+ f, it will not be prevented from executing, and if
it is reached, its output will be reported immediately tladter, with further compu-
tations prevented.

e Another variation is to writ€4C %M+ f, which will show both the input and the
output in the same diagnostic, separated by a line of dashete the absence of a
composition operator afté€2, and the presence of one aftdr

e For very difficult applications, it is sometimes justified \erify the code step by
step, changing every fragmefit ¢+ hto %M+ f+ %aMk+ g+ %Mk+ h, and
commenting out each previous error messenger to test th@nexThe result is that
the code is more trustworthy and better documented.

145

Diagnosing type errors A catch-22 situation could arise when an error messengesad u
to debug a function returning a result of the wrong type. lteorfor an error messenger
to report the result, its type must be specified in the expyesbut in order for the type of
result to be discovered, it must be reported as such.

A useful technique in this situation is to specify successigproximations to the type
on each execution. The first attempt at debugging a funé€tioas%oM+ fin the source,
to confirm at least thdt is being reached. If should have returned a pair of something,
the size reported for the opaque data should be greater ¢énan z

The next step is to narrow down the components of the resatlatie incorrectly typed.
If the type should have beé&@bX, then error messengers @hoXM %dXM and%ooXM
can be tried separately. However, it would save time to e dnions with opaque types,
as in an error messengerdioUboUXM The incorrectly typed component(s) will then be
reported in opaque format, while the correctly typed congmonif any, will be reported
in its usual syntax.

The technique can be applied to other aggregate types sucdeasand lists, using an
error messenger likmoUTMor YmoULM If only one particular node or item of the result
is badly typed, then only that one will be reported in opadquenfat. In the case of record
types (documented subsequently in this chapter) union tglopaque type in an error
messenger will allow either the whole record or only patactields to be displayed in
opaque format, making the output as informative as possible

R - Recursifier

TheRtype operator can be appended to expressions of thede@or %V, to make them
more suitable for recursively defined functions. If a rem#rsunction f crashes in an
expression of the forr@CR f, the diagnostic will show not just the argumentjftobut

the specific argument to every recursive invocatiorf afown to the one that caused the
crash. The effect fo#4VR f is analogous. The printer and verifier functions behave as
documented in all other respects.

e The compiler will complain ifR is appended to a type expression that doesn’'t end
with Cor V.

e The compiler will complain if this operation is applied tonsething other than a
recursively defined function. A recursively defined funaotie anything whose root
combinator in virtual code igefer (as shown by-decompile), which includes
code generated by tleepseudo-pointer and several functional combining form$&suc
as*”~ (tree traversal),& (recursive conjunction), an® (recursive conditional).

Example A certain school of thought argues against defensive progniag on the basis
that it's more manageable for a subprogram in a large systecrash than to exceed its
documented interface specification when it's undefinedingst.2 shows a tree traversing
functionf that doesn’t work for empty trees by design. It also doeswoitknfor any tree
with an empty subtree. Otherwise, for a tree of natural nusmbiedoubles the number in

146

Listing 4.2 value off is undefined for empty trees

#library+
X = # random test data of type %nT

7197774595263 <
10348909689347579265™: <
158319260416525061728777": <
0" <>,
"&V(),
574179086": <
~
1460,
<0™ <>,1" <>,1707091": <>,30": <>>)>>,
2135687 <>,
1286367: <97630998857": <>>>>

f = "&dINiICBPWV =+~

every node by inserting a O in the least significant bit positiThe listing is assumed to
be in a source file namedrsh.fun

$ fun rcrsh.fun
fun: writing ‘rcrsh.avm’
$ fun rcrsh --main=f --decompile
main = refer compose(
couple(
conditional(
field(&,0),
couple(constant 0,field(&,0)),
constant 0),
field(0,&)),
couple(field(0,(&,0)),mapcur((&,0),(0,(0,&)))))

Let’s find out what happens when the functioims applied to the test datashown in the
listing, which has an empty subtree.

$ fun rcrsh --main="f x" --c %nT
fun:command-line: invalid deconstruction

This is all as it should be, unless of course the functionterd$or some other reason. To
verify the chain of events leading to the crash, we can egecut

$ fun rcrsh --main="(%nTCR f) x" --c %nT 2> errlog

and view the crash dump fikxrlog (or whatever name was chosen) whose contents are
reproduced in Listing 4.3. Alternatively, a more concisastr dump is obtained by using
opague types.

147

Listing 4.3 recursive crash dump from Listing 4.2 showing the chain d§daading to a crash

fun:command-line: 7197774595263": <

10348909689347579265™: <

158319260416525061728777": <

0" <>

"&V(),

574179086™: <
~

1460,

<07 <>,1" <>,1707091": <>,307 <>>)>>,

213568 <>,
128636": <97630998857": <>>>>

10348909689347579265™: <
158319260416525061728777": <
0" <>,
“&V(),
574179086™: <
~
1460,

<0 <>,1" <>,1707091": <>,307: <>>)>>,

213568 <>,
128636": <97630998857": <>>>

158319260416525061728777": <
0% <>,
“&V(),
574179086"™: <
~
1460,

<07 <>,1" <>,1707091": <>,30"7: <>>)>>

“&V()

invalid deconstruction

148

$ fun rcrsh --main="(%0CR f) x"
fun:command-line: 499%o0i&

invalid deconstruction

The zero size of the last argument means it can only be emptghwiemonstrates that the
crash was caused specifically by an empty subtree. Of catiedsp would be necessary
in practice to verify that the function doesn’t crash andegicorrect results for valid input,
but this issue is beyond the scope of this example.

V — Type validator

For a given functionf, an expression of the for®bV f represents a function that is
equivalent tof whenever the input t¢ is an instance of typ® and the output fronf is
of type%b, but that raises an exception otherwise.

e If the input to a function of the formmbV f is not an instance of the typ#,
the diagnostic message reported when the exception idraigebe the words
“bad input type . The functionf is not executed in this case.

¢ If the input is an instance dfa, the functionf is applied to it. If the output from
f is not an instance d¥, the diagnostic message will report the input in the con-
crete syntax associated wita, followed by a line of dashes, followed by the words
“bad output type 7

e If f itself causes an exception in the second case, only the aségrfrom f is
reported.

The type operatoY is best understood as a binary operator in that it requiresstbex-
pressions in the type expression where it ocauesdb. Its result is not a type expression
but a second order function, which takes a functfoms an argument and returns a mod-
ified version off as a result. The modified version behaves identically to cases of
correctly typed input and output.

Validator usage This feature is useful during development for easily lagaly the origin

of errors due to incorrect typing. It might also be usefulidgrbeta testing but proba-
bly not in production code, due to degraded performanceeased code size, and user
unfriendliness.

3Advocates of strong typing may see this section as a viridivaif their position. It's true that you don't have these lgemns
with a strongly typed language (or at least not after you g& compile), but on the other hand, you aren't allowed totevmost
applications in the first place.

149

Although the type validation operator pertains to both tiput and the output types of
a function, it would be easy to code a validator pertainingigh one of them by using a
type that includes everything for the other.

e If a function is polymorphic in its input but has only one tygieoutput (for example,
a function that computes the length of list of anything),sitappropriate to use a
validator of the form2oaV or %xV on it, which will concern only the output type.
The latter will be more helpful for finding the cause of a typ®g if any, by reporting
the input that caused the error in raw format.

e A validator like %xV is meaningful in the case of a function with only one input
type but many output types (for example, a function thataettr the data field from
self-describingoytype instances).

e This technique can be extended to functions with more lidngelymorphism by
using free unions. For exampl&ejUjV would be appropriate for a function that
takes either a real or a complex argument to a complex result.

e Some useless validators &fexxVand%ooV, which have no effect.

Example A naive implementation of a function to perform a bitwiseD operation on a
pair of natural numbers is given by the following pseudorpai expression.

$ fun --main=""&alrBPalhPrhPBPfabt2RCNQq" --decompile
main = refer conditional(
conditional(field(0,(&,0)),field(0,(0,&)),constant O),
couple(
conditional(
field(0,((&,0),0)),
field(0,(0,(&,0))),
constant 0),
recur((&,0),(0,(((0,&),0),(0,(0,&)))))),
constant 0)

The problem with this function is that the result is not neseesy a valid representation
of a natural number, because it doesn’t maintain the inmatieat the most significant bit
should beX.

This error can be detected through type validation with cigifit testing. In practice
we might run the program on a large randomly generated téstsgd, but for expository
purposes a couple of examples are tried by hand. On the firgt &ippears to be correct.

$ fun --m="(%nWnV ~“&alrBPalhPrhPBPfabt2RCNq) (8,24)" --c
8

On the second try, the invalid output is detected.

150

$ fun --m="(%nWnV ~“&alrBPalhPrhPBPfabt2RCNq) (8,16)" --c
fun:command-line: (8,16)

bad output type

Because the function is recursively defined, we can alsdaRtoperator on it for more
information.

$ fun --m="(%nWnVR ~&alrBPalhPrhPBPfabt2RCNq) (8,16)" -- c
fun:command-line: (8,16)

bad output type

This result shows that even an input as simpl€la®) would cause a type error. To get
a better idea of the problem, we examine the raw data.

$ fun --m=""&alrBPalhPrhPBPfabt2RCNq (1,2)" --c %tL
<0>

This result combined with a mental simulation of the listagighe decompiled virtual code
above is enough to identify the problem.

4.2 Record declarations

Difficult programming problems are made more manageabléhbytime honored tech-
niques of abstract data types. The object oriented parathges this practice further,
with a tightly coupled relationship between code and datd, iaterfaces whose bound-
aries are carefully drawn. The functional paradigm promate equal footing for func-
tions and data, largely subsuming the characteristics jgictdbwithin traditional records
or structures, because their fields can be functions. Hawewe benefit of objects re-
mains, which is their ability to be initialized automatilgalipon creation and to maintain
specified invariants automatically during their existence

The present approach draws on the strengths of object atiento the extent they are
meaningful and useful within an untyped functional cont&tte mechanism for abstract
data types is called a record in this manual, and it plays dasindle to records or struc-
tures in other languages. The terminology of objects isdmahi because methods are not
distinguished from data fields, which can contain functidfiewever, an additional func-
tion can be associated optionally with each field, whichah#es or updates it implicitly
whenever its dependences are updated. These featurescarmeatded in this section.

151

Listing 4.4 a library exporting an untyped record with three fields anéxample instance

#library+
myrec :: front middle back

an_instance = myrec[front: 2.5,middle: 'a’,back: 1/3]

4.2.1 Untyped records

The simplest kind of record declaration is shown in Listindy, 4vhich has a record named
myrec with fields namedront , middle , andback . A record declaration may be
stored for future use in a library by thdibrary+ directive, or used locally within the
source where it is declared.

Field identifiers

If a record is declared by no more than the names of its fieldgrves as a user defined
container for values of any type. In this regard, it is corapée to a tuple whose com-
ponents are addressed by symbolic names rather than demtost like&l and&r. In
fact, the field identifiers are only symbolic names for adskeeschosen automatically by
the compiler, and can be treated as data. With Listing 4.4file aamedlib.fun , we
can verify this fact as shown.

$ fun rlib.fun

$ fun: writing ‘rlib.avm’

$ fun rlib --main="<front,middle,back>" --cast %al
<2:0,2:1,1:1>

Record mnemonics

The record mnemonic appears to the left of the double coloagécord declaration, and
has a functional semantics.

e If the record mnemonic is applied to an empty argument, itrret an instance of the
record in which all fields are addressable (i.e., withousgagian invalid deconstruc-
tion exception) but empty.

e If the record mnemonic is applied to a non-empty argumeetatigument is treated
as a partially specified instance of the record, and the immgiven by the mnemonic
fills in the remaining fields with empty values or their detawdlues, if any.

For an untyped record such as the one in Listing 4.4, the efopty and the initialized
form of the record are the same, because the default valuaabf #eld is empty. In

152

general, the empty form provides a systematic way for usanepolymorphic functions
to ascertain the number of fields and their memory map for@rdeaf any typ€'

For the example in Listing 4.4, the record mnemonimigec , and has the following
semantics.

$ fun rlib --m=myrec --decompile
main = conditional(
field &,
couple(
compose(
conditional(field &,field &,constant &),
field(&,0)),
field(0,&)),
constant 1)

This function would be generated for the mnemonic of any petlyrecord with three
fields, and will ensure that each of the three is addressableiEempty.

$ fun rlib --m="myrec ()" --c %hhzZW
((0.0).0)

However, the main reason for using a record is to avoid hawrgink about its concrete
representation, so neither the record mnemonic nor theildéfistance would ever need
to be examined to this extent.

Instances

An instance of a record is normally expressed by a comma atgubsequence of assign-
ments of field identifiers to values, enclosed in square letacland preceded by the record

mnemonic.
(record mnemonig

(field identifiey: (value,

(field identifieb:: (value]

The fields can be listed in any order, and can be omitted if ttefault values are intended.
The code in Listing 4.4 would have worked the same if the datitan of the instance had
been like this.

an_instance = myrec[back: 1/3,front: 2.5,middle: 'a’]

To initialize only themiddle field and leave the others to their default values, the syntax
would be like this.

4There is of course no concept of mutable storage in the layggReferences to updating and initialization throughbistmanual
should be read as evaluating a function that returns an egdatpy of an argument. For those who find a description iettersns
helpful, all arguments to functions are effectively “pabdg value”. Although the virtual machine is making pointpaghetti behind
the scenes, sharing is invisible at the source level.

153

an_instance = myrec[middle: ’'a’]

The record mnemonic is necessary to supply any implicitdefaThis syntax is similar
to that of an a-tree (page 128), except that the addressaymatmlic rather than literal.
Unlike lists, sets, and a-trees, there is no expectatiarethields in a record should have
same type.

In some situations, it is convenient to initialize the valoéa pair of fields by a function
returning a pair, so a variation on the above syntax can b asexemplified below.

point[(y,x): mpfr..sin_cos 1.2E0, floating: true]

The mpfr..sin_cos function used in this example computes a pair of numbers more
efficiently than computing each of them separately.

To express an instance of a record in which all fields have tefault values, a useful
idiom is (record mnemoni&. That is, the record mnemonic is applied to the smallest
non-empty value&.

Deconstruction
The field identifiers declared with a record can be used asdétmtors on the instances.

$ fun rlib --m=""front an_instance" --c %e
2.500000e+00
$ fun rlib --m=
o’

$ fun rlib --m=""back an_instance" --c %q

1/3

$ fun rlib --m=""(front,back) an_instance" --c %eqX
(2.500000e+00,1/3)

n~

middle an_instance" --c %s

The values that are extracted are consistent with thosatéatored in the record instance
shown in Listing 4.4. The dot operator is a useful way of camrig symbolic with literal
pointer expressions.

$ fun rlib --m=
‘a

middle.&h an_instance" --c %c

An expression of the fora. b x is equivalenttd' b ~a x, except where is a pointer
with multiple branches, in which case it follows the rulesalissed in connection with the
composition pseudo-pointer (page 79). To ensure corrsahthiguation, this usage of the
dot operator permits no adjacent spaces.

Implicit type declarations

Whenever a record is declared by the operator, a type expression is implicitly declared
as well, whose identifier is the record mnemonic precedednbyraerscore. ldentifiers
with leading underscores are reserved for implicit detiana so as not to clash with user

154

Listing 4.5 Typed records annotate some or all of the fields with a typeesgion.

#import std

#library+

goody bag :: # record declaration with typed fields
number_of items %n # field types are specified like this
cost %e

celebrity_rank %cZ

occasion %s

hypoallergenic ~ %b

goodies = # an instance of the typed record
goody_bag|

number_of items: 6,

cost: 125.00,

celebrity_rank: ‘B,

occasion: ‘Academy Awards’,

hypoallergenic: true]

defined identifiers. The record type identifier can be usezldiky other type expression
for casting or for type induced functions.

$ fun rlib --main=an_instance --cast _myrec
myrec[front: 57%o0i&,middle: 6%0i&,back: 8%0i&]

Values cast to untyped records are printed with all fieldspaque format because there
is no information available about the types of the fields, aitth any empty fields sup-
pressed. The opaque format nevertheless gives an indiattbe sizes of the fields. The
next example demonstrates a record instance recognizer.

$ fun rlib --main="_myrec%l| an_instance" --cast %b
true

When a type expression given by a symbolic name is used imgotgn with other type
constructors or functionals such lagndP, the symbolic name appears on the left side of
the%in the type expression, and the literals appear on the @gtitit%:. This convention

is a matter of necessity to avoid conflation of the two.

4.2.2 Typed records

The next alternative to an untyped record is a typed recoldgtwis declared with the
syntax exemplified in Listing 4.5.

e Typed records have an optional type expression associatedeach field in the
declaration.

155

e The type expression, if any, follows the field identifier ir ttheclaration, separated
by white space, with no other punctuation or line breaksiredu

e There is usually no ambiguity in this syntax because typeesgions are readily dis-
tinguishable from field identifiers, but the type expressptionally can be paren-
thesized, as i%cZ) .

e Parentheses are necessary only when the type expressiwernshy a single user
defined identifier without a leading underscore.

Typed record instances

The syntax for typed record instances is the same as thattybesh records, but there is
an assumption that the field values are instances of th@ecéise types. This assumption
allows the record instance to be displayed with a more in&tive concrete syntax than
the opaque format used for untyped records. If the source sodisting 4.5 resides in
file namedbags.fun |, the record instance would be displayed as shown.

$ fun bags.fun
fun: writing ‘bags.avm’
$ fun bags --m=goodies --c _goody bag
goody_bag|
number_of _items: 6,
cost: 1.250000e+02,
celebrity_rank: ‘B,
occasion: 'Academy Awards’,
hypoallergenic: true]

Type checking

The instance checker of a typed record verifies not only théiekls are addressable, but
that they are all instances of their respective declareestyp

$ fun bags --m="_goody bag%l 0" --c %b

false

$ fun bags --m="_goody_bag%l goody_ bag[cost: 'free’]" -c % b
false

$ fun bags --m="_goody_bag%l goody bag[cost: 0.0]" --c %b

true

This convention applies also to the type validator operatpwhen used in conjunction
with typed records (page 149), and to theast command line option, which will de-
cline to display a badly typed record instance as such.

$ fun bags --m="goody_bag|cost: 'free’]" --c _goody_bag
fun: writing ‘core’
warning: can’t display as indicated type; core dumped

156

Listing 4.6 default values with nested records

ta %e b %q
u:c_td%E
#cast _u

X = Uu& # default value of a record of type _u

Default values

Fields in a typed record sometimes have non-empty defaluésdo which they are auto-
matically initialized if left unspecified.

$ fun bags --m="goody_bag&" --c _goody_bag
goody_bag[cost: 0.000000e+00]

This example shows the default value@0 automatically assigned to tlwost field,
even though no value was explicitly specified for it. Theseventions are observed with
regard to default values.

¢ If the empty value() , is a valid instance of the field type, then that value is the
default. Types with empty instances include naturalsngs; booleans, and all lists,
sets, trees, grids, and “maybe” typé44).

e Primitive types with non-empty default values include theneric types¥e %E
and%gq whose defaults ar@.0 , 0.0EO , and0/1 . For the%Etype, the minimum
precision is used. The address typahas a default value @0 .

e If a field in a record is also a record, the default value of teé&lfis given by the
default value of the inner record.

e The default value of a record is the value obtained by irn#ilad) all of its fields to
their default values.

e If a field in a record is a pair for which both sides have defaalties, the default
value of the field is the pair of default values.

An example of a typed record with a field that is also a typednetés shown in List-
ing 4.6. When this code is compiled, the output is

u[c: t[a: 0.000000e+00,b: 0/1],d: 0.00E+00]

Some types, such as functions and characters, have neithenpty instance nor a
sensible default value. If such a field is left unspecifie@, tcord is badly typed. If
there is sometimes a good reason for such a field to be undgfiresdthe corresponding
“maybe” type should be used for that field in the record dedian.

157

Listing 4.7 Recursively defined records are a hundred percent legéimat

contract :: main_clause %s subclauses _contract%L
hit =

contract[
main_clause: 'yadayada’,
subclauses: <
contract[main_clause: 'foo’],
contract[
main_clause: ’bar’,
subclauses: <
contract[main_clause: ’lot’],
contract[main_clause: 'of1,
contract[main_clause: ’buffers’]>],
contract[main_clause: 'baz’]>]

Recursive records

Typed records open the possibility of fields that are dedlémebe of record types them-
selves, by way of implicitly declared type identifiers asrsgeprevious examples, such as
_myrec and_goody bag . A hierarchy of record declarations used appropriately can
be an important aspect of an elegant design style.

When multiple record declarations are used together, theeisnevitably arises of
cyclic dependences among them. Circular definitions arergdg not valid in Ursala
except by special arrangement (i.e., with tHix compiler directive), but in the case of
record declarations, they are valid and are interpretedogpiately®

Listing 4.7 briefly illustrates the use of recursion in a mecdeclaration. In this case,
only a single declaration is involved, and it depends orfitgeinvoking its own type iden-
tifier, _contract . Instances of this type can be cast or type checked as anytgfiee
This technique is applicable in general to any number of mliytulependent declarations.

Although it serves to illustrate the idea of recursive resotthe record in Listing 4.7
offers no particular advantage over the type of trees aig$tPoST. Trees are an inherently
recursive container suitable for most applications in fica@nd are better integrated with
other features of the language. However, one could unddlybéavision some suitably
complicated example for which only a user defined recursiveainer would suffice.

4.2.3 Smart records

The facility for automatically initialized fields in typeacords can be taken a step fur-
ther by having them initialized according to a specified fiorc Records with custom
designed initialization functions are called smart resardthis manual.

Sonly for the record declarations, not for mutually dependistlarations of instances of the records

158

Smart record syntax

The syntax for smart recard declarations is upward comigatiiih untyped records and
typed records, consisting of a record mnemonic, followedheyrecord declaration oper-
ator:: , followed by a white space separated sequence of triplegldfiientifiers, type
expressions, and initializing functions.

(record mnemonic::
(field identifiey (type expressian (initializing function

(field identifiey (type expression (initializing function

Untyped and uninitialized fields may be mixed with initi@dfields in the same declara-
tion. For an initialized field, a type expression is requibgdthe syntax, but an untyped
initialized field can be specified either with an opaque typgressiorfoq or an empty
value() as a place holder. This syntax is usually unambiguous, liirtitialization
function can be parenthesized if necessary to distingtitsbm a field identifier.

Semantics

The calling convention for the initializing function is thigs argument is the whole record,
and its result is the value of the field that it initializeswitl normally access any fields
on which its result depends by deconstructor functionsgusieir field identifiers in the
normal way. An initializing function may raise an exceptiarhich is useful if its purpose
is only to verify an assertion or invariant.

Afield in arecord could be declared as a record type itsethdabcase, the inner record
is initialized first by its own initializing function beforeeing accessible to the initializing
functions of the outer record. The same applies to any tygelofthat has a non-empty
default value.

If a field contains a list of records, every record in the Issfirst initialized locally
before being accessible to the initializing functions &t dluiter level. The same applies to
other containers, such as sets and a-trees, and other tgpieg liefault values, such as
floating point numbers.

If there are multiple fields with initializing functions ihé same record, they are effec-
tively evaluated concurrently. Any data dependences arttuerg are resolved according
to the following protocol.

¢ All field initializing functions are evaluated with idenétinputs.
e When a result is obtained for every field, a new record is canstd from them.

e If any field in the new record differs from the correspondirejdiin the preceding
one, the process is iterated.

e The result from any field initializing function is accessilbly the others as of the next
iteration.

159

Listing 4.8 polar and retangular coordinates automatically mainthine

#import std
#import nat
#import flo

#library+
point :: # each field has a type and an initializer
X %eZ -[x,-&r,"t,times™/r cos+ "t&-,r,! 0.|-

y %eZ -|'y,-&r ttimes/r sin+ "t&-,! 0.]-
r %ezZ -|r,-&x,7y,sqrt+ plus+ sqr/"’x “y&-,"x,7y,! 0.|-

t %eZ -t,-&x,"y,math..atan2/y "x&,"y&& ! divi2. pi, I 0.-
functions
add = point$[x: p|US+ ~x-’y: p|us+ ”y“”]

rotate = point$[r: “&r.r,t: plus+ /&l &r.]
scale = point$[r: times+ /&l &r.rit; "&r.t]
invert = scale/-1.

orbit = scale/2.1+ add’/invert rotate/0.5

e Initialization terminates either when a fixed point is reatlor a repeating cycle is
detected.

¢ In the case of a cycle, the record instance with the minimunghten the cycle is
taken as the result, or with multiple minimum weights antaapoy choice is made.

Aninitializing function never gets to see a record in whiom fields have been initialized
more than others. If multiple iterations are needed, evety ivill have been initialized
the same number of times. In practical applications, venyiferations should be needed
unless the initializing functions are inconsistent witle@mother. However, it is the user’s
responsibility to ensure convergence.

Example

Listing 4.8 shows a simple example of a smart record develdpea small library of
operations on two dimensional real vectors or points in aqlaA point has two equiv-
alent representations, either as a pair of cartesian atefitic, y), or as a pair of polar
coordinates(r, t), which are related as shown.

x=rcos(t) r=+/r2+y?

y=rsin(t) t=arctan(y/z)

The smart record allows a point to be specified either byzitg) coordinates or it$r, t)
coordinates, and automatically infers the alternativeis Téature is convenient because

160

some operations are better suited to one representatiotit@ather, and can be expressed
in reference to the appropriate one. Moreover, composidudifferent operations require
no explicit conversions between representations.

Much of the code in Listing 4.8 involves language featurésootuced in subsequent
chapters, so it is not discussed in detail at this stage. Mexveome crucial ideas should
be noted.

e Addition uses the cartesian representation.
e Rotation and scaling use the polar representation.

e The orbit function composes four functions without refereto either representation
and without explicit conversions.

To see smart records in action, we store Listing 4.8 in a filmexdplib.fun and
compile it as follows.

$ fun flo plib.fun
fun: writing ‘plib.avm’

The remaining fields are initialized automatically when bugabf1. is assigned tg.

$ fun plib --m="pointly: 1.]" --c _point
point[

x: 0.000000e+00,

y: 1.000000e+00,

r: 1.000000e+00,

t: 1.570796e+00]

Thescale function changes only the coordinate, but the others are automatically ad-
justed.

$ fun plib --m="scale/2. point[x: 0.5,y: 1.]" --c _point
point[

x: 1.000000e+00,

y: 2.000000e+00,

r: 2.236068e+00,

t: 1.107149e+00]

The same effect is achieved by adding a pair of equal poinés, gnough only the andy
coordinates are directly referenced by #us function.

$ fun plib --m="add "&iiX point[x: 0.5,y: 1.]" --c _point
point[

x: 1.000000e+00,

y: 2.000000e+00,

r: 2.236068e+00,

t: 1.107149e+00]

161

Listing 4.9 Parameterized records allow generic or polymorphic types.

#import std

#import nat

polyset "t" :: # parameterized by the element type
elements ""%S

cardinality %n length+ “elements

realset = polyset %e

realset_type = _polyset %e

X
y

realset[elements: {1.0,2.0,3.0}]
(polyset %s)[elements: {'foo’,’bar}]

4.2.4 Parameterized records

A way of defining general classes of records with a singleatatibn is to use a parame-
terized record, such as the one shown in Listing 4.9. Theigl#eat the common features
of a class of records are fixed in the declaration, and theifesithat vary from one to
another are represented by dummy variables.

e The dummy variables can be used in the declaration anywhedeatifier for a con-
stant could be used, whether to parameterize the type esxpnssor the initializing
functions. The same dummy variable can be used in seve@gla

e The record mnemonic has the semantics of a higher orderidumc¥Vhen applied
to a parameter value, the record mnemonic of a parametereeatd instantiates
the dummy variable as the parameter and returns a functaircétm be used as an
ordinary record mnemonic.

e The implicitly declared type identifier of a parameterizedard doesn’t represent a
type expression, but a function that takes a parameter as amgl returns a type ex-
pression as a result. The result returned can be used likelaraoy type expression.

Applications

One application for parameterized records would be to §pacpolymorphic type class.
The parameter can determine the type of a field in the recondng other things. An-
other would be to implement optional or pluggable featunes field initializing function.
However, there may be simpler solutions to these problears parameterized records.

e Polymorphic records can be obtained in various ways by dagldhe changeable
fields as general, opaque, raw, or self-describing types ¥%q %x or %y, respec-
tively), or as a free union of some known set of types.

162

¢ If an initializing function requires a proliferation of aphal configuration settings,
the record can be declared with extra fields to store themryHiedd in a record is
accessible to every initialization function in it.

In fact, it is difficult to identify a compelling case for pan@&terized records. | (the author
of the language) don’t consider them a useful feature bue Ipaevided them partly as a
friendly gesture to those who may feel otherwise, and paslyan exercise in compiler
writing.

Syntax

For the simple case of a first order parameterized recordsythiax for the declaration is
as follows.
(record mnemonic(dummy variable:: (fields

e The(fields have the syntax explained previously for typed or smartnd;dout may
also employ free occurrences of dummy variables.

e The (dummy variable can be a double quoted string containing any printable char-
acters other than a double quote, and that is not brokensalines.

e Alternatively, lists and tuples of dummy variables are \ald in place of a single
one, in any combination to any depth. They follow the usualtay for lists and
tuples in the language as comma separated sequences drinlasgle brackets or
parentheses.

Higher order parameterized records require one of theviatig forms, where the’s are
dummy variables or lists or tuples thereof, as explained@bo

((record mnemonicuvy) v, 1 (fields
(((record mnemonicuy) vy) v, 1 (fields
((({record mnemonicuvy) vy) ve) v3 = (fields

The parentheses in this usage are necessary and must be agstieown to inhibit the
usual right associativity of function application in th@¢mage. An alternative syntax for
higher order records is the following.

(record mnemonigvy) v; :: (fields
(record mnemoniguvy)(vy) vy = (fields
(record mnemonigug)(vy)(vy) vz = (fields

In this form, the parentheses are optional but a lack of spafme each dummy variable
is compulsory, except before the last one. Juxtapositidimoui a space is interpreted as a
left associative version of function application.

163

Usage

The use of a record mnemonic for a parameterized record matstiits declaration, both
in the order and the structure of the parameters. In thigdegashould be noted particu-
larly by experienced functional programmers that therdirsradistinction in this language
between a second order parameterized record and a firstreted parameterized by a
pair. That is,

(reC llall) Ilbll ::
is not semantically equivalent to

rec ("a","b") ::

Although they are similarly expressive, the latter has aeshat more efficient imple-
mentation. The choice between them is a design decisiohapsrfavoring the former
when there is some reason to expect that doesn’t need to be changed as oftefilés.

First order If something is declared as a first order parameterized de@r , then a
relevant record instance would be expressed as

(rec X)[...]

wherex matches the size or arity of the parameter. That igdf were declared
rec ("a","b") ::

then the value ok should be a pair, so that its left side can be instantiatéd'asand its
right side asb" . If rec were declared as

rec <u,v,w?> !

thenx should be a list of length three. If dummy variables occurastad tuples or lists,
the parameter should have a similar form.

Note that ifrec is a parameterized record, then it is not correcttowatg ...] asa
record instance without a parameter to the mnemonic, beipibssible to define a specific
record type

some_rec = rec some_param

and then to express an instancesame_rec[...].

Higher order If a higher order parameterized record is declared
(...((rec "a") "b") 4 I

the same considerations apply, with the additional promishat the nesting of function
applications in the use of the mnemonic must match its datoter, and the innermost

164

argument must match the structure of the innermost parantéémce, an instance of the
relevant record would be expressed

(...((rec a_val) b_val) cozvablooL]

Special cases of such a record can also be defined and invokextiangly by fixing one
or more of the inner parameters.

spec = rec a val
An instance could then be expressed

(...(spec b_val) ...zwval[...]

Types The type identifier of a parameterized record follows theesaalling conventions
as the record mnemonic, but returns a type expression. Witeerall of the above discus-
sion applies.

This situation is particularly relevant to recursively defil parameterized records, in
which care must be taken to employ the type expression abyréor example it would
not be correct to write

rec "a" :: foo bar _rec%L

becauserec by itself is not a type expression but a function returningpeetexpression.
Rather, it would be necessary to write

rec "a" :: foo bar (_rec "a")%L

or something similar.

It is not strictly necessary for the formal parameter of gpetidentifier to be the same
as that of the whole declaration (although certain optitiores apply if it is). For example,
a tree with node types alternating by levels could be dedlasefollows.

tree ("x","y") : root "Xx" subtrees (_tree ("y","X"))%L

The argument to the type mnemoniiee and the type identifiertree should always
be a pair of type expressions.

Example

Listing 4.9 defines a first order parameterized record meantddel a polymorphic set
type with an automatically initialized field maintainingetitardinality of the set. The
parameter is a type expression giving the types of the elsménone case a specialized
form of the record is defined, with the element type fixed a& remanother case, the
record with an element type of strings is invoked.

Assuming Listing 4.9 resides in a fipgec.fun , we can exercise it as follows.

165

$ fun prec.fun --m=x --c realset_type

polyset(1%0&)[
elements: {2.000000e+00,3.000000e+00,1.000000e+00},
cardinality: 3]

$ fun prec.fun --m=y --c " polyset %s"

polyset(1%o0i&)[elements: {'bar’,’foo’},cardinality: 2]

The 1%0i& parameter to thpolyset record mnemonic is displayed as a reminder that
the latter is a first order parameterized record. It can be #Hes in each case, the set
elements are displayed as instances of the correspondiampter type.

4.3 Type stack operators

Some types and type induced functions remain problemasipeoify in terms of the type
expression features introduced hitherto. These includenermated types, recursive types
other than records or trees, tagged unions, and functiagsrterate random instances of a
type. Where records are concerned, there is still a needdbled¢o combine two different
record types given by symbolic names within a single binanystructor (e.g., a pair of
records). These remaining issues are all addressed by arwtiob of some new type
operators, and a new way of looking at type expressions dented in this section.

4.3.1 The type expression stack

To use type expressions to their fullest extent, it is nesngs® understand them in more
operational terms than previously considered. Previoasngkes have employed type
expressions of the for®a,v11, for a binary type constructd#” and arbitrary type expres-
sionsu andw, referring tou as the left subexpression anas the right. Equivalently, one
could envision an automaton scanning forward through tipeession and accumulating
parts of it onto a stack. WheW is reached, the left operandwill be at the bottom of
the stack, and the more recently scanned right opevandl be at the top. W is then
combined with the uppermost operands on the stack, cointzEthe also its left and right
subexpressions.

If type expressions really were scanned by an automatomnitieata stack, then perhaps
more flexible ways of building them would be possible. Théiahicontents of the stack
could be chosen to order, and some direct control of the aattammcould be requested
when the expression is scanned. There is in fact a way of dmtigof these.

Initializing the stack

It is mentioned on page 155 that a symbolic type expressmmeftample, a record type
_foobar) can be combined with literal type operators (for examgie,ihstance recog-
nizer operatot) in a type expression such aoobar%l . The symbolic name on the
left of the%and the literals on the right are previously justified by sgtit necessity, but
it is generally true that any expressiorcan be placed immediately to the left of a type

166

mnemonic interpretation

d duplicate the operand on the top of the stack

| replace the top operand on the stack with its left side

r replace the top operand on the stack with its right side
w swap the top two operands on the stack

Table 4.2: type stack manipulation operators

(%s,%cL) %s (%s,%cL) %cL

@s,%cL) | 9 |@s%cl) | 1 [oosoecl) | W[ws || s | X[gescLx

Figure 4.1: illustration of type stack evolution to evaki@bs,%cL)%dlwrX

expression. In operational terms, the effect will be thas pushed onto the otherwise
empty stack before scanning begins.

Controlling the scanning automaton

With stack initialization settled, the issue of instrugtithe automaton is addressed by the
four operators in Table 4.2. These operators can be seestagitions addressed directly
to the automaton like keystrokes on a calculator, rather doenponents of the type being
constructed. There are some additional notes to the brseirgidions in the table.

¢ If the top value on the stack is a list rather than a pair| tlogerator will extract its
head and the operator will extract its tail.

e If the top value is a triple rather than a pair, th@perator will extract the left side,
and ther operator will extract the other pair of components. Thestatain be further
deconstructed bl orr .

e The above generalizes totuples of the form(zg,z; ...x,), assuming no inner
parentheses. On the other hand, a trile, y), z) is treated as a pair whose left
side is a pair.

Example

A simple example conveniently demonstrates all four typelsmanipulations. The initial
contents of the type stack will be the pair of type express{éés,%cL) , for strings and
lists of characters respectively. Our task will be to writgype expression that manually
constructs the product tygscLX from this configuration. Although this technique is
unduly verbose for a pair of literal type expressions, itldalso be used on a pair of
symbolic type expressions, such as record type identifiersyhich there would be no
alternative.

167

mnemonic interpretation

record type constructor the hard way

compressor function or compressed type constructor
random instance generator

recursive type or recursion order lifter

unit type constructor

cCSTTOW

Table 4.3: type operators with idiosyncratic usage

This task is easily accomplished by the sequence of opesadiol , w, andr in that
order. An animation of the algorithm is shown in Figure 4.1o cbnfirm that this
understanding is correct, we execute the following test.

$ fun --m="(foo’,’bar)" --c "(%s,%cL)%dIwrX"

(foo’,<'b,'a,'r>)

$ fun --m="(foo’,’bar’)" --c %scLX

(foo’,<'b,'a,'r>)

With identical results in both cases, the types appear tgbeaent. To be extra sure, we
can even do this,

$ fun --m=""&E(%scLX,(%s,%cL)%dIwrX)" --c %b
true

recalling that thé&E pseudo-pointer is for comparison.
Another variation shows that the subexpressions need nasée in the order they're
written down, because the automaton can be instructed tottteary.

$ fun --m="(foo’,’bar’)" --c "(%s,%cL)%drwiX"
(<'f,'0,'0>,"bar’)

However the original way is less confusing.
The patterrdiwr is needed so frequently in type expressions that it is iateauto-
matically when the literal portion of a type expression begvith a binary constructor.

$ fun --m=""&E((%s,%cL)%X,(%s,%cL)%dlwrX)" --c %b
true

Remembering this convention can save a few keystrokes.

4.3.2 ldiosyncratic type operators

A small selection of type operators remaining to be disalisselocumented in this sec-
tion, which is shown in Table 4.3. All of these rely in someesd&al way on an appro-
priately initialized type stack in order to be useful, andréfore depend on the preceding
discussion as a prerequisite.

168

B — Record type constructor

A type expression of the form%Brepresents a record type. If it is used explicitly instead
of declaring a record the normal way, theshould be a list of the form

<
(record mnemonic (initializer),
(field identifiej: (type expression
.(field identifie: .(type expressiorr

where the record mnemonic and field identifiers are charatiiags, and the initializer is a
function to initialize the record. This function must be swtent with the conventions for
record initializing functions explained in Section 4.2r8lawith the types and initializing
functions of the subexpressions, as well as their numbensrdory map.

This type constructor never has to be used explicitly bex#us compiler does a good
job of generating record type expressions automaticadiyfrecord declarations. It exists
as a feature of the language only to establish a semanticedord declarations in terms
of a quasi-source level transformation. Users are advséat the compiler handle it.

Q- Compressor function or compressed type constructor

There are several ways of using tQetype operator as previously noted on pages 131
and 140. One way is in specifying the type expressions of cessed types, another is in
specifying a function that uncompresses an instance of passed type, and another is as
a compression function. Examples &tsLQfor the type of compressed lists of character
strings,%sLQI for the instance recognizer and extraction function of cagaged lists of
character strings, aribCfor the (untyped) compression function.

In view of type expressions as stacks, it would be equivaiemrite t%Qor t%0Ql
respectively for the compressed form or extraction fumctd a typet. There is also a
more general form of compression functiel¥pQwheren is a natural number. Note that
this usage is disambiguated fraf¥%Qby n being a natural number andbeing a type
expression.

Granularity of compression The number. specifies the granularity of compression. Higher
granularities generally provide less effective but fastempression. The compression
algorithm works by factoring out common subtrees in its argat where doing so can
result in a net decrease in space. The granularity the size measured in quits of the
smallest subtree that will be considered for factoring out.

Choice of granularity Anything with significant redundancy can be compressed with
granularity of 0, equivalent téoQwith no parameter. If faster compression is preferred,
the best choice of granularity is data dependent. Granigision the order of0? quits

or more are conducive to noticeably faster compressionnbutlways applicable. For

169

example, to compress a function of the fohty, /) wheref is a large function or con-
stant appearing twice in the function be compressed, a atydarger than the size of
would be ineffective. A granularity equal to the sizefadr slightly smaller would causg

to be factored out and nothing else, assuming it is the largpsated subexpression. (The
size of f can be determined by displaying it in opaque format or bywbigght function.)

i —Random instance generator

Thei type operator generates a function that generates randsianoes of a given type.
Some comments relevant to theperator are found on page 130 in relation to the seman-
tics of the printed format of opaque types, because theyrameed as an expression that
includes tha operator, but the present aim is to document ttigerator specifically and

in detail.

Usage In terms of the stack description of type expressionsj tloperator requires two
operands on the stack, with the top one being a type expreasib the one below being
a natural number. A simple way of using it is therefore by apregsion of the form
(n, t)%i for a natural numben and a symbolic type expressionor more concisely
n%ul if the type can be expressed as a sequence of literalkhe former relies on the
convention of an implicitlwr inserted before the as mentioned on page 168.

Size of generated data The natural numbet usually represents the size measured in quits
of the random data that the function will generate. In sonsesdhe size is inapplicable
or only approximate because the concrete representatithredfpe instances constrains
it. For example, boolean values come in only two sizes. Hewevsize must always be
specified.

In one other case, namely expresions of the fa¥hcOi with n less than 256, the
numbern represents the ISO code of the character that is generathd function is
applied to the argumest That is, the function behaves deterministically when isojaio
& but returns a random character otherwise.

Semantics of generating functions Other than as noted above, random instance generators
ignore their arguments, hence the usual idiomatic practieeriting n%wi& to express a
random compile-time constant, wherein the argumedit i&n alternative would be for the
argument to influence the statistical properties of theltgsut to do so in any more than
anad hocway is a matter for further research by compiler developers.

Consequently, there is no way of controlling the distribotof results obtained by
random instance generators other than by post-procesdthgiigh the language provides
other ways to generate random data that are more cont@jlaBbme rough guidelines
about the (hard coded) statistics used by instance geneatas follows.

e Floating point numbers of typ&oe or %Eare uniformly distributed betweer10
and10.

170

e Complex numbers (typ&oj) have their real and imaginary parts uncorrelated and
uniformly distributed betweenr 10 and10.

e Strings, natural numbers and most aggregate types sucktasiid sets have their
length chosen by a random draw from a uniform distributiorogéhupper bound
increases logarithmically with. The sizes of the elements or items are then chosen
randomly to make up the total required size.

e Raw data, transparent types, trees, and functions areagedday arad hocalgorithm
to achieve a qualitative mix of tree shapes.

Properly speaking, random instance generators are natidansat all, and do not sit
comfortably within the functional programming paradigneng& comments on tH&K8
pseudo-pointer in Section 2.5.1 are applicable here as well

Example To generate an arbitrary module of dual type trees of chars@nd natural
numbers for stress testing a function that operates on gpels tthe following expression
can be used.

$ fun --m="500%cnDmi&" --c %cnDm

<
'QMS’: ‘U™ <
0" <>,
‘P <8™ <>,147: <>,0": <>,67; <>>,
~ (
149%cOig&,
<27 <>7&V(),1% <>,0" <>,0% <>>),
27 <>>,

{V}gamO$': 244%cOi&™: <218%cOi&™: <24 <>>27 <>>,
"IXtyVOKN#/IATD . 27 <>,

'POtPxo[" 220%cOi&™: <"&V(),07: <>,4" <>>,

[X-D+g'Y": ‘P7: <07 <>>>

See page 130 for more examples.

Limitations Due to issues with non-termination, random instance gémsrapply only to
non-recursive types (i.e., those that don't involvetlih@perator or circular record declara-
tions). A diagnostic message dédd i type ”is reported if it is used with a recursive

type.

h — Recursive type or recursion order lifter

The recursive type operatbrcan be used to specify the types of self-similar data struc-
tures. Normally tree type®4 T and%:D) or recursively defined records (page 158) are
sufficient for this purpose, but this type constructor igaiés unrestricted patterns of self-
similarity if preferred, and with less source level verl@dgan a record.

171

Semantics This operator can be understood only in terms of the typeesgion stack,

because its arity is variable. If the top of the stack alreealytains arh, then the next

h is combined with it like a unary operator, but otherwise itves as a primitive. The
h operator is not meaningful in itself, but its presence in petgxpression implies the
validity of certain semantics preserving rewrite rules efimition.

e If an h appears without anly adjacent to it, the innermost subexpression containing
it may be substituted for it.

¢ If a consecutive sequence ofof them appears without anothieradjacent to it, the
sequence can be replaced by the subexpression terminatbeé byth type opera-
tor following the sequence, numbering from 1. This rule iseaeyalization of the
previous one.

These rewrite rules always lengthen a type expression aradt lead to a normal form, but
the intuition is that they allow a type expression to be exieahas far as needed to match
a given data structure.

Examples The simplest example of a recursive typeL This is the type of lists of
nothing but more lists of the same. It is equivalen@4blLL, and to%hLLL, and so on.
Anything can be cast to this type.

$ fun --m="0" --c %hL

<>
$ fun --m="&" --c %hL
<<>>

$ fun --m="foo™ --c %hL
<

<L<>> <<> <S>
<LL>> <> <<> <KS>>>,
<LL>> <<> <<> <KS>S>>

The next simplest example is the type of nested pairs of empaig, Y%ohhWZBecause
there are two consecutive recursive type constructorstype is equivalent téohhWzwZz
and so on.

$ fun --m="0" --c %hhWZ

0
$ fun --m="(&,&,0)" --c %hhwWZz

((0.0).(0.0).0)

For a more complicated example, a type of binary trees afigdris constructed using
assignment of strings to pairs of the type. The trees areeegpd in the form

(root): ((left subtree, (right subtreé)

The empty tree ig) , a tree with only one node ia: () , a tree with two empty
subtrees ig’: ((),0) , and so on. The type expressioshhhhWZAZ

172

$ fun —-m="a: (b: (c: (0,d: 0),0)" ¢ %shhhhWzAZ
a: (b (et 0, 0).0)

u — Unit type constructor

These types have only a single instance, and are expressadyipg expression of the
form (instance%u For example, the type containing only the true booleanevabuld be
expressedrue%u .

The printing function for a unit type prints the instance engral %09 form. Because
printing functions don’t check the validity of their argunts, they will print the instance
even if the argument is something other than that. Howekies-tast command line
argument will detect a badly typed argument.

Unit types have a default value when declared as the type eldifi a record. The
default value is the instance. The field will be automaticatitialized to the instance
when the record is created.

Tagged unions A good use for unit types is to express tagged unions, whialddee done

by an expression such &%unX,&%usX)%U for a tagged union of natural&sf) and
strings @09, using boolean value® (and&) as the tags. Naturals, characters, and strings
also make good tags. The tag field could be on the left or the sige of a pair, but more
efficient code is generated when the tag field is on the le&khagn above.

A tagged union avoids the possibility of ambiguity charaste of free unions by
ensuring that the instances of the subtypes of the union tmsyeint sets of concrete
representations. For example, the empty (feeould represent either the natural number
0 or the empty string; , but the tag value determines the intended interpretation.

$ fun --main="(0,())" --c "(0%unX,&%usX)%U"
(0,0)
$ fun --main="(&,())" --c "(0%unX,&%usX)%U"
(&")

Enumerated types Another use for unit types is to construct enumerated tygdsiiming
the free union of a collection of them. The benefits of an emated type are that the
instance checker can automatically verify membershipesords with enumerated types
for their fields have built in sanity checking and initialiwan. The default value of a field
declared as an enumerated type is an arbitrary but fixedhicstalepending on the order
they are given in the type expression.

An example of an enumerated type for weekdays would be

(((Cmon’'%u,’tue’%u)%U,'wed %u)%U, thu'%u)%U, fri'% u)%U
A more elegant and more efficient way of expressing it would be

enum block3 'montuewedthufri’

173

using functions introduced subsequently. The instancekeliecan be seen to work as
expected.

$ fun --m="(enum block3 'montuewedthufri’)%I 'mon™ --c %b
true
$ fun --m="(enum block3 'montuewedthufri’)%lI ’sun™ --c %b
false

On the other hand, if the concrete representation of an eraiatktype is of no conse-
guence but symbolic names for the instances would be coengrihen a simpler way to
declare one would be to use the field identifiers from a recedladation instead of char-
acter strings, as iweekdays :: mon tue wed thu fri . A further declaration
along these lines

weekday type = enum <mon,tue,wed,thu,fri>

would allowweekday type to be used as an ordinary type expression, but the displayed
format of a value cast to this type would be more difficult tenpret than one with strings
as a concrete representation.

4.4 Remarks

This chapter in combination with the previous one brings tbose all necessary prepa-
ration to use type expressions and related features efdctn Ursala. You are welcome
to take it cafeteria style, because in this language typegaur servant rather than your
master (barring BWI alerts to the contrary).

Although type expressions are first class objects in theuagg, we have avoided
discussion of their concrete representations, becaugeatieedesigned to be treated as
opaque. As one author aptly put it, “the type of type is typR&aders wishing to know
more about how they are implemented are referred to Part Misfmanual on compiler
internals.

If any of this material is difficult to remember, a quick remar can be obtained by the
commands fun --help types whose output is shown in Listing 4.10.

174

Listing 4.10 output from$ fun --help types

type stack operators of arity 0

E push primitive arbitrary precision floating point type
push primitive address type

push primitive boolean type

push primitive character type

push primitive floating point type

push primitive function type

push primitive general data type

push primitive complex floating point type
push primitive natural number type

push primitive opaque type

push primitive rational type

push primitive character string type

push primitive transparent type

push primitive raw data type

push primitive self-describing type

<K X FTnoosTQ PO OO

type stack operators of arity 1

B construct a record type from a module

C transform top type to exceptional input printing wrapper
G transform top type to recombining grid thereof

I transform top type to instance recognizer

J transform top type to job thereof

L transform top type to list thereof

M transform top type to error messenger

N transform top type to balanced tree thereof

O make top type printed as opaque

P transform top type to printing function

Q transform top type to compressed version

R qualify C or V with recursive attribute

S transform top type to set thereof

T transform top type to a tree thereof

W transform top type to a pair

Y transform top type to self-describing formatter

Z replace top type with union with empty instance

d duplicate the operand on the top of the stack

h push recursive type or raise the top one

k transform top type or function to identity function

| replace the top operand on the stack with its left side
m transform top type to list of assignments of strings theret
p transform top type to parsing function

r replace the top operand on the stack with its right side
u transform top constant to unit type

type stack operators of arity 2

A transform top two types type to an assignment

D replace top two types with dual type tree

U replace top two types with free union thereof

V transform top types to i/o validation wrapper generator
X transform top two types type to a pair

i transform top type to random instance generator

w swap the top two operands on the stack

175

Just say to me “you’re going to have to do a whole lot better
than that”, and I will.

Harrison Ford inMosquito Coast

Introduction to operators

Most programs in Ursala attain their prescribed functiaouigh an algebra of functional
combining forms. Its terms derive from the dozens of librfamyctions and endless supply
of user defined primitives documented elsewhere in this mlamllong with a versatile
repertoire of operators addressed in this chapter and tteeeding one. As the key to all
aspects of flow and control, a ready command of these opsiiatoo less than the essence
of proficiency in the language.

Although all features of the language are extensible byousrmeans, in normal usage
the operators are regarded as a fixed set, albeit a large drexe are about a hundred
operators, most of which are usable in prefix, infix, postfind aullary forms, and many
of them further enhanced by optional suffixes modifyingitisemantics.

Because operators are a broad topic, they are covered irh@ayters. This chapter dis-
cusses conventions pertaining to operators in generdwetl by detailed documentation
of the more straightforward class of so called aggregateabges. The next chapter cata-
logs the full assortment of the remaining available opesatogroups related by common
themes as far as possible.

The design of the language favors a pragmatic choice of apsraver aesthetic notions
of orthogonality. Any operator described here has earregldce by being useful in
practice with sufficient frequency to warrant the mentabetfof remembering it.

5.1 Operator conventions

This section briefly documents some general conventioresdary operator syntax, arity,
precedence, and algebraic properties.

176

suffix applicable stems

pointers & = > "= $ " xx N~ 777 £ 22 9= 2< «7 1= < x| | |=
opcodes .. .| .!

types % %-

| I\

$ N+ A\ +
* /\/**+;*:"~""**'\%:|:
- %:

+ 5 %7

I\

~2

[+ \x 4+ ; *=

nm A= -

ST w TP % %= |=

Table 5.1: suffixes and their operator stems

5.1.1 Syntax

Syntactically an operator consists of a stem followed byfaxsurhe stem is expressed
by non-alphanumeric characters or punctuation marks. elblearacters are not valid in
user defined function names or other identifiers. The mogtigetly used operators have a
stem of a single character, suchtasr : . However, there aren’t enough non-alphanumeric
characters to allow a separate one for each operator, sogmenaor stems are expressed
by two consecutive characters, such'asand|= . These character combinations when
used as an operator stem are treated in every way as indivisilis, just as if they were a
single character.

The suffix of an operator may contain alphanumeric or nohatpimeric characters,
depending on the operator. Lexically the stem and the sutixavertheless an indivisible
unit.

Use of suffixes

The suffix modifies the semantics of an operator, usually messmall way. For example,
an expression liké+g represents the composition of functiodng&ndg, butf+ * g, with

a suffix of* on the composition operator, is equivalentbap f+g, the function that
appliesf+g to every item of a list.

Not all operators allow suffixes, and among those that doeffext of the suffixes
varies. Two illustrative examples familiar from previolsapters involving operators with
suffixes are& and% for pseudo-pointers and type expressions. Quite a fevatqrarallow
pointer expressions as suffixes, as shown in Table 5.1, a&ydie them in different ways.

Further lexical conventions

Because operator characters are not valid in identifierstadprs and identifiers can be
adjacent without intervening white space and without amiltyg In fact, omitting white
space is often a requirement for reasons to be explainedrihes

177

A possibility of ambiguity arises when operators are wnittensecutively, or when an
operator with an alphanumeric suffix is followed immedigtey an identifier. Lexically
the ambiguity is always resolved in favor of the left operatbthe expense of the right.
For example/ and+* are both operators, but so/is, and this character combination is
interpreted as the latter operator rather than a juxtaposf the other two.

In rare cases where a juxtaposition without space is secadiythecessary but syntac-
tically ambiguous, the expressions can be parenthesized.

5.1.2 Arity

There are four possible arities for most operators, whietpaefix, postfix, infix, and solo
(nullary). An infix operator takes two operands and is wnitbetween them. Prefix and
postfix operators take one operand and are written beforttearig respectively. A solo
operator takes no operands as such, but may be used as afuocts the operand of
another operator. Aggregate operators such as parenthegddsackets are outside this
classification, and some operators do not admit all fourearit

Disambiguation

It is important to be precise about the arity intended for asgge of an operator, because
the semantics may differ between different arities of thmesaperator, and no general rule
relates them. For operators admitting only one arity, thereo ambiguity, but otherwise
the usual way of distinguishing between arities of an operatby its proximity to any
operands in the source text.

e If an operator can be either infix or something else, then nffig arity is implied
precisely when the operator is immediately preceded amalWed by operands with
no intervening white space or comments, asHp .

e If infix usage is ruled out but the operator admits a postfixfaithe postfix usage is
implied whenever the operator is immediately preceded bypamnand, as ifi*.

e If both the infix and postfix usages can be excluded but prefiksmio usages are
possible, the determination in favor of the prefix usage dscated by an operand
immediately following the operator, as’ip .

The crucial observation should be that white space afféetsrterpretation. An ex-
pression likef=>y has a different meaning frof&=> y , because the> is interpreted
as infix in the first case and postfix in the second. These coovendiffer from other
modern languages, wherein white space plays no role imdigpiation.

Pathological cases

Although the rules above are not completely rigorous, auseat (as opposed to a compiler
developer) should view arity disambiguation this way mddhe time, and parenthesize
an expression fully when in doubt. Doubts might occur in tasecof an operator in its

178

solo usage being the operand of another operator. For egathpl and+ operators both
allow solo usage, the can also be prefix, and thecan also be postfix, so doés mean
O+ or7(+) ? It's bestto settle the issue by writing one of the latter.

On the other hand, some may consider parentheses an upsaghtlunwelcome in-
trusion, and some may insist on a clear convention as a natigninciple. The latter
are referred to Part IV of this manual, while the former may finconvenient to ask the
compiler whether it will parse the expression the way thégnd.

$ fun --m=""+" --parse
main = (O)+

The output from the-parse option shows the main expression fully parenthesized, and
is useful where operators are concerned. The alternatiginga incidentally, would not

be sensible for these particular operators, and on thae sbercompiler usually gets it
right.

5.1.3 Precedence

Operator precedence rules settle questions of whethemaiassion likex+y/z is parsed
asx+(y/z) or(x+y)/lz . The parsing that is most intuitive to a person who has lehrne
to think in Ursala turns out to require fairly complicatedesiwhen formally codified.
An operator precedence relation exists, but it is neithanditive, reflexive, nor anti-
symmetric. For a given pair of operators, the relationhigy ralso depend on the way
their arities are disambiguated.

The intuitive approach

The easiest way to cope with operator precedence when ihggitmé language is to write
most expressions fully parenthesized at first, and wait &wits to develop. For example,
instead of writingf+g * for the composition of with the map ofg, write f+(g *) so
there is no mistaking it fo(f+g) *. In time, it may become noticeable that the usage
f+(g *) occurs more frequently in practice th@mg) =*. It then becomes meaningful to
ask whether the compiler does the “right thing”, by parsirtpe way it would usually be
intended.

$ fun --m="f+g " --parse
main = f+(g *)

There’s a good chance that it does, because the preceddasemere developed from
observations of usage patterns. In cases where it accotidgiition, one may choose to
drop the habit of fully parenthesizing expressions of thatf, until eventually parentheses
are used only when necessary.

In combination with this learning approach, two operata@gadence rules are impor-
tant enough to be committed to memory from the outset, orlitogidifficult to make any
progress.

179

< $ %= % - 2% && | o+ -x " =
> $" *~ 7 <: < "= = \ -
= ST % = 7= ==\ * |
~| *x= = Al ~ al
_$ = ~ I\ "&
- = ”
o <
| "=
@

Table 5.2: each operator in the table is equivalent in prexceglto its column header

e Function application, when expressed by juxtapositiomwihite space between the
operands, has lower precedence than almost everythinguedisis right associative.
Hencef+g u/v x parses agf+g) ((uiv) x)

e Function application expressed by juxtaposition withotivening white space has
higher precedence than almost everything else and is Isficagive. Hence the
expressiorg+f(n)x is parsed ag+((f(n))x)

The operators having lower precedence than applicatiomshdase are only things like
commas, parentheses, and declaration operators. The>adgteon to the second rule is
the prefix tilde™ operator. Associativity is not a separate issue from preces, because
it's a consequence of whether an operator has lower precedkan itself.

Experienced functional programmers might observe that agsociativity of function
application will seem unconventional to them, but they astnombered by mathemati-
cians, engineers, and scientists other than quantum p$igsidhose who take issue are
asked to consider whether the alternative of left assetatvould make much sense in a
language without automatic currying.

The formal approach

For the benefit of compiler developers, bug hunters, andulagg lawyers, and to prove
that such a thing exists, a complete account of precedetee far all infix, prefix, and
postfix operators other than function application is givgmables 5.2 through 5.6.

Equivalent precedences Operators are partitioned into seventeen equivalenceedasith
respect to precedence. The classes with multiple membershamwn in Table 5.2. The
remaining tables are expressed in terms of a representaéinger from each class.
There are four operator precedence relations, each ablditzaa different context, and
each depicted in a separate one of Tables 5.3 through 5.@ed®ece relationships for

180

* | e o e o e o ° ° ° °
$ ° ° ° °
1= e o ° ° °
% ° ° ° °
*" e o ° ° ° ° ° °
?
+ ° ° °
!
/| e o o ° ° o o ° ° ° °
!
* - °
° o o ° ° e o ° ° ° °
Table 5.3: infix-infix operator precedence relation
* | $ 1= Y% - =T 2+ | = 7 / * -
* | ° ° ° °
$
1= ° [
%
*" ° ° ° ° ° e o °
?
+
! ° °
= °
/
!
* - °

Table 5.4: prefix-postfix operator precedence relation

181

* | ° ° e o °
$
1= °)
%
*" ° ° ° ° ° ° °
2
+
! ° ° °
/
!
* - °
Table 5.5: prefix-infix operator precedence relation
* | I= % - *7 7+ | = /[! * -
* | ° ° ° ° e o °
$. . ° ° o o °
1= e o ° ° e o °
% ° ° ° o o °
*" ° ° ° ° ° e o °
?
+ ° []
!
= °
/ ° ° ° ° . e o
!
* - °
° ° ° ° e o o ° e o °

Table 5.6: infix-postfix operator precedence relation

182

operators not shown in Tables 5.3 through 5.6 can be inféyedeir equivalence to those
that are shown based on Table 5.2.

How to read the tables Each occurrence of a bullet in a table indicates for the eglev
context that the operator next to it in the left column hasaavlir” precedence than the
operator above it in the top row. However, precedence is notah order relation. Two
operators can be unrelated, or can be “lower” than each.offeeavoid confusion, it is
best simply to refer to one operator as being related to anbththe precedence relation,
and to assume nothing about a relationship in the othertairec

e Table 5.3 pertains to precedence relationships betweenapgrators. If an infix
operator® from the left column is unrelated to an infix operatorfrom the top
row (i.e., if a bullet is absent from the corresponding posit, then an expression
r @y ® z will be parsed asz @ y) ® 2. Otherwise, it will be parsed as® (y ® z).

e Table 5.4 pertains to precedence relationships betwedix pred postfix operators.
If a prefix operatora from the left column is unrelated to a postfix operatofrom
the top row, then an expressianzv will be parsed asA x)v Otherwise, it will be
parsed ag (zV).

e Table 5.5 pertains to relationships between prefix and inerators. If a prefix
operatorA from the left column is unrelated to an infix operatefrom the top row,
then an expression x @ y will be parsed asA z) @ y. Otherwise, it will be parsed
asA(z @ y).

e Table 5.6 pertains to relationships between infix and posifierators. If an infix
operator® from the left column is unrelated to a postfix operatdrom the top row,
then an expression ® yv will be parsed asx @ y)v. Otherwise, it will be parsed
asz @ (yv).

5.1.4 Dyadicism

Although a given operator may have different meanings deipgnon the way its arity
is disambiguated, in many cases the meanings are relateddoyal algebraic property.
The word “dyadic” is used in this manual to describe opegatbat allow an infix arity
and have certain additional characteristics.

e If an operatoro has a solo and an infix arity, and it meets the additional ¢mdi
(o) (a,b) = a o bfor all valid operands andb, then it is called solo dyadic.

e If an operator allows a prefix and an infix arity such th@th) « = a o b, then it is
called prefix dyadic.

e If an operator admits a postfix and an infix arity, and satisfies) b = a o b, then
it is called postfix dyadic.

183

Motivation for dyadic operators

Determining the dyadicism of a given operator in this serseausly is not computable,
so the property or lack thereof is recorded for each opetajoa table internal to the
compiler. This information permits certain code optimiaas, and also reduces the bulk
of reference documentation. Where an operator is noted ttyadic, the semantics for
the dyadic arity may be inferred from that of the infix, andchaet be explicitly stated.

Dyadic operators also make the language easier to use. Kpmassion likef+g:-k
is required, and the intended parsind+$g:-k) , another alternative to parenthesizing
it, remembering the precedence rules, or checking themtéh-parse option is to
remember that the composition operat®) (s postfix dyadic. The expression therefore
can berewrittenas- g:-k consistently with its intended meaning. The space reptesen
function application, which has the lowest precedencelp$althe expression can only be
parsed a¢f+) (g:-k)

If the intended parsing i§+g):-k , which would not be the default under the prece-
dence rules, there is still an alternative. Using the faat the reduction operator-() is
prefix dyadic, we can rewrite the expression-#s f+g

Table of dyadic operators

Most operators are dyadic in one form or another, espe@albyfix, so it may be easier to
remember the counterexamples, such as the folding opgrator he following table lists
the arities and dyadicisms for all infix, prefix, postfix, amicsoperators in the language
other than function application and declaration operators

Table 5.7: Operator arities and algebraic properties

arity dyadicism

mnemonic prefix infix postfix solo prefix postfix solo

*
o o
e 6 o o o

* 1
1
e 6 o o o o

— ~
@Qo)(-)(-/\-—l

-

Ro
Ro

184

Table 5.7: Operator arities and algebraic properties (coatl)

dyadicism

arity

postfix solo prefix postfix solo

infix

prefix

mnemonic

"&
l
->

%
%"

%-

185

operators meaning

-? ...7- cumulative conditional with default last
-+ ...+- cumulative functional composition
-| ...|]- cumulative short circuit functional disjunction
-l ...1- cumulative logical valued short circuit functional disition
-&...&- cumulative short circuit functional conjunction
[...] record or a-tree delimiters
<...> list delimiters
{...} set delimiters
(...) tuple delimiters
-[...]- textdelimiters

Table 5.8: aggregate operators; each encloses a commatsepsgquence of expressions

Table 5.7: Operator arities and algebraic properties (coatl)

arity dyadicism

mnemonic prefix infix postfix solo prefix postfix solo
%=
=]
[:
&

4
e 6 06 o o o o o o
e 6 06 0 o o o o o
e 6 06 0 o o o o o
e 6 06 06 o o o o o

5.1.5 Declaration operators
Two infix operators whose discussion is deferred:arend=.

e The:: is used only for record declarations, and is explained tingiéy in the pre-
vious chapter.

e The = is used only for declarations other than records. It can @patmost once
in any expression, and only at the root. It is better understas a syntactically
sugared compiler directive than an operator. Rather thaxpating a value, it effects
a compile-time binding of a value to an identifier.

Declarations are discussed further in a subsequent chragending their interactions with
name spaces and output-generating compiler directives.

186

(operand,

(operand;

(operand,,_; (operand,

Figure 5.1: representation of a tufléoperand,, (operands, ...{(operand,,)

5.2 Aggregate operators

The operators listed in Table 5.8 are usable only in matchaigs, and with the exception

of the text delimiters;[...]- , they enclose a comma separated sequence of arbitrarily
many expressions. With each enclosed expression serviag aperand, considerations
of arity and precedence are not relevant to aggregate apgratt they employ a common
convention regarding suffixes, as explained presently.

5.2.1 Data delimiters

The essential concepts of records, a-trees, lists, setestiand text follow from previous
chapters, where the data delimiter operators in Table ®8&ach introduced purely as
a concrete syntax for one of these containers. When viewerp@sitors in their own
right, they transform the machine representations of thyg@rands to that of data structure
containing them.

() —Tuple delimiters

On the virtual machine level, everything is representdaeeias an empty value or a pair.
This representation directly supports the tuple delimsitér..) . An empty tuple,() ,
maps to the empty value. If there is only one operand, theesgmtation of the tuple is
that of the operand. Otherwise, the representation is anptirthe first operand on the
left and the representation of the tuple containing the reimg operands on the right, as
shown in Figure 5.1.

<> —[ist delimiters

The list delimiters work similarly to the tuple delimiterseept that a distinction is made
between a singleton list and its contents. An empty list mapgke empty value, and any

187

(operandg

(operand;

(operand,,

Figure 5.2: representation of a listoperand,, (operand;, ... (operand,>

other list maps to the pair with the head on the left and tHetathe right. Equivalently,
a list representation is like a tuple in which the last congyans always empty, as shown
in Figure 5.2.

{} — set delimiters

The set delimiters perform the same operation as the lighdels, followed by the ad-
ditional operation of sorting and removing duplicates. Ebeing is done by the lexical
order relation on characters and strings (regardless alément type).

[1 —record or a-tree delimiters

For these operators, each operand is expected to be anrassigof the form
(addres$: (value

or equivalently a pair of an address and a value. The addsesxmally of thedoatype,
which is to say that its virtual machine representation Ham@st a single descendent
at each level of the tree, as shown in Figure 5.3. (Branchddeades can be used if the
associated data are a tuple of sufficient arity, as noted g@ pa4). The resultis a structure
in which each value is stored at a position that can be reaohddllowing a path from
the root described by the corresponding address.

Figure 5.3 provides a simple illustration of this operatiorhe structure created by
the record delimiter operators from the given data contéiesalue(foo) addressable by
descending twice to the left, per the associated addregsvdibe of(ba2 is addressable
twice to the right, andbar) is reached by the alternating path associated with it.

The semantics of the record delimiters is unspecified inscasduplicate or overlap-
ping addresses. In the current implementation, no exaeicaised, but one field value
may be overwritten by another partly or in full.

188

(foo) (baz
(bar)

(baz |

Figure 5.3: Record delimiters store the data at offsetsivelto the root.

((operand ' (operand , .)
0 0 0 0) i}
—_—~ —A— — DN A n
- [(pretexi{ (operand } (intext{ (operand } (intext{ } (postexi}

Figure 5.4: analogy between an expression with text dedimiand a tuple

189

-[]- —textdelimiters

These operators follow a different pattern than the othéa dalimiters, because they
don't enclose a comma separated sequence of operands. @ waderstanding them
is in syntactic terms according to the discussion of daskketanotation on page 118.
Alternatively, they can be viewed as delimiting operatorsfing an expression analogous
to a tuple. The left parenthesis corresponds to somethitigedform-[(pretexi-[, the
right parenthesis corresponds]to (postext]- , and the rdle of a comma is played by
- (intexd-[. This analogy is depicted in Figure 5.4.

e The embedded text can be arbitrarily long and can include bireaks, making the
delimiters very thick operators, but operators nevergle

e In order for the expression to be well typed, the operands exsuate to lists of
character strings.

e Each of these operators has the semantic effect of contiawgnis operands with
the embedded text either before, between, or after the ngeras explained on
page 118.

e The embedded text is not an operand but a hard coded feattiie operator. One
might think in terms of a countable family of such operat@ach induced by its
respective embedded text.

5.2.2 Functional delimiters

The remaining aggregate operators from Table 5.8, représectional combining forms.
With the exception of+ ... +-, they all pertain to conditional evaluation in some way.
Although they normally enclose a comma separated sequédrapemands, they can also
be used with an empty sequence, astifi- . In this form, the pair of operators together
represent a function that applies to a list of operands raitla@ enclosing them. For exam-
ple,-!p,q,r!- is semantically equivalent td!- <p,q,r> . The latter alternative is
more useful in situations where the list of operands is geedrat run time and can’t be
explicitly stated in the sourck.

Composition

The simplest and most frequently used functional combifong is the compaosition oper-
ator,-+ ... +- , which denotes composition of a sequence of functions diyehe expres-

sions it encloses. That is, a composition of functignthroughf,, applied to an argument
x evaluates to the nested application.

_+f0! fli ---fn+' foOfl fnx

where function application is right associative. The cormm@@e necessary as separators,
because the expressions fgrthroughf,, may contain operators of any precedence.

Ldifficult to motivate until you've had some practice at ushigher order functions routinely

190

Composition example In a composition of functions, the last one in the sequenocedes-
sarily evaluated first, as this example of a composition delpointers shows.

$ fun --m="-+"&x,"&h,"&t+- <'foo’,’bar’,’baz’>" --c
rab’

The tail of the list<’bar’,’baz’> is computed first by&t , then the head of the tail,
'‘bar , by~&h, and finally the reversal of that b¥x .

Optimization of composition Compositions are automatically optimized where possible.
For example, the three functions in the above sequence caadbeed to two.

$ fun --main="-+"&x,"&h,”&t+-" --decompile
main = compose(reverse,field(0,(0,&)))

Optimizations may also affect the “eagerness” of a comusit

$ fun --m="-+constant'abc’,”&t,"&h,"&x+-" --d
main = constant 'abc’

The constant function returns a fixed value regardless affgggment, so there is no need
for the remaining functions in the composition to be retdine
Cumulative conditionals

The cumulative conditional formy? ...?-, is used to define a function by cases. Its
normal usage follows this syntax.

-?
(predicate: (function),

(predicate: (function,
(default functioh ?-

The entire expression represents a single function to bieeadp an argument.

e Each predicate in the sequence is applied to the argumerd ortler they're written,
until one is satisfied.

e The function associated with the satisfied predicate isiegpd the argument, and
the result of that application is returned as the result efthole function.

e The semantics is non-strict insofar as functions assatwaiih unsatisfied predicates
are not evaluated, nor are predicates or functions latéraséquence.

e If no predicate is satisfied, then the default function islested and its result is
returned.

191

3.00

2.00

1.00

0.00 | | | |
0.00 0.50 1.00 1.50 2.00 2.50
x

Figure 5.5: model of an inflationary cosmology according-ttheory

A simple contrived example of a function defined by casesasvshin Figure 5.5. The
definition of this function is as follows.

0 if <0
) Ve if 0<z<1
flz) = 22 if 1<z <?2
4 otherwise

This function can be expressed as shown using?he. ?- operators,

f = -2
fleg\0.: 0.,
fleg\1.: math..cbrt,
fleg\2.: math..mul+ "&iiX,
4.1?-
wherefleq is defined asnath..islessequal , the partial order relation on floating

point numbers from the host system’s C library, by way of tiveual machine’smath
library interface. The predicatibleq\ £ uses the reverse binary to unary combinator.
When applied to an argumentt evaluates aleq\ % x =fleq (z, k), which is true if

x < k. The exclamation points represent the constant combinator

Logical operators

The remaining aggregate operators in Table 5.8 support kel conjunction and two
forms of cumulative disjunction. Similarly to the cumulagiconditional, they all have a
non-strict semantics, also known as short circuit evatumati

192

e Cumulative conjunction is expressed in the fo@nf,, f1, ... f,& . Eachf; is ap-
plied to the argument in the order they’re written. If afjyreturns an empty value,
then an empty value is the result, and the rest of the fungiiothe sequence aren’t
evaluated. If all of the functions return non-empty valubs, value returned by last
function in the sequencg,, is the result.

e Cumulative disjunction is expressed in the formfy, fi, ... f.|- . Similarly to
conjunction, eaclf; is applied to the argument in sequence. However, the first non
empty value returned by afy is the result, and the remaining functions aren’t evalu-
ated. If every function returns an empty value, then an emaitye is the result.

e An alternative form of cumulative disjunctionis fy, fi, ... f.!- . This form has
a somewhat more efficient implementation than the one altoneyill return only a
true boolean value&) rather than the actual result of a functignwhen it is non-
empty, fori < n. This result is acceptable when the function is used as agattedn
a conditional form, because all non-empty values are Itigieguivalent.

Some examples of each of these combinators are the following
$ fun --m="-&&l,"&r&- (0,1)" --c

fun --m="-& &l,"&r&- (1,2)" --c
fun --m="-"&l,"&r|- (0,1)" --c
fun --m="-"&l,"&r|- (1,2)" --c
fun --m="-I"&l,"&r!- (0,1)" --c

fun _-m:"-!N&l,N&r!- (1,2)" --C

RAFRPAFRPAHRRLANAO

Interpretation of exclamation points by thash command line interpreter, even within a
guoted string, can be suppressed only by executing the cochset +H in advance,
which is not shown.

5.2.3 Lifted delimiters

All of the aggregate operators in Table 5.8 follow a consist®nvention regarding suf-
fixes. The left operator of the pair (such<a®r {) may be followed by arbitrarily many
periods (as ir<. or{..). For the text delimiters, the suffix is placed after the seco
opening dash bracket (as4p (texb-[.). The closing operators (e.gz,and}) take no
suffix.

The effect of a period in an aggregate operator suffix is bestribed as converting
a data constructor to a functional combining form, with eaghsequent period “lifting”
the order by one. Periods used in functional combining fosoth as|. only lift their
order. These concepts may be clarified by some illustrations

193

First order list valued functions

The first order case is easiest to understand. The expression

<fos f1, - [u>
where eacly; is a function, represents a list of functions, but the exqoes
< fo, f1, - fa>

represents a function returning a list. When this functeoapplied to an argument the
result is the list

<f0xa fl z, fnx>

That is, all functions are applied to the same argument, disti@f their results is made.
These distinctions are illustrated as follows. First weehavist of three trigonometric
functions, which is each compiled to a virtual machine lipfainction call.

$ fun --m="<math..sin,math..cos,math..tan>" --c %fL
<

library(’'math’,’sin’),

library('math’,’cos’),

library('math’,’'tan’)>

The function returning the list of the results of these thre®ctions is expressed with a
suffix on the opening list delimiter.

$ fun --m="<.math..sin,math..cos,math..tan>" --c %f
couple(
library('math’,’sin’),
couple(
library('math’,’cos’),
couple(library('math’,’tan’),constant 0)))

This function constructs a structure following the reprégagon shown in Figure 5.2. To
evaluate the function, we can apply it to the argument of iarad

$ fun --m="<.math..sin,math..cos,math..tan> 1." --c %eL
<8.414710e-01,5.403023e-01,1.557408e+00>

The result is a list of floating point numbers, each being dseilit of one of the trigono-
metric functions.

Text templates

The same technique can be used for rapid development of doduiemplates in text
processing applications.

$ fun --m="-[Dear -[. "&INC]-]- 'valued customer™ --show

Dear valued customer,

194

A first order function made from text delimiters, with furanis returning lists of strings
as the operands, can generate documents in any format freeeifisations of any type. In
this example, the document is specified by a single charatiiag, which need only be
converted to a list of strings by thi&INC pseudo-pointer.

Lifted functional combinators

A suffix on an opening aggregate operator suchrasaises it to a higher order. A function
of the form
-+. ho, hy, ... hy *-

applied to an argumentwill result in the composition
-+ hou, hl u, ...hnu+-

If there are two periods, the function is of a higher order. eWlapplied to an argument
v, the result is a function that still needs to be applied tala@moargument to yield a first
order functional composition.

(-<+.. ho,hy, ... hy+-v)u = -+. hgv, hyv, ...h, v+ w
= -+ (hov)u, (hyv)u, ...(h,v) u+-

This pattern generalizes to any number of periods, althdugfrer numbers are less com-
mon in practice. It also applies to other aggregate opesaoch as logical and record
delimiters, but a more convenient mechanism for higherroreleords using th& oper-
ator is explained in the next chapter. Lambda abstractiorgube. operator is another
alternative also introduced subsequently.

Example Lifted functional combinators, like any higher order fuocts, are used mainly
to abstract common patterns out of the code to simplify dgwekent and maintenance.
One way of thinking about a lifted composition is as a mecérarfor functional templates
or wrappers.

A small but nearly plausible example is shown in Listing S5bme language features
used in this example are introduced in the next chapterhleytoint relevant to the present
discussion is thevrapper function.

The wrapper takes the form of a lifted composition

-+. (back engll,"&, (frontend!+-

where the exclamation points represent the constant furadtcombinator. When applied
to any functionf, the result will be the composition

-+ (back endl, f, (frontend+-
wherein the front end serves as a preprocessor and the bd@senpostprocessor to the

function f.

195

Listing 5.1 when to use a higher order composition

#import std
#import nat

#library+
retype = # takes assignments of instance recognizers to type converters

-??-+ --<-[unrecognized type conversion]-!%>

promote = ..grow\100+ ..dbl2mp # 100 bits more precise than d efault 160
wrapper = # allows high precision for intermediate calculat ions
-+
retype<%El: ..mp2dbl,%ELI: ..mp2dbl * OELLL: .mp2dbl x>l
rgt’ype<%el: promote,%eLl: promote * %%eLLl: promote *x >l+-
rad_to _deg = # converts radians to degrees with high precisi on

wrapper mp..mul/1.8E2+ mp..div’/"& mp..pi+ mp..prec

In this example, the front end converts standard floatingntpoumbers, vectors, or
matrices thereof to arbitrary precision format. The fumatf is expected to operate on
this representation, presumably for the sake of reduceddaf@ierror, and the final result
is converted back to the original format.

The code in Listing 5.1, stored in a file namgemo.fun , can be tested as follows.

$ fun promo.fun --archive

fun: writing ‘promo.avm’

$ fun promo --m="rad_to_deg 2." --c %e
1.145916e+02

A further point of interest in this example is the use-8?- as a function in the
definition ofretype . Effectively a new functional combining form is derived finche
cumulative conditional, which takes a list of assignmeritpredicates to functions, but
requires no default function. The predicates are meant tggeeinstance recognizers and
the functions are meant to be type conversion functions.

$ fun promo --m="retype<%nl: mpfr..nat2mp> 153" --c %E
1.530E+02

A default function that raises an exception is supplied @uatiically because it is never
meant to be reached.

$ fun promo --m="retype<%nl: mpfr..nat2mp> 'foo™ --c %E
fun:command-line: unrecognized type conversion

196

Listing 5.2 output from the comman#l fun --help outfix

outfix operators

-?..?- cumulative conditional with default case last
-+..+- cumulative functional composition

-|..]- cumulative ||, short circuit functional disjunctio n
-1..I- cumulative !|, logical valued functional disjuncti on
-&..&- cumulative &&, short circuit functional conjunctio n

[-] record delimiters

<.> list delimiters

{.} specifies sets as sorted lists with duplicates purged
(..) tuple delimiters

The content of the diagnostic message is the only featureifgpé the definition of
retype as atype converter.

5.3 Remarks

A quick summary of the aggregate operators described ircHapter is available interac-
tively from the command

$ fun --help outfix

whose output is shown in Listing 5.2. Some of these, espgctiad logical operators, are
comparable to infix operators that perform similar opersj@s the listing implies and as
the next chapter documents.

197

If you truly believe in the system of law you administer in my
country, you must inflict upon me the severest penalty pessib

Ben Kingsley inGandhi

Catalog of operators

With the previous chapter having exhausted what littleghsito say about operators in
general terms, this chapter details the semantics for gaetator in the language on more
of an individual basis. The operators are organized intaggaoughly by related func-
tionality, and ordered in some ways by increasing concéplitfeculty. An understanding
of the conventions pertaining to arity and dyadic operatoggained previously is a pre-
requisite to this chapter.

6.1 Data transformers

The six operators listed in Table 6.1 are used to express éissignments, sets, and trees,
and some are already familiar from many previous examplés. SEt union operatoy,,
has only infix and solo arities, but the others have all foitieg. These operators represent
first order functions in their infix arities, and are dyadiother arities (see Section 5.1.4).
Hence, itis possible to writé:u andt™: u interchangeably for a tree with robtand
subtreesl.

meaning illustration
list or assignment constructiona: = <ab>
": tree construction rh<vi<>> = "&V(r,<"&V(v,<>)>)
| union of sets {a,b}|{b,c} = {ab,c}
-~ concatenation of lists <a,b>--<c,d> = <ab,c,d>
-+ |eft distribution a- *<b,c> = <(a,b),(a,c)>
*- right distribution <a,b> *-c = <(a.c),(b,c)>

Table 6.1: data transformers

198

meaning illustration

I constant functional X!y = X
[binary to unary combinator flk x = f(k,x)
\ reverse binary to unary combinator ik x = f(x,k)
/ * mapped binary to unary combinator fl *k <a,b> = <f(k,a)f(k,b)>

\ * mapped reverse binary to unary combinatdk *k <a,b> <f(a,k),f(b,k)>

Table 6.2: constant forms

Consistently with the dyadic property, the infix and postbxnfis of these operators
have a higher order functional semantics. For examply, is a data value, the con-
catenation of a lisk with a listy, but--y is the function that appends the listto its
argument, ana-- is the function that appends its argumenttdn this way, the we have
the required identityx--y =x-- y =--y X ,while the expressionsy andx-- are
also meaningful by themselves. A few more minor points arghvmentioning.

e The set union operatof,, is parsed as infix whenever it immediately follows an
operand with no white space preceding it, and has an opeddiosving it with or
without white space. Otherwise it is parsed as a solo operato

e The colon is considered to construct a list when used as ananfsolo operator,
and an assignment when used as a prefix or postfix operatdrolgh the identity
a: b =ab =:b a isvalid as far as concrete representations are concernigd, o
the equivalence between b and:b a is well typed (cf. Figures 5.1 and 5.2). On
the other hand, typing is only a matter of programming style.

e As noted on page 59, the colon can also be used in pointerssipns pertaining to
lists.

e The distribution operator* in solo usage is equivalent to the pseudo-poiigdd
(page 75), and - is equivalent ta&rIDrIXS

¢ None of these operators has any suffixes.

6.2 Constant forms

The operators shown in Table 6.2 are normally used to exfuestions that may depend
on hard coded constants. They have these algebraic pexgperti

e The constant combinator can be used either as a solo or adfe peerator, and
satisfied x = x! forall x.

e The binary to unary combinators can be used as solo or infixatgrs, and are
dyadic.

199

6.2.1 Semantics

The constant combinator and binary to unary combinatorsaale known features of
functional languages, although the notation may vafjhe binary to unary combinators
may also be familiar to C++ programmers as part of the stahwanplate library.

Constant combinators

The constant combinator takes a constant operand and ectissér function that maps
any argument to that operand. Such functions occur fretuantthe default case of a
conditional or the base case of a recursively defined functio

Binary to unary combinators

The binary to unary combinatotsand\ take a function as their left operand and a constant
as their right operand. The function is expected to be oneselfamgument is usually a
pair of values. The combinator constructs a function the¢gaonly a single value as
an argument, and returns the result obtained by applyingtilgenal function to the pair
made from that value along with the constant operand. Faf tt@mbinator, the constant
becomes the left side of the argument to the function, anth&r combinator, it becomes
the right.

Standard examples are functions that add 1 to a numphes/l. orplus\l. ,and
a function that subtracts 1 from a numbmeminus\1. . Normally theplus andminus
functions perform addition or subtraction given a pair omtners. In the latter case, the
reverse binary to unary combinator is used specifically beeaubtraction is not commu-
tative.

Currying A frequent idiomatic usage of the binary to unary combin&an the expres-
sion/// , which is parsed ag)/(/) , and serves as a currying combinator. Any mem-
ber f of a function spacéu x v) — w induces a functiory in v — (v — w) such that

g = Il f. This effect is a consequence of the semantics of thesetopend their
algebraic properties whose proof is a routine exercise.

Example The currying combinator allows any function that takes a péialues to be
converted to one that allows so-called partial applicatior example, a partially valuable
addition function would bé// plus . It takes a number as an argument and returns a
function that adds that number to anything.

$ fun flo --m="((/// plus) 2.) 3." --c
5.000000e+00

Theplus function is defined in thélo library distributed with the compiler.

1Curried functional languages don't need a binary to unamlioator, but the reverse binary to unary combinator co@dab
problem for them.

200

Mapped binary to unary combinators

The operators* and\ * serve a similar purpose to the binary to unary combinatarseb
but are appropriate for operations on lists. The left opetiara function taking a pair of
values and the right operand is a constant, as above, butgh#ing function takes a list
of values rather than a single value. The constant opergpairisd with each item in the
list and the function is evaluated for each pair. A list of thsults of these evaluations is
returned.

This example uses the concatenation operator explainée iprevious section to con-
catenate each item in a list of strings with'an .

$ fun _— :ll__ * 1X1 <1a1’1b1’1ci>ll ——C
<'ax’,’bx’,’cx’>

6.2.2 Suffixes

The binary to unary combinators and\ allow suffixes consisting of any sequence of
the character$, |, ; , and*. that doesn't begin with . The mapped binary to unary
combinatord * and\ * allow suffixes consisting of any sequence of the charafters
and* . Each character alters the semantics of the function aatstt by the operator in a
particular way. To summarize their effects briefly,

¢ the$ makes the function apply to both sides of a pair

the| makes the function triangulate over a list

the; makes the function transform a list by deleting all itemsvitiich it is false

the* makes the function apply to every item of a list

the= flattens the resulting list of lists into the concatenatibititems.

When multiple characters are used in a single suffix, théaces apply cumulatively in
the order the characters are written.

The suffix for/ or\ may not begin with- because in that case it is lexed as the
or\ = operator. However, the latter have the same semantics dsrther would have if
* could be used as the suffix. The triangulation and flattenufiixes are specific to the
operators for which they are semantically more appropriate

Examples

Some experimentation with these operator suffixes is aptiestment of time than read-
ing a more formal exposition would be. A few examples to gatttetl are the following.

e This example shows how negative numbers can be removed flisin a

$ fun flo --m="fleq/;0. <-2.,-1.,0.,1.,2.>" --c %eL
<0.000000e+00,1.000000e+00,2.000000e+00>

201

meaning illustration

& pointer constructor &l = (0,0).0)
. composition or lambda abstraction&h.&| = "&hl

~ deconstructor functional o) = field p
= assignment &l:=1! (2,3) = (1,3

Table 6.3: pointer operations

e This examples shows the effect of a combination of list flattg and applying to
both sides of a pair. Note the order of the suffixes.

$ fun -m="--\ +=$x (<'a'/’b><c,/d>)" --c
('axbx’,’cxdx’)
e This example shows a naive algorithm for constructing asesf powers of two.

$ fun --m="product/|2 <1,1,1,1,1>" --c %nL
<1,2,4,8,16>

The last example works becau#a <a,b,c,d> is equivalent to
<a,f(n,b),f(n,f(n,c)),f(n,f(n,f(n,d)))>

Often there are several ways of expressing the same thinhthenchoice is a matter
of programming style. The functioproduct/|2 is equivalent to the pseudo-pointer
"&INICBK9 (see pages 76 and 87).

In case of any uncertainty about the semantics of these topgraéhere is always re-
course to decompilation.

$ fun --m="--\ *=Fx™" --decompile
main = fan compose(

reduce(cat,0),
map compose(cat,couple(field &,constant 'x")))

6.3 Pointer operations

A small classification of operators shown in Table 6.3 pagd0 pointers in one way or
another.

6.3.1 The ampersand

The ampersand has been used extensively in previous exargsleusly as the identity
pointer, the true boolean value, or a notation for the paierpty pairs, which are all
equivalent in their concrete representations, but at thiges it is best to think of it is as an
operator.

202

The ampersand is an unusual operator insofar as it takeserargfs and has only a
solo arity. However, it allows a pointer expression as asuffi

Although other operators employ pointer expressions inengmecialized ways, the
meaning of the ampersand operator is simply that of the poexpression in its suffix.
The semantics of pointer expressions is documented exeyngn Chapter 2.

Most operators that allow pointer suffixes can accommodsgeigo-pointers as well,
but the ampersand is meaningful only if its suffix is a poingecept as noted below.

6.3.2 The tilde

The tilde operator can be used either as a prefix or as a sotatopet has the algebraic
property that x = "x for all x. A distinction is made nevertheless between the solo
and the prefix usage because the latter has higher precedence

The operand of the tilde operator can be any expression Waates to a pointer.
A primitive form of such an expression would be a pointer dpet by the ampersand
operator, a field identifier from a record declaration, otteréil address from an a-tree or
grid type. Tuples of these expressions are also meaningfpbmters, and the colon and
dot operators can be used to build more pointer expressionsthese.

The tilde operator is defined partly as a source level tramsdtion that lets it depend
on the concrete syntax of its operand. Pseudo-pointer saffor the ampersand operator,
while not normally meaningful in themselves, are acceptaitien the ampersand forms
part of the operand of a tilde operator. The tilde in this caféectively disregards the
ampersand and makes direct use of the pseudo-pointer suffix.

The result returned by the tilde operator is a either a Vitode program of the form
field p for an pointer operang, or a function of unrestricted form if its operand is a
pseudo-pointer. Théeld combinator pertains to deconstructors, which are funstion
that return some part of their argument specified by a pointer

6.3.3 Assignment

The assignment operatos, , performs an inverse operation to deconstruction. It Sasis
the equivalence
a a=fx =fx

for any address, functionf, and datax. It is also dyadic in all arities. Intuitively
this relationship means that whereas deconstructiorevesithe value from a field in a
structure, assignment stores a value in it.

Fields in the result that aren’t specifically assigned by tperation inherit their values
from the argumenk. If b were an address different from thenb a:=f x would
be the same a$% x . This condition defies a simple rigorous characterization, the
following examples should make it clear.

203

Usage

The address in an expressiarf x can refer to a single field or a tuple of fields in the
argumenk. In the latter case, the functidnshould return a tuple of a compatible fofm.

$ fun --m="&h:='c’l <'a’,’b’>" --c %sL

<’Cl’1b1>

$ fun --m="(&h,&th):="&thPhX <'a’,’b’>" --c %sL
<’b’,lal>

e As the second example above shows, multiple fields can beerefed or inter-
changed by an assignment without interference, provided ttestinations don't
overlap.

e The address in an assignment can be a pointer expressicairéngtconstructors,
(e.g.,&hthPX instead of(&h,&th)), but it must be a pointer rather than a pseudo-
pointer. (See Chapter 2 for an explanation.)

o If the address of an assignment refers to multiple fields aedunction returns a
value with not enough (such as an empty value) an excepti@isied with the diag-
nostic message ofrivalid assignment ”

Suffixes

An optional pointer expressionnmay be supplied as a suffix, with the syntaxs. The
suffix can be a pointer or a pseudo-pointer, but it must bengiyea literal pointer constant
rather than a symbolic name.

The suffix is distinct from the operands and may be used in gty Blowever, when a
suffix is used in the prefix or infix arities, asi sf or a:= sf, and the right operand
f begins with alphabetic charactérmust be parenthesized to distinguish it from a suffix.
In fact, any right operand to an assignment with or withoutf>ssmust be parenthesized
if it begins with an alphabetic character.

The purpose of the suffix is to specify a postprocessor. Amesgiona:= s f with
a suffix s is equivalent to -+ & s,a:=f+- or "&s+ a:=f . This feature is a matter
of convenience because assignments are almost always sethpiath deconstructors or
pseudo-pointers in practice, as a regular user of the layegwél discover.

Non-mutability

The idea of storage is non-mutable as alwaysx Hepresents a store, ther=f is a
function that returns a new store differing fromat locationa. Evaluating this function
has no effect on the interpretationyftself, as this example shows.

$ fun --m="x=<1> y=(&h:=2! x) z=(x,y)" --c %nLW,z
(<1>,<2>)

2|f you're trying these examples, be sure to exeagte +H first to suppress interpretation of the exclamation pointigbash
command line interpreter.

204

The original value ok is retained irz despite the definition of asx with a reassigned
head.

Growing a new field

In order for the above equivalence to hold without exceptassignment to a field that
doesn't exist in the argument causes it to grow one rather ¢aasing an invalid decon-
struction. For example, an attempt to retrieve the headetah of a list with only one
item causes an invalid deconstruction, as expected,

$ fun --m=""&th <1>" --c %n
fun:command-line: invalid deconstruction

but retrieving that of a list in which it has been assignedste

$ fun --m=""&th &th:=2! <1>" --¢c %n
2

The assignment to the second position in the list eithenvants the item stored there if
it exists (in a non-mutable sense) or creates a new one g

$ fun --m="&th:=2! <1>" --c %nL
<1,2>

It could also happen that other fields need to be created ier dodreach the one being
assigned. In that case, the new fields are filled with empiyesal

$ fun --m="&tth:=2! <1>" --c %nL
<1,0,2>

It is the user’s responsibility to ensure that fields createthis way are semantically
meaningful and well typed.

$ fun --m="&tth:=2.! <1.>" --c %elL
fun: writing ‘core’
warning: can’t display as indicated type; core dumped

An empty value is not well typed in a list of floating point nuerb.

Manual override

Assignment can be used to override the usual initializafimrction for a record and set
the value of a field “by hand”. (See Section 4.2.3 for more &butialization functions in
records.) A simple illustration is a recordwith two natural type fieldsi andw, wherein
wis meant track the value of and double it.

r:u %n w %n "u&NiC

By default, this mechanism works as expected.

205

$ fun --m="r :: u %n w %n "u.&NIiC x= _r%P rfu: 1]" --s
ru: 1,w: 2]

However, ifu is reassigned, the initialization function is bypassed, &retains the same
value.

$ fun --m="r:u %n w %n “U.&NIiC x=_r%P u:=3! r[u: 1]" --s
ru: 3,w: 2]

Obviously, invariants meant to be maintained by the recpetiication can be violated
by this technique, so it is used only as a matter of judgmemnadircumstances warrant.
The normal way of expressing functions returning recoregtis the$ operator, explained
subsequently in this chapter, which properly involves thgdlization functions.

Changing a field in a record by an assignment can also cawuskathadly typed. Even
if the field itself is changed to an appropriate type, the iygéance recognizer of a record
takes the invariants into account.

$ fun --m="r:;u %n w %n “u.&NiC x=_r%lI u:=3! r[u: 1]" -c %b
false

For this reason, the updated record will not be cast to the typ

$ fun --m="riu %n w %n "u.&NIiC x= u:=3! rfu: 1]" --c _r
fun: writing ‘core’
warning: can't display as indicated type; core dumped

The badly typed record was displayable in previous exangigsby the_r%P function,
which doesn’t check the validity of its argument.

6.3.4 The dot

The dot operator has two unrelated meanings, one for relatldressing, making it topical
for this section, and the other for lambda abstraction. Tperator allows either an infix

or a postfix arity. The infix usage pertains to relative adsires and the postfix usage to
lambda abstraction.

Relative addressing

An expression of the forna.b with pointersa andb describes the addressrelative
to a. Semantically the dot operator is equivalent to Ehpointer constructor (pages 63
and 79), but the latter appears only in literal pointer cantst, whereas the dot operator
accommodates arbitrary expressions involving literalyonisolic names.

In many cases, the deconstruction of a vadu®y a relative addresa.b could also be
accomplished by first extracting the fieddand then the fieldb fromit, asin"b "a x .
In these cases, the dot notation serves only as a more caruiseeadable alternative,
particularly for record field identifiers (see page 154 foeaample).

206

The equivalence betweén.b x and”b "a x holds whema is a pseudo-pointer,
a pointer referring to only a single field, or a pointer eqlewa to the identity, such as
&IrX , &C &nmA or &V. However, an interpretation more in keeping with the induntof
relative addressing is applicable when the left operandgpresents a pointer to multiple
fields. In this case, the pointéris relative to each of the fields described dyand the
above mentioned equivalence doesn’t hold.

Pointers to multiple fields are expressions kg &hthPX , or a pair of field identifiers
(foo,bar) . The dot operator could be put to use in taking lblae field from the first
two records in a list bghthPX.bar

Lambda abstraction

An alternative to the use of combinators to specify fundi@nby lambda abstraction, so
called because its traditional notation\is. f(z), wherez is a dummy variable anfl(x) is
an expression involving. This idea has a well established body of theory and conventi
to which the current language adheres for the most part. Menvehe) symbol itself is
omitted, because the dot as a postfix operator is sufficiemiymbiguous, and dummy
variables are enclosed in double quotes to distinguish them identifiers.

Parsing The postfix arity of the dot operator is indicated when it isrediately preceded
by an operand and followed by white space, which is thenialb by another operand.
This last condition is necessary because lambda abstmastiainly a source level trans-
formation.

When it is used for lambda abstraction, the dot operator Hawer precedence than
function application and any non-aggregate operator éxadegarations%£ and::). It
is also right associative. These conditions imply the stathdonvention that the body of
an abstraction extends to the end of the expression or togkieemclosing parenthesis,
comma, or other aggregate operator.

Semantics The function defined by a lambda abstractiah f("X") is computed by
substituting the argument to the function for all free ocences of'x" in the expression
f("x") and evaluating the expression.

Free occurrences of a variable in the body of a lambda altistnaare usually all oc-
currences except in contrived examples to the contraryhriieally a free occurrence of
a variable"x" is one that doesn’t appear in any part of a nested lambdaaabsetr ex-
pressed in terms of a variable with the same name (i.e., antth).

An example of an occurrence that isn’t a free occurrenc&cdf is in the expression

"X "X . This expression nevertheless has a well defined meaninghwsh

IIX . IIX .
the constant function returning the identity functi6& .2 Nested lambda abstractions
are ordinarily an elegant specification method for highéeofunctions that can be more
easily readable than the equivalent combinatoric form.

3with no opportunity for substitution, applying this expsis to any argument yieldx". "x" , which is the identity function
because applying it to any argument yields the argument.

207

meaning illustration

-> jteration p->f = p?(p->f+ f7&)
"= fixed point computation f'= x = f=1fx

+ composition f+g x = fgx

; reverse composition o;f x = fgx

@ composition with a pointer g@h = g+ &h

Table 6.4: sequencing operators

Pattern matching Lambda abstractions can also be expressed in terms of ftigtples
of dummy variables, in any combination and nested to anyhdephe syntax for lists
and tuples of dummy variables is the same as usual, namelynmaseparated sequence
enclosed by angle brackets or parentheses.

The reason for using a pair of dummy variables would be toesgra function that
takes a pair of values as an argument and needs to refer tovalaehindividually. When
a pair of dummy variables is used, each component of the aguis identified with a
distinct variable, and they can appear separately in theesgn. For example, a function
that concatenates a pair of lists in the reverse order caukpressed as

(X""y"). "y-x

When a function is defined as a lambda abstraction with a wipieimmy variables,
it should be applied only to arguments that are tuples willeadt as many components,
or else an exception may be raised due to an invalid decaristnu Similarly, a list of
dummy variables in the definition means that the functiorukhbe applied only to lists
with at least one item for each dummy variable. For nestésldistuples, each component
of the argument should match the arity or length of the cprding component in the
nested list or tuple of dummy variables. See page 164 foragaldiscussion.

Repeating a dummy variable within the same pattern, g8xih"x"). "x" , is
allowed but has no special significarfc& here is nothing to compel this function to be
applied only to pairs of equal values. The component of tharaent to which a repeated
dummy variable refers in the body of the abstraction is uci§pe. Note that this example
differs from the case of a nested lambda abstraction, wieegieated variables have a
standard interpretation as discussed above.

6.4 Sequencing operations

Five operators pertain feeding the output from one funatbmanother or feeding it back
to the same one. They are listed in Table 6.4. There are twitei@tion and three for
composition.

4An alternative semantics considered and rejected in thigmie$ Ursala would allow a pattern with repetitions to exgzre partial
function restricted to a domain matching the pattern. Temantics would be useful only in the context of a functionriEdliby cases
via multiple partial functions, which raises various preaitand theoretical issues.

208

6.4.1 Algebraic properties

These operators are designed with various algebraic grepén be as convenient as pos-
sible in typical usage.

e The iteration combinator> allows all four arities and is fully dyadic.

A

e The fixed point iterator has postfix and solo arities, andBatf = ="= f .

e The composition with pointers operat@) has only postfix and solo arities, with the
same algebraic properties as the fixed point iterator.

e The composition operatof, lacks a prefix arity but is otherwise dyadic.

e The reverse composition operatpr,also lacks a prefix arity. It is postfix dyadic, but
its solo arity satisfieg, f) g =1, g .

The pointers in f@ is a suffix rather than an operand, and must be a literal pointe
constant rather than an identifier or expression. Withoutffixs the identity pointer is
inferred, which has no effect. A late addition to the langrat)is operator’s purpose is
more to reduce the clutter in many expressions than to peamy more functionality.

6.4.2 Semantics

The semantics of these operators are as simple as they lodkegquire no lengthy dis-
course.

e The fixed point iterator,= , applies a function to the original argument, then applies
the function again to the result, and so on, until two conseeuesults are equal.
The last result obtained is the one returned. Non-ternnasi a possibility,

e The iteration combinator in a functignr>f similarly applies the functioh repeat-
edly, but uses a different stopping criterion. The predgais applied to each result
fromf , and the first result for which is false is returned. The result may also be the
original argument ip isn’t satisfied by it, in which cask is never evaluated.

e The composition operator in a functibhg appliesg to the argument, feeds the out-
put fromg intof , and returns the result from This function is the infix equivalent
of one given by the aggregate operatef,g+-

e The reverse composition operator, used in a fundtign, is semantically equivalent
to the composition operator with the operands interchangegg+f or-+g,f+-

5See page 78 for a discussion of equality.

209

6.4.3 Suffixes

All of the operators in Table 6.4 can be used with a suffix. Tiféxscan be used in any
arity the operators allow. There are three different cotiees followed be these operators
regarding suffixes.

e The iterations> and™= allow a literal pointer constant as a sulffix.
e The fixed point iteratof= also allows the= character in a suffix.
e The composition operators and; can take a suffix consisting of any sequence of
the characters, =, . , and$.
Iteration postprocessors

A pointer constant serves as a postprocessor to the iteration operatorsagiyniod its
use by the assignment operator. Thapis; sf is equivalent t6& s+ p->f , andf’= s
is equivalent to& s+ f'= . The right operand te> in its infix or prefix arities must be
parenthesized to distinguish it from a suffix if it beginsiwén alphabetic character.

For the fixed point iteratof=, a suffix of = can be used, as ii+¥=, either with or
without a pointer constant. The effect of thas to generalize the stopping criterion to
compare each newly computed result with every previoudtreather than comparing it
only to its immediate predecessor. This criterion makegtmeputation more costly both
in time and memory usage, but will allow it to terminate inesasf oscillation, where the
alternative wouldn't.

Embellishments to composition

The suffixes to the composition operators alter the sensmnfithe function they would
normally construct in the following ways.

e The* makes the function apply to all items of a list.

e The= composes the function with a list flattening postprocessor.

e The$ makes the function apply to both sides of a pair.

e The. makes the function transform a list by deleting the items fddaify it.
These explanations may be supplemented by some examples.
$ fun --m=""&h+ *"&t <’'ab’,’cd’’ef,’gh’>" --c

"bdfh’

$ fun --m=""&t+="&t <’ab’,’cd’’ef,/’gh’>" --c
‘efgh’

$ fun --m="&h+$ &t (<’ab’,’cd’><’ef,’'gh’>)" --c
(‘cd’ gh’)

$ fun --m=""&t+."&t <’abc’,’de’,’fgh’,ij>" --c
<’abc’,'fgh’>

210

meaning illustration

? conditional "&W?(T&X,"&r) = "&wxrQ
“? recursive conditional p~?(f,g) = refer p?(f,g)
?= comparing conditional x?=(f,g) = "&==x7?(f,9)
?< inclusion conditional x?<(f,g) = "&=x?(f,9)
?$ prefix conditional x?%$(f,9) = "&=x?(f,9)

Table 6.5: conditional forms

The functions above are equivalent to the pseudo-poifgehd®S , “&ttL , “&bth , and
"&ttPF . When multiple characters appear in the same suffix, théaceis cumulative
and the order matters.

$ fun --m=""&t+.="&t <’abc’,’de’,’fgh’,ij>" --c
"abcfgh’

$ fun --m=""&t+.="&t" --decompile

main = compose(reduce(cat,0),filter field(0,(0,&)))

6.5 Conditional forms

Several forms of non-strict evaluation of functions comdied on a predicate are afforded
by the operators listed in Table 6.5. These operators hdygostfix and solo arities, and
therefore are not dyadic, but they share the algebraic pyope

(p?)(f,9) = (?)(p.f,9)

where these expressions are fully parenthesized to enzghts arity. More frequent
idiomatic usages ang?/f g and?(p,”&/f g) , etceterawith line breaks per stylistic
convention.

6.5.1 Semantics

These operators are defined in terms of the virtual machooeditional combinator,
a second order function that takes a predigasgand two functionsf andg to a function
that evaluates t¢g or ¢ depending on the predicate.

f(x) if p(x) isnon-empty

conditional(P fig) = { g(x) otherwise

The non-strict semantics means the function not chosen isvatuated and therefore un-
able to raise an exception. This behavior is similar toithe. . then ...else statement
found in most languages.

e The? operator in a functiop?(f,g) directly corresponds to theonditional
combinator with a predicate and functiong andg.

211

e The ?= operator in a functiox?=(f,g) allows any arbitrary constamt in place
of a predicate, and translates to ttenditional combinator with a predicate that
tests the argument for equality with the consfant.

e The?$ operator in a functiom?$(f,g) allows any list or string constartin place
of a predicate, and translates to ttenditional combinator with a predicate that
holds for any list or string argument having a prefixxof

e The?< operator in a functiom?<(f,g) with a constant list or set tests the argu-
ment for membership ir rather than equality.

e The™? operator in a functiop™?(f,g) translates to @onditional wrapped
in arefer combinator, equivalent teefer conditional(p,f,g)

Therefer combinatoris used in recursively defined functions. An egpion of the form
(refer f) x evaluates td "“&J(f,x) . See pages 44 and 72 for further explanations.

6.5.2 Suffixes

The conditional operators listed in Table 6.5 all allow geirexpressions as suffixes, and
the™? additionally allows suffixes containing the character$, and<.

Equality and membership suffixes

The™? operator with a suffix is a recursive form of th@= operator. That is, the func-

tion p~?=(f,q9) is equivalent taefer p?=(f,g) . Similarly, p™?<(f,9) IS equiv-
alent to the functiomefer p?<(f,g) , andp”?$(f,g) is equivalent to the function
refer p?3$(f,g) . The=, $ and< characters are mutually exclusive in a suffix. The

effect of using more than one together is unspecified.

Pointer suffixes

The pointer expressionin a functionp?s(f,g) serves as a preprocessor to the predicate
p, making the function equivalent t(p+ “& s)?(f,g) . The expression can be a
pseudo-pointer but must be a literal constant. Note that ibv@ predicate is composed
with "& s, not the function$ andg.

For the?= and?< operators, the pointer expression is composed with thaéahpred-
icate. Hencex?=s(f,g) Iis equivalent ta"&E/x+ "& s)?(f,Q) andx?< s(f,g)
is equivalenttd"&wW\x+ "& s)?(f,g) . (See page 78 for a reminder about the equality
and membership pseudo-point&andw.)

Combined suffixes

A pointer expression and one efor = may be used together in the same suffix of the
"? operator, as ip™?= s(f,g) or p"?< s(f,g) , with the obvious interpretation as a
recursive form of one of the above operators with a pointéixsu

6see page 78 for a discussion of equality

212

meaning illustration

&& conjunction f&&g = f?(qg,0)

Il semantic disjunction f||g = f?(f,9)

I logical disjunction fllg = ?2(&9)

"& recursive conjunction f'&g = refer f&&g
7l recursive disjunction f’lg = refer flig
-= membership f-=s = "&w(f,s!)
== comparison f== x = "&ET(fxh)
"< non-membership f<s = “wZ(f,s!)
"= inequality = x = "EZ(fx!)

Table 6.6: predicate combinators

6.6 Predicate combinators

A selection of operators for constructing predicates Udefuconditional forms among
other things is shown in Table 6.6. There are operators &ing of equality and mem-
bership in normal and negated forms, and for several kindsrattional conjunction and
disjunction.

6.6.1 Boolean operators

The boolean operators in Table 6.6 && || ,!| , &, and"! . Algebraically, they allow
all four arities and are fully dyadic. Semantically, theg aecond order functions that take
functions rather than data values as their operands, amdréselts are functions. The
functions they return have a non-strict semantics. Thexearrently no suffixes defined
for these operators.

Non-strictness

The non-strict semantics means that in their infix usages;igint operand isn't evaluated
in cases where the logical value of the result is determinethé left. A prefix usage
such ak&qrepresents a function that needs to be applied to a pregicated will then
construct a predicate equivalent to the infix fop&&q. The resulting predicate therefore
evaluate® first and therg only if necessary. Similar conventions apply to other esiti

Semantics
The meanings of these operators can be summarized as follows

e A function f&&g appliesf to the argument, and returns an empty value iff the re-
sult fromf is empty, but otherwise returns the result obtained by apglyg to the
argument.

213

e A functionf|l|g appliesf to the argument, and returns the result fronif it is
non-empty, but otherwise returns the result of apphgrtg the argument. Although
it is semantically equivalent t&?(f,g) , it is usually more efficient due to code
optimization.

e A functionfll|g is similar tof||g but even more efficient in some cases. It will
return a true boolean valuif the result fromf is non-empty, but otherwise will
return the result frong.

e The functionf"&g is equivalent taefer f&&g
e The functionf’!lg is equivalent taefer fl|g

Therefer combinatoris used in recursively defined functions. An egpion of the form
(refer f) x evaluates td "&J(f,x) . See pages 44 and 72 for further explanations.
The aggregate operatoi&f,g&- , -|f,g|- , and-!f,g!- have a similar seman-
tics to the first three of these operators but allow arbiiramany operands. See page 192

for more information.

6.6.2 Comparison and membership operators

The operators=, "=, -= , and’< from Table 6.6 pertain respectively to equality, inequal-
ity, membership, and non-membership. These operatorsriasaffixes. They allow all
four arities but are dyadic only in their postfix arity. Foethprefix arities, they share the
algebraic property

f, ==x = f==x

but in their solo arities they are only first order functioakihg pairs of data to boolean
values.

¢ In the infix usage, these operators are second order fusdinah require a function
as a left operand and a constant as the right operand. Theyraeona function that
works by applying the given function to the argument andingsits return value
against the given constant, whether for equality, inetyyathembership, or non-
membership, depending on the operator.

¢ In the prefix usage, the operand is a constant and the resuttiisction that tests its
argument against the constant.

¢ In the postfix usagé==, as implied by the dyadic property, a functibnas an
operand induces a function that can be applied to a constémbbtain an equivalent
function tof==x , and similarly for the other three operators.

For the membership operators, the constant or the rightodeshould be a set or a list,
and the result from the function if any should be a possiblenber of it. For example,
-='0123456789’ s the function that tests whether its argument is a numéacacter,
and returns a true value if it is.

214

meaning illustration

- table lookup <a’ x,’b: y>-a = X
. library combinator l.f = library(l',’f)
| run-time library replacement lib.]func f = f

A compile-time library replacementlib.!func f f

Table 6.7: module dereferencing

6.7 Module dereferencing

Four operators shown in Table 6.7 are useful for access amdotof library functions.
Library functions can be those that are implemented in ddmgguages and linked into the
virtual machine such as the linear algebra and floating poath libraries, or they can be
implemented in virtual code stored iavm library files that are user defined or packaged
with the compiler. The dash operater,is useful for the latter and the other operators are
useful for the former.

6.7.1 The dash

This operator allows only an infix arity and has a higher pdecee than most other oper-
ators. The left operand should be of a typenfor some type, which is to say a list of
assignments of strings to instances,aind the right operand must be an identifier.

Syntax

The dash operator is implemented partly as a source levedforamation that allows it
to have an unusual syntax. The identifier that is its rightapeé need not be bound to a
value by a declaration elsewhere in the source. Rathepitldlbe identical to some string
associated with an item of the left operand. The value of gmessiorfoo-bar is the
value associated with the strifigar’ in the listfoo . Although’bar’ is a string, itis
not quoted when used as the right operand to a dash operator.

e If the right operand to a dash operator is anything other eéhamgle identifier, an
exception is raised with the diagnostic messagenublised dash operator ”
during compilation.

e If the right operand doesn’t match any of the names in the left operand, an exuoepti

is raised with the message afrfrecognized identifier: s".

Semantics

Although it is valid to write a dash operator with a literatlof assignments of strings to
values as its left operand

’ ’ ’

< so"t xo, ... 8, x> Sk

215

a more useful application is to have a symbolic nhame as thepefrand representing a
previously compiled library module.

Any source text containinglibrary+ directives generates a library file with a suffix
of .avm when compiled, that can be mentioned on the command lineglarsubsequent
compilation. Doing so causes the name of the file (withoutd@iven suffix) to be avail-
able as a predeclared identifier whose value is the list afaseents of strings to values
declared in the library. A usage likdv-symbol allows an externally compiled symbol
from a library namedib.avm to be used locally, provided that file name is mentioned
on the command line during compilation.

The#import directive serves a related purpose by causing all symbdiseatkin a
library to be accessible as if they were locally declaredweleer, the dash operator is
helpful when an external symbol has the same name as a lalegdlgred symbol, because
it provides a mechanism to distinguish them.

Type expressions

Type expressions associated with record declarations dufes are handled specially by
the dash operator. The compiler uses a compressed formpfp@rexpressions to save
space when storing them in library files. The dash operakastthis format into account.
When any identifier beginning with an underscore is used agight operand to a
dash operator, and its value is detected to be that of a casguidype expression, the
value is uncompressed automatically. This effect is ndgmabdt noticeable unless the
module containing a type expression is accessed by otheratlean the dash operator in
an application that makes direct use of type expressions.

Compressed libraries

If a file containing#library+ directives is compiled with the-archive command
line option, the file is written in a compressed format. Thaspression is optional and is
orthogonal to that of type expressions mentioned above.

The dash operator automatically detects whether its leftan is a compressed mod-
ule and accesses it transparently. Operating on compresseules otherwise requires un-
compressing them explicitly, which can be performed by tirefion%QIl. See page 132
for an example.

6.7.2 Library invocation operators

The other kind of library functions are those that are wniiteC or Fortran and are invoked
directly by the virtual machine. The virtual machine codedcaall to this kind of library
function is essentially a stub

library((library name, (function namg

containing the name of the library and the function as charatrings, which are looked
up atruntime by an interpreter. The available librariesfandtion names are site specific,

216

but can be viewed by executing the shell command
$ fun --help library

as shown in Listing 1.10 on page 46, and as documented iamtaen reference manual.

Aside from invoking a library function by thébrary combinator explicitly as
shown above, there are three operators intended to makeré& comvenient as shown
in Table 6.7, which are the (elipses),! , and.| operators.

Syntax

Algebraically the library name is the left operand and thecfion name is the suffix for
each of these operators. The right operand, if any, can bexmgssion representing a
function. All three operators allow solo and postfix usagee T and.| operators allow
infix usage and are postfix dyadic.

Syntactically the library name must be an identifier, whigedn't be declared any-
where else because itis literally translated to a string $guaice transformation, similarly
to the right operand of a dash operator as explained abowghifug other than an identi-
fier as the left operand to one of these operators causes aledimg exception.

The function name in the suffix may contain digits, which ao¢ mormally valid in
identifiers, as well as letters and underscores.

Both the library and function names can be recognizablyctited or even omitted
where there is no ambiguity (either because a function naénesque across libraries, or
because a library has only one function).

Semantics

The operators differ in their semantics, as explained below

The elipses The.. allows only a postfix or solo arity, with the solo arity copesding
to the case where the library name is omitted. It is trangldieectly to thelibrary
combinator mentioned above with an attempt to completerammgated library or function
names at compile time.

¢ If there isn’t a unique match found for either the library be function name in the
postfix usagédib..func , it is taken literally (even if no such function or library
exists on the compile time platform).

e If there isn’t a unique match found for the function name ia solo usage (i.e., with
the library name omitted), then a compile time exceptiomisad with the diagnostic
messageunrecognized library function ”

Compile time replacement Integration of compatible replacements for external lijpfanc-
tions is important for portability, but the library functias preferable where available for
reasons of performance. THe operator provides a way for a replacement function to be

217

used in place of an unavailable library function. The deteation of availability is made
at compile time based on the virtual machine configuratiothercompilation platform.

e An expression of the forrib.!func f evaluates td if no unique match to the
library function is found, but it evaluates lib..func otherwise.

e A solo usage of the formfunc f behaves analogously, but obviously may fail
to find a unique match for the library function in some caseerelthe usage above
would not.

e Consistently with the dyadic property and solo semantiosexression!func
or lib.!func by itself evaluates either to the identity function or to axst@ant
function returnindib..func , depending on whether a matching library function
is found during compilation.

¢ In any case, no compile time exception is raised, but run @mars are possible if a
library function present on the compile time platform isetitsfrom the target.

Run time replacement The.| operator provides a way for a replacement function to be
used in place of an unavailable library function with thesdtination of availability made
at run time.

e An expression of the forrib.|func f represents a function that performs a run
time check for the availability of a function namédc in a library namedib . If
such a function exists and is unique, it is applied to the raignt, but otherwise the
functionf is applied to the argument.

e Asolousage of the fornjffunc f behaves analogously, but searches every virtual
machine library for a function namédnc .

e Consistently with the above usages, an expres#iomc orlib.|func by itself
represents a higher order function that needs to be appliadiunctionf in order to
yield a meaningful combination dib..func andf .

e This operator is unlikely to cause either compile time or tinme errors, and will
generate code that makes the best use of available libracgiéuns on the target in
exchange for a slight run time overhead.

6.8 Recursion combinators

Four operators shown in Table 6.8 are grouped together liposethe basis that they
abstract common patterns of recursion, particularly oges And trees.

218

meaning illustration

=> folding f=>k <x,y> = f(x,f(y,k))

.- reduction fi-k <x,y,z,w> = f(f(x,y),f(z,w))
<: recursive composition f<:g = refer f+g

*~ tree traversal "&dxPVV * "0 = "&dxPvVo

Table 6.8: recursion combinators

6.8.1 Recursive composition

One operator from Table 6.8 that requires very little exataom is<: , for recursive com-
position. It has all four arities, no suffixes, and is fullyadijc. It is semantically equivalent
to the composition operatot, with the result wrapped in @efer combinator. That is,
a functionf<:g is equivalent taefer f+g . As noted previously, theefer combi-
nator is used in recursively defined functions. An expressidhe form(refer f) x
evaluates td ~“&J(f,x) . See page 72 for more information.

6.8.2 Recursion over trees

The tree traversal operatof; , is a generalization of the tree folding pseudo-pointer,
introduced on page 70, that allows greater flexibility in Handling of empty subtrees,
and accommodates arbitrary functional expressions agsp@erather than literal pointer
constants. It is useful for performing bottom-up calcwas on trees.

The operator allows all arities and is prefix dyadic. The s™dage:~ f is equivalent
to the postfix usag¢* " . A function of the formf*" k operates on a tree according to the
following recurrence.

(f*"k) "&V() =k
(f+° k) d< vo...v0n> = F(5<(k) w...(f* k) v,>)

A function f*~ differs from f*~ k by being undefined for the empty tré&V() or any
tree with an empty subtree.

The tree traversal operator allows a suffix consisting of ssguence of the characters
* (asterisk), (period), and=. Each of these characters specifies a transformation of the
resulting function. The makes it apply to every item of a list, thecomposes it with
a list flattening postprocessor, and thenakes it transform a list by deleting items that
falsify it. When multiple characters occur in the same suftfieir effect is cumulative and
the order matters.

6.8.3 Recursion over lists

The remaining two operators in Table 6.8 construct funstigperating on lists according
to patterns of recursion sometimes known as folding or reoluc A typical application
for these operators is summing over a list of numbers.

219

Folding

The folding operator=> takes a function operating on pairs of values and an optional
constant as a vacuous case result to a function that openatedist of values by nested
applications of the function.

The operator can be used in any of four arities, with the indbaf allowing a user
defined vacuous case. It is prefix and solo dyadic, but thdipémstm is without a vacuous
case and consequently has a different semantics. Thereiaenity no suffixes defined
for it.

A function expressed a&=>k, which is equivalent ta=>k) f and(=>) (f, k) by the
dyadic properties, applies the following recurrence tea li

(f=>k) <> = k
(J=2k) bt = J(h,(J=>k) 1)

If f were addition and were 0, this function would compute a cumulative sum. Cumula
tive products might conventionally have a vacuous case affiinction expressed by the
postfix form f=> is evaluated according to this recurrence.

(f=>) <> = <>
(f=>) <h> = h
(f=>) hittu = f(h,(f=>) t:u)

This form tends to have unexpected applicationadrhoctransformations of data, such
as converting a list of length to ann-tuple by"&=> (cf. Figures 5.1 and 5.2).

Reduction

The reduction operator; , performs a similar operation to folding, but the nesting of
function applications follows a different pattern, and aguous case result doesn’t enter
into the calculation unnecessarily. The difference issillated by these two examples,
which fold and reduce the operation of concatenation fadidwy parenthesizing with an
empty vacuous case.

$ fun -—-m="-+(--,--)",—+-=>" "&INCS ’abcdefgh™ --c
(a(b(c(d(e(f(a(mMMN))
$ fun --m="-+(--,--")",--+--" "&INCS ’'abcdefgh™ --c
'(((ab)(cd))((eR)(gh)))

The original motivation for the reduction operator as omub#o folding was to avoid
imposing unnecessary serialization on the computatior cthirent virtual machine im-
plementation does not exploit this capability.

Algebraically the reduction operator has all four arities suffixes, and is fully dyadic
(i.e., the vacuous case must always be specified). Semianticaay be regarded either
as folding with an unspecified order of evaluation, limitihgo associative operations,
or can have a formal specification consistent with above gkanas documented for the

220

meaning illustration

$° maximizer nleg$” <1,2,3> = 3

$- minimizer nleg$- <1,2,3> = 1

-< sort nleg-< <2,1,3> = <1,2,3>

*7 Ailter "='x +7 axbxc’ = ’abc’

I distributing filter "="| (‘a,’bac’) = 'bc

= partition ==|= 'mississippi’ = <'m’,’ssss’,’pp’,iiii’>
1= bipartition “='xI= 'axbxc’ = (‘abc’,’xx’)

+| distributing bipartition ==+| (‘a,’bac’) = (a,bc)

-~ forward bipartition =='x-" 'xax’ = (X, ax)

"~ backward bipartition =='X"- 'xax’ = ('xa,x)

Table 6.9: list combinators with predicate operands

reduce combinator in thevram reference manudlA restricted form of this operation
is provided by th&21 pseudo-pointer explained on page 89.

6.9 List transformations induced by predicates

Some operators shown in Table 6.9 are designed to suppguindy needed list calcula-

tions such as sorting, searching, and partitioning. A comfeature of these operators is
that they specify a function by a predicate or a boolean wbhieary relation. Except as

noted, all of these operators apply equally well to lists seits.

6.9.1 Searching and sorting

Searching a list for an extreme value can be done by eithevabperators$™ and$- ,
while sorting a list can be done by the operator. Searching is semantically equivalent
to sorting followed by extracting the head of the sorted bstt is more efficient, requir-
ing only linear time. Each of these operators requires arpingational predicate and
optionally a pointer or pseudo-pointer identifying a fieldwhich to base the comparison.

A binary relational predicatg for these purposes is any function that takes a pair of
values as an argument and returns a non-empty result if alydfdhe left value pre-
cedes the right according to some transitive relation. ™afx, y) is true if and only if
x C y for arelationC. Examples of suitable relations axeon floating point numbers as
computed byfleq from theflo library, and alphabetic precedence on character strings
as computed blleq from the standard librangtd.avm . The examplaleq used in
Table 6.9 is the partial order relation on natural numbers.

The pointer operand can be any literal or symbolic expression evaluating to ateoi
including literals such a&thl or &hthPX, field identifiers such afobar , or combi-
nations of them such deobar.(&h:&tt) . Pseudo-pointers are also acceptable, such
as&zl orfoo.&INC

"For a reduction combinator definad initio as a one-liner, see the filem.fun in the compiler source directory.

221

Semantics

The maximizing and minimizing functions cause an exceptiben applied to empty lists,
but sorting an empty list is acceptable.

e The maximizing functiorp$” f applied to a liskz ... z,> returns the itemx; for
which™ f z; is the maximum with respect to the relatipn

e The minimizing functionp$- f applied to a liskz, ... x,> returns the item; for
which™ f z; is the minimum with respect to the relatipn

e The sorting functiomp-< f applied to a liskz, . .. z,,> returns a permutation of the
listin which™ f of each item precedes that of its successor with respecetpradi-
catep.

Algebraic properties

None of these operators is dyadic, but they can be used iowl&frities and have similar
algebraic properties

Postfix usage The postfix form of any of these operators, suchpas, p$- , or p$~ , is
semantically equivalent to the infix form with a right opedlast the identity pointeny-<&
etcetera That means the whole items of the argument list are comparede another by
p rather than a particular field thereof.

Solousage The solo usages<) p,($7) p,and($-) pare equivalentto the respective
postfix usageg-<, p$" , andp$- . That is, they imply an identity pointer in place of the
right operand and base the comparison on whole items ofghe li

Prefix usage The prefix form of the sorting operators< f is equivalent tdleg-< f,
wherelleq is the lexical total order relation on character stringg afso the relation
used by the compiler to represent sets as ordered lists.

The prefix forms of the maximizing and minimizing operat$tsf and$- f are equiv-
alenttolegl$™ fandlegl$- frespectively, wherkeqgl isthe relational predicate that
tests whether one list is less or equal to another in lengtre Standard library defines
legl as"&alZ"!"&arPfabt2RB

Suffixes

Each of these operators allows a suffix, which can be anglipminter or pseudo-pointer
constant to be used as a postprocessor. That-ssf with a pointer expression is
equivalent to& s+ p-< f. Consequently, if the right operarfdto a sorting or searching
operator begins with an alphabetic character, it must berplaesized to distinguish it from
a suffix.

222

6.9.2 Filtering

The operation of filtering a list is that of transforming itasublist of itself wherein every
item that falsifies a given predicate is deleted. Some opesateviously introduced, such
as composition and binary to unary combinators, can spéltéying functions by way of
their suffixes, and filtering can also be done by the pseudioigrsF, K16, andK17, but
there are two operators intended specifically for filtering.

e The filter operator ™ takes a predicate as an operand, and constructs a funcéibn th
filters a list by deleting items that falsify the predicate (i for which the predicate
has an empty value).

e The distributing filter operatdil takes a binary relational predicaies an operand
(not necessarily transitive) and constructs a functiohtdiees a paifa, <z ...z,>)
to the sublist of the right argument containing only thasdor which p(a, z;) is
non-empty.

One way of thinking about these operators is thatis used when the filtering criterion
can be hard coded anffl is used when it's partly data dependent.

Usage
These operators can be used as follows.
e The™| operator is usable in any arity, and can be infix, postfix, or solo.
¢ In the prefix and infix usages, the right operand is a pointpression.
¢ Both operators allow a pointer constant as a suffix, whichieseas a postprocessor.

e The right operand, if any, must be parenthesized to distegii from a suffix if it
begins with an alphabetic character.

Algebraic properties

Neither operator is dyadic, but the following algebraicpedies hold, where is a predi-
cate andf is a pointer expression.

e The prefix usage of distributing bipartition implies a peate of equality.
T r=E1 7

e The postfix usage of either operator is equivalent to the udixge with an identity
pointer as the right operand.
T = pr&

e The postfix usage of either operator has an equivalent salgeus
pm o= (7)p
e The infix usage of either operator has an equivalent postéigels

p" f = (pr Tf)*7

223

Semantics

It is possible to supplement the informal descriptions &baith rigorous definitions of
these operators in various ways. Fiein postfix and solo forms without a suffix directly
corresponds to the virtual machindier combinator, as documented in theram
reference manual. Alternatively, we may define

prTsf = "&st x= &&&INC pt+ " f
pl sf = "&s+ &S+ pxT f+ -x

using operators defined elsewhere in this chapter, whesea predicatef is a pointer
expression andis a literal pointer or pseudo-pointer constant. Defingifor other arities
are implied by the algebraic properties.

As indicated by these relationships, there is a minor pdirtdifference between the
usage of the pointer operatfdvith these operators and the sorting and searching opsrator
described previously. In the present caséis applied to a pair of values, and its result is
fed top. In the previous casé/ is applied only to items of a list individually, and the pairs
of its results are fed tp. The latter is more appropriate wheis a relational predicate, as
with sorting and searching, whereas the present altematmore general.

6.9.3 Bipatrtitioning

Bipartitioning is the operation of transforming a $&to a pair of subsetdl, R) such that
LN Risemptyand.U R = S. It can also apply wher# is a list, in which case the items
of L and R preserve their order and multiplicity.

The bipartition operato= shown in Table 6.9 takes a predicatthat is applicable to
elements of a list or set and constructs a function that bipartitiosignto (L, R) such that
p is true of all elements of and false for all elements d@?. This operator is documented
further below, along with several related operatdrs-"~ , and™- also shown in Table 6.9.
Pseudo-pointers with similar semantics are documenteddtich 2.5.2.

Bipartition

The != operator can be used in any of prefix, infix, postfix, and soitiear The left
operand, if any, is a predicate and the right operand, if @rg,pointer or pseudo-pointer
expression. The operator may also have a literal pointestaah as a suffix. If there
is a right operand beginning with an alphabetic charactemust be parenthesized to
distinguish it from a suffix.

Algebraic properties The following algebraic properties hold, wherés a predicate and
iS a pointer expression.

e The postfix usage implies the identity as a pointer operand.

pl= = pl=&

224

e The prefix usage implies the identity function as a predicate
I=f = "&!=f
e The infix usage is defined by the solo usage.

p=f=(=)p+t"f

Semantics It is straightforward to give a formal semantics for the figsarity (and the
others by implication) in terms of th&] pseudo-pointer for set difference and the filter
combinator.

=) = (=) p) 2=((p*") =&l = (p*7) 2)
The optional suffix serves as a postprocessor in any aritya lpointer constant, any
function of the formp!= sf, 1= sf, p!= s, orl= s. is equivalent t6& s+ g, whereg is
given byp!= f, 1= f, pl=, or!= respectively.

Distributing bipartition

The distributing bipartition operater| is used to bipartition a list according to a binary
relation. A functionp | f takes pair of x,< y,...v,>) as an argument, and it returns a
pair of lists(< y;...><y;...>) collectively containing all of the itemg, throughy,,.
For ally; in the left side of the resulp ™ f (z, ;) has a non-empty value (using the same
x in every case). For al}; in the right sidep ~f (z,y,) has an empty value.

This operator has the same algebraic properties and aagi¢ise bipartition operator
discussed above, and makes similar use of an optional p@xrpeession as a suffix. Its
semantics is given by

px| sf = "&st+ "&brS+ pl= f+ -

where the suffixs is a literal pointer constant anflis any pointer expression, possibly
parenthesized.

Ordered bipartition

The two operators,” and™ , are used for bipartitioning a list based on a predicate
into a pair of lists(L, R) such thatS is the concatenation df and R.

e Afunctionp-~ applied toS will construct(L, R) with L as the maximal prefix of
whose items all satisfy.

e Afunctionp™ will make R the maximal suffix whose items all satigy

In operational termg)-~ scans forward through a list from the head and stops at the firs
item for whichyp is false, whereag™ scans backwards from the end. The results may
or may not coincide with each other or with= depending on repetitions ifi and the
semantics op.

These operators allow solo usages, With) p equivalent tgp-~ , and(
lenttop™ , and they each allow a pointer suffix to specify a postpramess

) p equiva-

225

6.9.4 Partitioning

The partition operatof= , shown in Table 6.9 can be used to identify equivalence etass
of items in a list or a set according to any given equivalemrtation, or by the transitive
closure of any given relation. This operator is very expwesg$or example by allowing a
function locating clusters or connected components in plgta be expressed simply in
terms of a suitable distance metric or adjacency relation.

Usage

The partition operator can be used in prefix, postfix, infixJ aalo arities. In the prefix
and infix arities, the right operand is a pointer expressiorthe postfix and infix arities,
the left operand is a binary relational predicate. There alag be a a suffix in any arity
consisting of a sequence of the characters, or a literal pointer constant. The right
operand, if any, must be parenthesized to distinguish i feosuffix if it begins with an
alphabetic character.

Algebraic properties

The operator is not dyadic, but has these properties, wiéchheld when it has a suffix.

e The prefix usage implies a relational predicate of equaltgdéfault.
=/ =E3IN= 7
e The postfix usage implies the identity pointer by default.
pl= = pl=&
e The infix usage can be defined by the solo usage.
pI=f = (=) (p+ "&b. f)

e The postfix usage|= is equivalent to the solo usagl) p because+ "&b.& is
equivalent tgy whenp is a binary predicate.

Semantics

Intuitively, the relational predicate in a functionp|= is true of any pair of values that
belong together in the same partition. and the poiritetentifies a field within each list
item to be compared by.

The relation should be an equivalence relation, which bynd&fn is reflexive, transi-
tive and symmetric, but if the latter two properties are lagkthe operator can be invoked
in such a way as to compensate. An example of an equivaletat®reis that of two
words being equivalent if they begin with the same letteuadlly any rule associating two
things that share a common property induces an equivaletatéon.

226

meaning illustration

* map f+ <a,b> = <f af b>
"% map to both o (Xy) = (fx xf xy)
*= flattening map f+= <a,b> = "&L <f af b>
I\ triangle combinator fi\ <a,b,c> = <af bffc>
" coupling “(f,g) x = (f x,0 x)
™ apply to both ~ (xy) = (f xfy)
™ couple and apply to both (g,h) x = (f g xfhx
"+ mapped coupling " *(g,h) = f*+ “(g,h)
7 apply one to each “I(f,9) (xy) = (fxgy)
$ record lifter rec$[a: f,b: g] = "(f,9)

Table 6.10: concurrent forms

This explanation can be made more rigorous in the followiag.\iror the postfix arity,
the|= operator satisfies this recurrence up to a re-ordering.

(=) <> = <>
(pl=) it = 7@ h+ "&ILS&R) Pl x| h (p=) t

The semantics for other arities follows from the algebraaperties above. The coupling
operator,” , is introduced subsequently in this chapter. The subegfmep™| *|/ h is
parsed a§(p’|) *|)/ htouse a distributing filter within a distributing bipartti as the
left operand of a binary to unary operator.

o If there is a suffix that includes the character (e.g. if the operator is of the form
|==), the symmetric closure of the predicatés implied, and the above recurrence
holds with-! p, p+~&rlX!-7| in place ofp™| .

e A function of the formp|= s, p|== s, p|= * s, orp|= * =s, wheres is a literal pointer
or pseudo-pointer constant, is semantically equivaleatfinction™& s+ ¢, where
g is of the formp|=, p|==, p|= *, or p|= * = respectively.

o If there isnota suffix containing the , the above recurrence accurately describes the
semantics only ip is transitive (i.e., ifp(z, y) andp(y, z) impliesp(z, 2)). If there is
a suffix containing, the recurrence holds regardless of transitivity.

A more efficient algorithm is used for partitioning when thedation p is transitive, but
unspecified results are obtained if this algorithm is usedrwhis not transitive. Ifp is
not transitive, it is the user’s responsibility to specifiet in a suffix. An example of a
relation that is not transitive is intersection betwees set

6.10 Concurrent forms

Whatever the merits of functional programming for concotigplications, the operators
in Table 6.10 are variations on the theme of computations @bt/ious parallel evaluation

227

strategies. Although the virtual machine makes no use @iledéism in its present imple-
mentation, these operators are convenient as programrairgjracts for their own sake.
They fall broadly into the classifications of mapping operatand coupling operators,
which are considered separately in this section.

6.10.1 Mapping operators

The first four operators in Table 6.10 involve making a lisbatputs from a function by
applying the function to every item of an input list. They dsused either in solo arity, or
as a postfix operator with a function as an operand, and treag she algebraic property
f* = (») f. They also have suffixes usable in various ways.

Map The simplest and most frequently used mapping operatsatisfies this recurrence
when used without a suffix.

(f*x) <> = <>
(f*) hit = (fR):((f*)?)

That is, the map of appliesf to every item of its input list and returns a list of the result
Mapping can also be used on sets but the result should belezbas a list unless unique-
ness and lexical ordering of the items in the result are raaiad, which are necessary
invariants for the set representation.

The = operator allows a literal pointer constant as a suffix, arddiiffix serves as
a preprocessor to the mapping function (not a postprocessdr does for most other
operators allowing pointer suffixes). For a literal poindethe relationship is

frxrs = fx+ "&s

Pseudo-pointers as suffixes for the map operator can be xprgssive. For example,
a matrix multiplication function can be defined in one line as

mmult = (plus:-0.+ times *p) xrID *rK7ID
using eithemplus andtimes from theflo library with floating point O, or whatever
equivalents are appropriate for matrices over some otHdr fie

Maptoboth The™ * operator works like the operator except that it constructs a function
that applies to a pair of lists rather than a single list. Tkecerelationship is

(f7) (@y) = (%) 2, (f*) y)

wheref is a function and: andy are lists. This operator also allows a pointer suffix, that
serves as a preprocessor That is,

Jx"s

wheres is a literal pointer constant.

"8 s fx”

228

Flattening map The* = operator behaves like the with a list flattening postprocessor.

The functionf in an expressiorf* = should return a list. After making a list of the results,
which will be a list of lists, the flattening map operationrfes their cumulative concate-

nation. Formally, the relationship is

fx= = "&L+ fx

in terms of the list flattening pseudo-point&L explained on page 65, which could also
be defined as:-<> with operators introduced in this chapter.

The flattening map operator allows arbitrarily many merand = characters to be
appended as suffixes.

e Eachx character in a suffix indicates a nested map. Thaf4s;+ is equivalent to
(f+x=)*, where the latter is parsed as the map operatgr,=++ is equivalent to
((f+=)*)*, and so on.

e Each= character in a suffix indicates another iteration of flatigni Hencef* ==
is equivalentto&L+ f*=, andf*===is equivalentto&L+ &L+ f*=, and so
on.

e Combinations of these characters within the same suffix koeved but the order
matters. f* =x = is equivalent t0&L+ (f*=) %, which is also equivalent to a pair
of nested flattening maygsf* =) * =, but f* ==+ is equivalent td"&L+ f* =) .

A pointer expression may also appear in a suffix, and it willkaca preprocessor similarly
to a pointer suffix for the map operator.

Triangulation ~ An operator that is less frequently used but elegant whemoapiate is
the|\ operator for triangulation. This operator should not befesed with/| or})| ,
the binary to unary combinators with a suffix pf although the meanings are related
(page 202). See also th® pseudo-pointer on page 87.

The intuitive description of the triangle combinator isttiiadakes a functionf as an
operand and constructs a function that transforms a listlbsnfs.

(fI\) <zo, 21, T2, ...x,> =<z, f(21), f(f(22)), ... f(...f(zp)...)>
n times

That is, the functiory is appliedi times to the-th item of the list. A more formal descrip-
tion would be that it satisfies the following recurrence.

(1N)< = <
(N)bt = R ((FN) (f) 1)

The triangle combinator also allows a literal pointer orymk®pointer constant as a
suffix, which serves as a postprocessor.

fN s = "&s+ f|\

229

6.10.2 Coupling operators

Whereas the mapping operators are concerned with applyaggime function to multiple
arguments, most of the remaining operators in Table 6.16lvevconcurrently applying
multiple functions to the same argument.

Apply to both

The™ operator allows postfix and solo arities with no suffixes. Ha postfix arity, its
operand is a function, and the solo arity satis{iés) f = f™ .

This operator corresponds to what is calledfire combinator in the@vram reference
manual. Given a functiorf, it constructs a function that applies to a pair of values and
returns a pair of values. Each side of the output pair is caatpby applyingf to the
corresponding side of the input pair.

() () = (fz, fy)

Normally a function of the formf™ will raise an exception with a diagnostic mes-
sage of fnvalid deconstruction " when applied to an empty argument, but if the
function f is of the form™& p andp is a pointer, certain code optimizations might apply.

$ fun --main=""&™ --decompile

main = field &

$ fun --m=""&rlX™™ --d

main = field((((0,&),(&,0)),0),(0,((0,&),(&,0))))

The optimization in the first example is a refinement rathantan equivalent semantics,
whereby the function will map an empty input to an empty ottther than raising an
exception. The optimization in the second example usesglespointer instead of the
fan combinator.

This operator also allows a pointer suffix, that serves agprpcessor That is,

s ="&s; [T
wheres is a literal pointer constant.

Couple

The most frequently used coupling combinatot jsvhich allows infix, postfix, and solo
arities, and a pointer suffix as a postprocessor.

¢ In the solo arity,” is a function that takes a pair of functions as an argument and
returns a function as a result.

¢ In the infix arity, the” operator takes a function as its left operand and a pair of
functions as its right operand, with the algebraic propégftyg, h) = f+ (")(g, h).

e The operator is postfix dyadic, so the postfix usage is imgdiethe infix.

230

The semantics for the solo arity, which implies the other, iwgiven by

() (fi9) = = (fa,gx)

where f andg are functions. That is, a function(f, g) returns a pair whose left side is

computed by applying to the argument, and whose right side is computed by applying

to the argument. This operation corresponds to the virt@ahime’'scouple combinator.
The interpretation of a pointer suffixvaries depending on the arity.

¢ In the solo arity, the suffix acts as a postprocessor to thetifumthat is constructed.
“s(f9) = "&s+ " (f,9)

¢ In the infix arity, the suffix is composed between the left @perand the function
constructed from the right operands.

[s(f9) = [+ "&st " (f,9)
e Suffixes in the postfix arity function consistently with timéix arity.

(" s) (f,g9) = B s(f,9)

Compound coupling

The two operatorS’ and” * perform a combination of tHewith the™ and* operations,
respectively. They allow infix, postfix, and solo aritiesgdrave these algebraic properties.

e The infix usage of” causes the left operand to be applied to both results returne
by the function constructed from the right operand.

7 (g,h) = 7+ 7 (g9,h)

e The infix usage of * has the analogous property, but is not well typed unless a
pseudo-pointer suffix transforms the intermediate resudtlist (see below).

[x(g,h) = fx+ " (g,h)
e Both operators are postfix dyadic.

(/7) (g, h) 7 (g, h)
(f7*) (g,h) f *(g,h)

e The solo usage takes a function as an argument and returme@gofuthat takes a
pair of functions as an argument.

(™) (g, h)
(= f) (g, h)

231

If a pointer constant is used as a suffix, it is composed betweenféime or map of the
left operand and the functions constructed from the rigletrapd.

[T s(g,h) = [T+ "& s+ " (g,h)
[*s(g,h) = f*™+ "& s+ " (g,h)

The semantics of pointer suffixes in the other arities of éngserators is analogous to
those of thé operator.

One to each

A further variation on the couple operatoris. The semantics in the infix arity with a
pointer suffixs is

(f1 s(g.h) (z,y) = [&s (g, hy)
wheref, g, andh are functions. The solo arity satisfies

(1 s) (g,h)) (v,y) = &s (gx,hy)

and the operator is postfix dyadic.

If a function of the formf7 s(g,h) is applied to an empty value instead of a pair
(z,y), an exception will be raised withirfvalid deconstruction " reported as
a diagnostic. Otherwise, one function is applied to eack sidthe pair, as the above
equivalence indicates.

In addition to a pointer suffix, this operator may be used with any combination of
suffixes* , =, and™ . The simplest way of understanding and remembering thisctsfis
by these identities,

f1*s(g,h) (f*)1 s(g,h)
fT s(g,h) = (f7)1 s(g,h)
f1x=s(g,h) = (f*=)] s(g,h)

which is to say that they can be envisioned as making theuefttion mapped, fanned,
or flat mapped. These suffixes may also be used in the solo fanerein they act on the
implied identity function instead of a left operand. Thet#aing suffix,=, can be used by
itself, and will have the effect of composing the list flaitepfunction”&L with the left
operand. Arbitrarily long sequences of these suffixes ae @lowed, and are applied in
order, as in this example.

f1*"=xs(g,h) = (x &L+ 7 * f)] s(g,h)

Record lifting

For records to be useful as abstract data types, the capdbilnanipulate them without
recourse to the concrete representation is essential rddusrement is partly filled by the
means documented in Section 4.2 for declarations and deuaotisn of record types and
instances, but further support is needed for their dynaneatmn and transformation.

232

The$ operator is used to express functions returning records abatract style, while
preserving any invariants stipulated in the record’s dagian. It allows postfix and solo
arities, with the property$ = ($) f. Nested$ operators in expressions such &$
and f$$$ are meaningful as higher order functions. The operardn be any function,
but only functions defined by record declarations are likelpe useful (i.e., defined as
the initializing function denoted by the record mnemonithe $ operator also allows a
pointer constant as a suffix, which is used in an unusual wplamed presently.

Usage A function of the formf$ with a record mnemonig is analogous to a function
g~ for a functiong operating on a pair of values. Whereas the latter is meanimgien
applied to a pair of functions (as explained in connectiothwhe”™ operator), the former
applies to a record of functions. Hence, the typical usageas expression of the form

(record mnemonich[
(field identifiey: (functior),

(field identifiej: (function]

which is parsed ag(record mnemoni&)[...]. The record mnemonic and field iden-
tifiers should match those of a record type previously dedavith the:: operator, as
explained in Section 4.2.

e The fields in a record valued function can be specified in adgroor omitted, but at
least one must be included.

e The effect of repeating a field in the same expression is wifgged but in the current
implementation one or another will take precedence.

e The technique of associating a tuple of values with a tupligetds isnot valid for
record valued functions, even though it ordinarily can bedu® express record in-
stances. For example, the subexpresfionfa,b: fb] should not be abbrevi-
ated to[(a,b): (fa,fb)] in a record valued function.

Semantics The$ operator can be understood by this equivalence.

(f®)ao: go, - an: gul) z = flao: go(x), ... an: gu(2)]

Thatis,(f$)[ao: g0, ... an: gn] represents a function that can be applied to an ar-
gumentz to return a record of the type indicated lfy To compute this function, eagp

is applied to the argument, and its result is stored in the fieth address,; in the manner
portrayed in Figure 5.3 (page 189). The record of functicguits is then initialized by
the record initializing functiory. At this stage, any user defined verification or initializa-
tion specified in the record declaration is automaticallsfgrened, even if it overrules the
function results.

233

Nested use of the operator denotes a higher order function.

(f$$) aor go, - ant ga]l) @ = (f$)lao: go(z), ... anl gu(w)]
((f$$8) ao: g0, - an: gu]) © = (f$B) a0 go(x), ... an: gu(2)]

Although the semantics in higher orders is formally strégtvard, lambda abstraction
may be a more readable alternative in practice (page 207).

Suffixes Not every field defined when the record is declared has to befegakin a record
valued function. This feature reduces clutter and alloveseza&ode maintenance if more
fields are added to a record in the course of an upgtatiee handling of omitted fields
depends on the optional pointer suffix to theperator.

With no suffix, the default behavior of tlkis to assign an empty value to an omitted
field, but for a typed or smart record, the empty fields areraataally initialized by the
record initializing functionf.

If there is a pointer or pseudo-pointer suffixappended to th& operator, then any
omitted fielda; is assigned a value 6fs. a; z, wherex is the argument to the function.
Intuitively that means that the unspecified fields in a resalt be copied or inherited
automatically from a record in the argument. This value nidlyb& subject to change by
the record initializing function.

By way of an example, a function taking a record of tygeo to a modified record
of the same type with most of the fields other thzar unchanged could be expressed
asfoosi[bar: g] . This function is almost equivalent tear:= ¢ using the assign-
ment operator (page 203) except that it provides for thercetmbe reinitialized after the
change. Other common usages &reand$r , for functions that take a pair of a record
and something else to a new record by copying mostly fromrtpetirecord.

6.11 Pattern matching

A set of operators relevant to the general theme of pattetohimeg or transformation is
shown in Table 6.11. They are classified in this section adaarvariate generators, type
expression constructors, finite maps, and string handl@gadors.

6.11.1 Random variate generators

An operator in a class by itself &"~, which is useful for constructing programs with
non-deterministic outputs. It can be used in postfix or soitbea, and has the property
n%"~ = (%) n. Its operand: is either a natural or a floating point number.

8|f the declaration and use of a record are in separate mqdés may require recompilation even if no source level gearare
made to the latter.

234

meaning illustration

%~ bernoulli variable 50%" x = &or0
% literal type expressions (%s,%t)%dlwrX = %stX
%- symbolic type expressions%-u X = x%u
-$ unzipped finite map <a,b>-$<x,y> a = X

- defaultable finite map <a: x,b: y>-d c = d

=: address map <a: x,b: y>=: b =y
%= string replacement 'b'%="d" 'abc’ = ’adc’
=] startswith combinator =J'ab’ 'abc’ = true
= prefix combinator [F'abc’ ab’ = true

Table 6.11: Pattern matching

Semantics

A program of the forrm%"~ can be used in place of a function but does not have a func-
tional semantics. Rather, it ignores its argument and mstarboolean value, eith@ror

&. The value it returns is obtained by simulating a draw fromaradom distribution. The
operandr allows a distribution to be specified.

e If nis afloating point number, it should be between 0 and 1. TRénwill return a
true value with probability:.

e If n is a natural number, it should range from O to 100, aP&" will return a true
value with probabilityn /100.

¢ A default probability of0.5 is inferred for the usag@é%".

The above probability should be understood as that of thalabed distribution. The
results are actually obtained deterministically by the $¢ane Twister algorithm for ran-
dom number generation provided by the virtual machine. lerafonal terms, i17%" is
applied to members of a population (i.e., items of a listy percentage of true values
returned will approach as the number of applications increases.

Applications

This operator can be used for generating pseudo-randomoflgieneral types and sta-
tistical properties by using it in programs of the forto™?(f, ¢g) , wheref andg can
be functions returning any type and can involve further usfe®%"~. However, a better
organized approach for serious simulation work might imedhe combinatorarc and
stochasm defined in the standard library. A more convenient methodwthe distribu-
tion parameters aren't critical is to use type instance gegoes (page 170).

Becausen%" is not a function, certain code optimizations based on tlseiraption
of referential transparency are not applicable to it. Theecoptimization features of the
compiler handle it properly without any user interventiequired. However, developers
of applications involving automated program transformatnay need to be aware of it.
See page 82 for a related discussion.

235

6.11.2 Type expression constructors

Two operators concerned with type expressions are topicahfs section because type
instance recognizers are an effective pattern recogmtiechanism. Type expressions are

a significant topic in themselves, being thoroughly docuie@im Chapters 3 and 4, but
the operator8o- and%are included here for completeness and because they hawe som
previously unexplained features.

The %operator

The type operato%oallows postfix and solo arities, with different meanings eleging
mainly on the suffix.

o If there is a suffix containing alphabetic characters, therafr represents a type
expression or type induced function in either arity as doented in Chapters 3 and 4.

e If there is a suffix containing only numeric characters, tttes operator represents
an exception handler in the solo arity but is undefined in tefix arity.

o If there is no suffix, it represents an exception generat@itimer arity, and has the
property f%= (% f.

The latter two alternatives require further explanation.

Exception handlers An expression of the forrfm, wheren is a sequence of digits, is a
higher order function meant to be applied to a functforit will return a functiong that
behaves identically tg unlessg is applied to an argument that would cayst raise an
exception. In that case, will also raise an exception, but the content of the diagnost
message will differ from that which would be reported fyyin that the numbenr will be
appended to it. A simple illustration is given by the folleygiexamples.

$ fun -m="&h <>" --c
fun:command-line: invalid deconstruction
$ fun --m="(%52 “&h) <>" --c
fun:command-line: invalid deconstruction

52

$ fun --m=""&h <'x’>" --c

’X’

$ fun --m="(%52 “&h) <'x’>" --c
’X’

This usage of the operator is intended mainly for debuggpglieations that are termi-
nating ungracefully, by helping to locate the problem. Seetin 4.1.2 and particularly
page 143 for background and motivation about exceptionlirand

236

Exception generators Although exceptions are usually associated with ungradefmi-
nation, there could also be reasons for raising them deliblrin production code. The
default case in @? ...?- cumulative conditional expression wherein the other cases
thought to be exhaustive is one example (page 191). Faifuae assertion is another.

An expression of the forrfo f or f% wheref is a function, represents a function that
unconditionally raises an exception. The functjois applied to the argument, execution
is either immediately terminated or dropped into an enolpsixception handler, and the
result fromf is reported in a diagnostic message.

Because diagnostic messages are written to the standardcensole by the virtual
machine, they should normally be lists of character str{lngse %sL).

¢ If the functionf returns something other than a list of character stringstamdxcep-
tion is raised during compilation, the compiler will sulbste a diagnostic message
of “undiagnosed error ”

¢ If a badly typed diagnostic is reported in a free standingetable application, the
virtual machine may report a diagnostic afivalid text format ” or attempt
to display unprintable characters.

e Users who think it's worth the effort can throw diagnostidsaobitrary types and
catch them using the virtual machingisard combinator, provided the latter con-
verts them to lists of character strings. This combinatdosumented in thavram
reference manual.

A frequently used idiom is an exception generator made frdomation f returning
a constant list of a single character string, as’igame over>!% . A more helpful
alternative if possible is an exception handler that givesesindication of the input that
caused the exception, suchd%s:/'bad input was'+ %xP , preferably with a more
specific printing function thafroxP.

Confusing effects can occur if the functignn an expressiori%raises an exception it-
self either because of a programming error or because oftad¥eperator. The reported
diagnostic will then refer to the exception generator ftsaher than the program contain-
ing it. Moreover, interaction between the exception getoerand exception handlers or
guard combinators will be affected because exceptions form aafshy of segregated
levels. See thavram reference manual for more information.

The % operator

This operator is unusual insofar as it allows only a sologyabtit may have a literal type
expression as a suffix. It has the property

%-tx = 2%

wheret is a literal type expression constant or type induced fonctilt exists to pro-
vide a convenient means for general purpose functions tetagot type expressions. For
example, a user preferring a more verbose programmingrsiiglet define

list_ of = %-L

237

Listing 6.1 decompilation of optimal code generated<4®;1,2,3,4,5,6,7>-$'01234567"

digitize = # takes a number 0..7 to the corresponding digit

conditional(
field &,
conditional(
field(&,0),
conditional(
field(0,&),
conditional(
field(0,(&,0)),
conditional(field(0,(0,&)),constant ‘7,constant ‘3),
constant ‘5),
constant ‘1),
conditional(
field(0,(&,0)),
conditional(field(0,(0,&)),constant ‘6,constant ‘2),
constant ‘4)),
constant ‘0)

and thereafter writdist_of(my_type) instead ofmy_type%L . A more practical
example is thenum function, which the standard library defines as

enum = "&ddvDIrdPErvPrNCQSL2Vo+ %-U:-0+ %-u *

taking any non-empty set to an enumerated type thereof. $&edo-pointer postproces-
sor is a low level optimization to the type expression’s cete representation, and not
presently relevant. See page 173 for motivation.

6.11.3 Reification

A finite map is a function whose inputs are expected only to bentyers of a fixed finite
set, usually something small enough to enumerate exhalyslike a set of mnemonics or
numerical instruction codes. In some applications, a fimiég turns out to be a “hot spot”
that can improve performance if optimized.

There are three operators provided in support of finite mapgy generate code that
is optimal in the sense of requiring minimally many intermtigns on an amortized basis.
This effect is achieved by detecting differences betweenctincrete representations of
the possible input values without regard for their types.

For example, the quickest function to convert natural nusbrethe rang® through?7
to the corresponding charactéds through'7 would be the the one shown in Listing 6.1.
In the worst case, five conditionals testing individual lmtghe argument are evaluated,
but in the best case, only of&In any case, it would be irritating to develop or maintain

9].e., the quick ones make up for the slow ones, but they'rprality quick.
10Recall from page 115 that natural numbers are representdbiasry length lists of booleans Isb first, so both the thrand the
content must be established.

238

this code by hand, which is the motivation for reification kgters.

Algebraic properties

The three reification operators ate, -$, and=: , for zipped finite maps, unzipped finite
maps, and address maps.

e The-$ operator can be used in any arity and is fully dyadic.

e The-: operator can also be used in any arity. It is prefix and posyfadit, but has
the solo semantics described below.

e The=: operator can be used in postfix or solo arities, and satisfres = (=:) m.

There are no suffixes for the operator, but suffixes for the other two as described below
allow some control over the tradeoff among code size, speexkaution, and compilation
time.

Semantics

These operators have related meanings. The semanticgfarities not mentioned below
follows from the algebraic properties above.

e An expression of the formaz . .. x,>-$< yq . .. y,> with the left and right operand
being lists of equal length, evaluates to a functfosuch thatf(z;) = y; forall 0 <
1 < n. The effect of applyingf to other arguments than those listed is unspecified
and can cause an exception.

e An expression of the form(xq, vo) ...(z,, y,)>-: d, whered is a function, eval-
uates to a functiorf such thatf(z;) = y; forall 0 < i < n, andf(z) = d(z) for all
znotin{xzg...x,}.

e An expression of the form: <(xq, vo) ...(z,, y,)> evaluates to a function
such thatf(z;) = y; forall 0 < ¢ < n, and f(z) is undefined for allz not in

{zo...2,}.

e An expression of the form(=g, 1) ... (x,, y,)>=: (with no right operand) evalu-
ates to a functiorf such thatf(x;) = y; for all 0 < i < n but otherwise is undefined,
provided thatr; is an address (of typ#g for all 7, and allz; have the same weight.

The address map operator generates faster code than the others where applicable by
exploiting the concrete representation of pointers, mledithat the pointers are distinct
and non-overlapping.

All of these operators require mutually distinctvalues or the results are undefined.
However, they values need not be mutually distinct. If there are many casesulti-
ple x values mapping to the same the code may be optimized automatically to avoid
containing redundant copies gfvalues if doing so results in a net improvement.

239

Listing 6.2 nested conditional equivalent to Listing 6.1

digitize =
conditional(
compose(compare,couple(constant 0,field &)),
constant ‘O,
conditional(
compose(compare,couple(constant 1,field &)),
constant ‘1,
conditional(
compose(compare,couple(constant 2 field &)),
constant ‘2,
conditional(
compose(compare,couple(constant 3,field &)),
constant ‘3,
conditional(
compose(compare,couple(constant 4field &)),
constant ‘4,
conditional(
compose(compare,couple(constant 5,field &)),
constant ‘5,
conditional(
compose(compare,couple(constant 6,field &)),
constant ‘6,
constant ‘7))
Tradeoffs

Reifications of large data sets can be time consuming to kanstrhe time to construct
them might outweigh the time saved over a less efficient edgit. For example, building
a cumulative conditional on the fly can be very easily done funation like this one,

h = @p =>0 "&A@Ir ?2°(@Il //=="1'@Ir "&r)

which can applied to the pa{(<0,1,2,3,4,5,6,7>,01234567’) to generate
the code shown in Listing 6.2. The resulting function regsiian average of 27.2 re-
ductiong! each time it is evaluated (assuming uniformly distributeglits), whereas the
code in Listing 6.1 requires only 8.2. However, the code stibg 6.2 requires only 325
reductions to construct from the given data, whereas teergitive requires 11,971.

If the reification is performed only at compile time and thadtion is used only at
run time, there is no issue, but otherwise some experimentatay be needed to find the
optimum tradeoff.

1A primitive virtual machine operation as measured byhefile ~ combinator or compiler directive is called a reduction. Re-
ductions are not quite constant time operations but are @nsugh for this sort of analysis.

240

Listing 6.3 a space-optimized reification semantically equivalentibihgs 6.1 and 6.2.

$ fun --m="-:=@p (<0,1,2,3,4,5,6,7>,'01234567")" --deco mpile
main = couple(
couple(
constant O,
conditional(
field &,
conditional(
field(0,&),
conditional(
field(0,(&,0)),
couple(
conditional(field(0,(0,&)),constant ‘Q,constant -1),
field(&,0)),
couple(
constant -1,
conditional(field(&,0),constant 1,constant <0,0>))),
constant(1,<<0,0>>)),
constant(1,-1)))

Suffixes

The default behavior of the and-$ operators without a suffix is to generate the code
as quickly as possible, by limiting the results to functidhat can be constructed from
conditional , field , andconstant virtual machine combinators. Alternative be-
haviors can be specified using suffixes-odnd=. The suffixes are mutually exclusive,
and have these interpretations.

e - requests code that may have better run time performancedlriime rather than
number of virtual machine reductions) by factoring out coonmmompositions where
possible

e = requests code that is as small as possible, by considering gemeral forms and
searching exhaustively

The = suffix will incur exponential compilation time, making itfeasible except in
special circumstances, but the result will be tighter thamanly possible to write manu-
ally. For example, we can obtain a result like Listing 6.Biestthan the code in Listing 6.1
with an improvement in size to 77 quits (down from 106), b ttumber of reductions
required to generate it is 226,355,162 (as opposed to 1)1,971

6.11.4 String handlers

The last three operators listed in Table 6.11 are usefultfoxgsmanipulation, but they
also generalize to lists of any type. T#e=operator is suitable for string substitution, and
the=] and[= operators are for detecting prefixes of strings, which isvaht to parsing
and file handling applications.

241

String substitution

The %=operator can be used in all four arities and is fully dyadicn éxpression of
the form s%=, wheres andt are strings (or lists of any type) denotes a function that
searches its argument for occurrences ak a substring and returns a modified copy of
the argument in which the occurrencessdfave been replaced by

Suffixes This operator allows a suffix consisting of any sequence efdmaracters,
=, and- . The effects of these characters in a suffix can be specifi¢erns of other
operators described in this chapter. When a suffix contamre rthan one of them, they
apply cumulatively in the order they’re written.

e The* used as a suffix makes the result apply to all items of a list.

s%=t = (s%=)*

e The= as a sulffix calls for a postprocessor to flatten the resulstoutnulative con-
catenation.
s%=x = --1-<>+ s%=

e The- suffix makes the function iterate as many times as necessagpltace new
occurrences of the pattesrthat may be created as a consequence of substitutions.

s%=-t = (s%=)'=

Prefix recognition

The two remaining operators gre and=] , called “prefix” and “startswith”, respectively
(despite other uses of the word “prefix” in this manual). Boflthese operators can be
used in any arity, and are postfix dyadic. The left operandnyf, is a function, and the
right operand, if any, is a string or a list. They share thelitgic property

[z = &= x

which is to say that the prefix arity is equivalent to the infikyawith an implied left
operand of the identity function. Their algebraic propestdiffer with regard to the solo
arity, inthat(=]) x = =] z whereaq[=) (x,y) = ([= y) =. Neither operator has any
suffixes. Their semantics can be summarized as follows.

e The expressio(f[= z) y is true whenf(y) is a prefix ofz.
e The expressiofif=] z) y is true when x is a prefix of (v).

The prefixes of a string are the solutions to y = z-- z with z unconstrained.

242

meaning illustration

" coupling “(f,.g) x = (f x,0 x)
+ composition f+g x = fgx

~ deconstructor functional o) = field p

/ binary to unary combinator flk x = f(k,x)

\ reverse binary to unary combinatorf\k x = f(x,k)

I constant functional xly = X

? conditional "&W?(T&X,"&r) = "&wxrQ

. composition or lambda abstraction&h.&l = "&hl

* map f* <a,b> = <f af b>
*~ filter “='x *"7 "axbxc’ = ‘’abc’

-= membership f-=s = "&w(f,s!)
== comparison f== x = T&E(f,x)
; reverse composition o;f x = fgx

: list or assignment construction a: = <ab>

-- concatenation of lists <a,b>--<c,d> = <a,b,c,d>
$ record lifter rec$la: f,b: gl = "(f,0)

-> jteration p->f = p?(p->f+ 17&)
-< sort nleg-< <2,1,3> = <1,2,3>

Table 6.12: operator survival kit

6.12 Remarks

The best way to proceed after a first reading of this chaptey select a subset of the
operators such as the one shown in Table 6.12 for use in yiial coding efforts. As the
work progresses, you might gradually add to your repertwhren a new challenge can be
met most effectively by deploying a new operator.

Despite the importance of this material, attempting to canitrto memory is not rec-
ommended? Subtle lapses about semantics or algebraic propertiesnwatiably occur
that become persistent habits and code maintenance preblem

The recommended way of staying on top of this material is t&earfall use of the
interactive help facilities of the compiler. Brief remind®f the information in this chapter
are at your fingertips during development by way of variousrerctive commands. For
example, to see a complete list of all infix operators with@tsteminder about how they
work, execute the command

$ fun --help infix

Similar commands can be used for prefix, postfix, and soloadpes. To get help for an
individual operator, use a command like this.

$ fun --help infix,"->"

12)f the evil day should ever arrive that a job seeker is askeBypiuestions about this language in an interview, he or bbald
feel free to quote chapter and verse from this section.

243

infix operators

-> p->f iterates f while p is true

If an operator contains the character, it may be necessary to invoke the command with
this syntax to avoid misleading the command line optiongrarsthe virtual machine.

$ fun --help=prefix,"-="

Finally, summary information about operator suffixes camndbtgeved interactively by the
command

$ fun --help suffixes

This command can also be used for specific operators in theenaescribed above.

244

Let’s get this freak show on the road.
Sheriff Wydell inThe Devil's Rejects

Compiler directives

A sequential reading of this manual imparts a knowledge @fdahguage from the bottom
up, starting with the major components of pointers, types, @erators. Some features
remain to be discussed at this point with a view to assemithiag into complete appli-
cations. This chapter gives a systematic account of the kegle organization of a source
text, and is concerned mainly with the use of compiler divest

7.1 Source file organization

A file containing source code suitable for compilation, ulyugamed with a suffixfun ,
follows a pattern of sequences of declarations nested iwittatched pairs of compiler
directives. A partial EBNF (Extended Backus-Nauer formmtagtic specification may be
useful as a road map.

(source file¢ ::= (directive (+ | (expressioh)
[(declaratior} | (source filg] x
(directive) —
(directive ::= #(identifier

(declaratior) (handle = (expressioh| (record declaratioin
(expressioh ::= (identifier) |
[(expressiofl (operatoh [(expressiof |
(left aggregatoy[(expressiof, (expressiofl«|(right aggregatoy
In keeping with EBNF conventions, most of the punctuatioovais metasyntax. Square

brackets contain optional content, vertical bars indicdteice, thex indicates zero or
more repetitions, and= defines a rewrite rule. Only the characters set in typewiatet

245

are meant to be taken literally, namely the comma, plus, sjimpand hash characters
above.

e Expressions consist of operators and operands as docuiriei@aapter 6.
e Aggregators are things like parentheses and braces as datenrin Chapter 5.

e Handles appearing on the left of a declaration are a restriicrm of expression to
be explained shortly.

7.1.1 Comments

Comments can be interspersed with this file format. Therdiagekinds of comments.
New users need to learn only the first one.

e The delimiterd# and#) may be used in matched pairs to indicate a comment any-
where in a source file (other than within a quoted string oepo#tomic lexeme, of
course), and may be nested.

e A hash characte¥ followed by white space or a non-alphabetic character dtreer
a hash designates the remainder of the line as a comment.k&lasls at the end of
the line may be used as a comment continuation character.

e Four consecutive dashes designate the remainder of thedimaeomment, and it may
also have a backslash as a comment continuation charatier exd.

e Three consecutive hashégt# , indicate that the remainder of the file is a comment.

e A pair of hashest##, followed by anything other than a third hash indicates arsma
comment, which may be used to “comment out” a section of syictlly correct
code.

— A smart comment between declarations comments out the eeldrdtion.

— A smart comment appearing anywhere within a pair of aggesgaérators com-
ments out the remainder of the expression in which it appegar® the next
comma or closing aggregator at the same nesting level.

There used to be a textbook argument against nested combas®d on a contrived ex-
ample, but the consensus may have shifted in recent yeaasleRewill have to use their
own judgment.

These features are intended to make debugging less tedimrsitinvolves frequently
commenting and uncommenting sections of code. Smart comsraema particular inno-
vation of the language that can be demonstrated briefly kol

$ fun --main="<1,2,3>" --cast %nL
<1,2,3>

$ fun --m="<1,2,## 3>" --C

<1,2>

246

task directives effects
visibility #hide+ make enclosed declarations invisible outside unless éxgor
#import make a given list of symbols visible in the current scope
#export+ allow declarations to be visible outside the current scope
binary #comment insert a given string or list of strings into output files
file #binary+ dump each symbol in the current scope to a binary file
output #executable write an executable file for each function in the current gcop
#library+ write a library file of the symbols defined in the current scope
text #cast display values to standard output formatted as a given type
file #output write output files generated by a given function
output #show+ display text valued symbols to standard output
#text+ write printable symbols in the current scope to text files
code #fix specify a fixed point combinator for solving circular defioits
generation #optimize+ perform extra first order functional optimizations
#pessimize+ inhibit default functional optimizations
#profile+ add run time profiling annotations to functions
reflection #preprocess filter parse trees through a given function before evalgatin
#postprocess filter output files through a given function before writing
#depend specify build dependences for external development tools

Table 7.1: compiler directives by task classification; m@mameterized directives are shown with sign

When smart comments are used in a large expression, theveneseal to fish for the other
end of it to insert the matching comment delimiter, or to be ¢oncerned about whether
the commas and the right number of nesting aggregate ope@®inside or outside the
comment.

7.1.2 Directives

Compiler directives give instructions to the compiler ababat should be done with the
code it generates from the declarations. Directives candséed in matched pairs like
parentheses, and their effect is confined to the declasatippearing between them. Every
source text needs at least some directives in order for itgpdation to have any useful
effect, but sometimes the directives are implicit or anpidtited by command line options.

Syntactically, a directive begins with a hash charactdipvieed by an identifier. The
opening directive of a matched pair is followed either by aspdign (with no interven-
ing space) or an expression. The closing directive in a paitains the same identifier
terminated by a minus sign. An expression is supplied onlyséocalled parameterized
directives.

Some examples of directives noted previously in passinthesdibrary+ directive
for creating a library file, and thiéexecutable directive for creating an executable file.
The latter is a parameterized directive and the former.igiiiese and the other directives
shown in Table 7.1 are documented more specifically in thaepter.

247

7.1.3 Declarations

Other than compiler directives and comments, the main ghowrupying a source file
are declarations. There are two kinds of declarations, oneetords and the other for
general data or functions using theoperator. Record declarations are documented com-
prehensively in Section 4.2 and need not be revisited hdre=Dperator is used in many
previous examples but may benefit from further explanatedov.

Motivation

The purpose of declarations is to effect compile-time bigdiof values to identifiers,
thereby associating a symbolic name with the value. Whenckggion of the form
(name=(value appears in a source text, the name on the left may be usedcie plahe
value on the right in any expression with the same effectjéstilto rules of scope to be
explained presently). There are several reasons deciasadre important.

e Descriptive names are universally lauded as good programpriactice. Compli-
cated code is made more meaningful to a human reader whegeadapression is
encapsulated by a well chosen name.

e Code maintenance is easier and more reliable when a valukthsaughout the
source text needs to be revised and only its declaratioriastatl.

e The expression on the right of a declaration is evaluateg @mte during a compila-
tion, regardless of how many times the name is used. Degl#rthereby improves
efficiency if it is used in several places.

e Sometimes the names given to values are needed by outputgegelirectives, for
example as file names or as names of symbols in a library.
Declaration Syntax

The right side of the= operator in a declaration of the form
(handle = (expressioh

is an expression composed of operators and operands as eoieshin Chapters 5 and 6.
Usually the left side is a single identifier, but in generahday follow this syntax,

(handle := (identifien | ((handlg) | (handle (params
(param$ = (variable) | ((params], (params$|«) | <(params[, (paramg|*>

where a variable is a double quoted string Ik or"y" . That is, the identifier may
appear with arbitrarily many dummy variable parameterssits lor tuples nested to any
depth. This syntax is the same as the part of a record daolarat the left of the::
operator. (See Section 4.2.4, page 162.) Note that no tatargor separators other than
white space are required between declarations.

248

Interpretation of dummy variables

If dummy variables appear in the handle, the declaratiomas of a function and the

variables are part of a syntactically sugared form of landiaidraction (pages 24 and 207).
The declaratiorif =) = vy is transformed tof = z. y. More generally, a declaration

of the form

(..(fxo)...wp) = y
is transformed to
(..(fxo). Tpe1) = Tpe Y
(and so on). Free occurrences of the variables may appdae expression.

Identifier syntax
Identifiers abide by the following syntactic rules.

¢ An identifier may consist of upper and lower case letters amtetscores, but not
digits. This convention allows functions and numericaluangnts to be juxtaposed
without spaces or parentheses, with an expressiornlikeeing parsed as(1) .

e The letters in an identifier are case sensitivdogtdar is a different identifier from
FooBar .

¢ |dentifiers beginning with underscores may not be decldrechuse they are reserved
either for record type expression identifiers or for a very peedeclared identifiers.

e Identifiers for compiler directives and standard librarmdtions are not reserved,
making it acceptable to redefine words likerary ~ andconditional
Predeclared identifiers

Predeclared identifiers begin with two underscores, anathee currently only a small
number of them. They are provided as predeclared identraginer than library functions
for obvious reasons demanded by their semantics.

e _ switches evaluates to a list of strings given by the command line patars to
the--switches option when the compiler is invoked.

e _ ursala_version evaluates to a character string giving the version number of
the compiler.

e _ source_time_stamp evaluates to a character string containing the modifica-
tion date and time of the source file in which it appears.

The ___switches feature allows the code to be dependent in arbitrary wayssen u
defined compile-time flags. Typical applications would berable or disable profiling or
assertions, and for conditional compilation of platfornpeledent code.

249

For example, a development version of an application may heese theprofile
combinator to generate run time statistics so that the haissgan be identified and opti-
mized, but the production version can exclude it. (Seeatlram reference manual for
more information about profiling.) This declaration appegin the source

profile = -=/profile’?(std-profile!,"&l!) _ switches
will redefined theprofile ~ combinator as a no-op unless
--switches=profile

is used as a command line option during compilation. Note ttheachoice of the word
“profile ”as a switch is arbitrary and independent of the standardtiom by the same
name (or for that matter, the compiler directive with the sarame).

7.2 Scope

Rules of scope are rarely a matter of concern for a user oflahiguage, because the
conventions are intuitive. Normally an identifier declaiada source file can be used
anywhere else in the same file, before or after the declaratitultiple declarations of
the same identifier are an error and will cause compile tincegxon. Identifiers declared
in separately compiled files are stored in libraries that tmaymported. Applications for
which these arrangements are insufficient are probablyaesgned.

Nevertheless, there are ways of deliberately controllivegstcope and visibility of dec-
larations using the first three compiler directives listedable 7.1, which are documented
in this section.

7.2.1 The#i nport directive

Almost every source file contaiémport directives in order to make use of standard or
user defined libraries.

e The#import directive is parameterized by an expression whose valudiss$ af
assignments of strings to values, that may optionally bepressed (i.e., typ&om
or %omQ@n terms of type expressions documented in Chapter 3).

e The effect of the#import directive on an expressioxfoo’: bar, ...> s
similar to inserting the sequence of declaratitos = bar ... at the pointin the
file where the directive is invoked.

e A matching#import- directive may appear subsequently in the file, but has no
effect.

Usage

Many previous examples have featured the directives

250

#import std
#import nat

for importing the standard library and natural number lifprarhis practice is effective
because external libraries are stored in binary files aanests ofoonmor %eomQand any
binary file name mentioned on the command line during cortipilds accessible as an
identifier in the source. However, nothing prevents arbyjtisser defined expressions of
these types from being “imported”. (Tls&d andnat libraries don’t have to be named on
the command line because they are automatically suppligdeoghell script that invokes
the compiler.)

Semantics

The effect of artimport directive is similar but not identical to inserting decléoas.
Although it is normally an error to have multiple declarasoof the same identifier, it is
acceptable to have a locally declared identifier with theesaame as one that is imported.
In this case, the local declaration takes precedence, buyirdtedence can be overridden
by the dash operator.

It is also acceptable to import multiple libraries with sordentifiers in common. In
this case, it is best to use fully qualified names with the dgsérator (Section 6.7.1,
page 215). For example, if two libraridgso andbar both need to be imported and
both include an identifiex, then uses ox in the source should be qualified fa®-x or
bar-x as the case may be.

Name clashes Although relying on it would be asking for maintenance pewbs$, there is
a rule for name clash resolution when multiple librariestaonng the same symbol name
are imported.

e The library whose importation most recently precedes tleeafi@n identifier in the
text takes precedence.

o If all relevant importations follow the use of an identifiarthe text, the last one takes
precedence.

Type expressions The compiler uses a compressed format for the concreteseqagions
of type expressions in library modules that differs fromithian-time representations.
The#import directive treats the value of an identifier beginning withuaierscore as a
type expression and transparently effects the transfaomdiased on the assumption that
these identifiers are reserved for type expressions. If@adypression is invalid, an excep-
tion occurs with the diagnostic messadpati #imported type expression " A
deliberate effort would be required to cause this exception

251

7.2.2 The#export + directive

The main use for this directive is in a situation where depeids exist in both directions
between declarations in separate source files. This @ituatakes it impossible to compile
one of them first into a library and then import it by the other.

Motivation

This situation is avoidable. Assuming no dependence cyotest between declarations,
the problem could be solved by merging or reorganizing tles fi(For coping with cyclic
dependences, see thix directive later in this chapter.) However, if design preferes
are otherwise, the user can also arrange to compile botkediles simultaneously with-
out merging them just by naming both on the command line wheoking the compiler.

Simultaneous compilation does not fully resolve the issudself. When multiple
files are compiled simultaneously, the declarations in deeafie not normally visible in
another. (l.e., an attempt to use an identifier declared athen file will cause a compile-
time exception with andnrecognized identifier " diagnostic message.) How-
ever, thettexport+ directive can make declarations visible outside the file retibey
are written.

Usage

The usage of th&#export directives is very simple. To make all declarations in a seur
file visible, place##export+ near the beginning of the file before any declarations. To
make declarations visible only selectively, inseexport+ and#export- anywhere
between declarations in the file. Only the declarationsdahamore recently preceded by
#export+ than#export- will then be visible.

Semantics

A couple of points of semantics should be noted.

e The effect of#export+ is orthogonal to directives that generate output files, such
as#binary+ or#library+ , which can cause declarations to be written to files
whether they are visible or not.

e The#export directive can be overridden by th#nide directive, and vice versa,
as explained in the next section.

e Name clashes are possible when multiple files compiled $amebusly export sym-
bols with the same names.

— Local declarations take precedence over external deicasat
— Further rules of name clash priority are given in the nextisac

— An expression likdilename-symbol can be used similarly to the dash op-
erator to qualify a symbol unambiguously, unless not evenfile names are
unique.

252

The last point pertains to an idiom of the language rather thiegitimate use of the dash
operator, because the file name is not meaningful as an aperaself.

7.2.3 Thetthi de+ directive

Even further removed from common use is #Hede+ directive, which can create sep-
arate local name spaces within a single source file. Althoughunlikely to be needed

by a real user, this directive is used internally by the cdempmaking it a feature of the

language calling for documentation. In particular, the aattash priority rules for si-

multaneously compiled files are implied by its specificatiith a matched pair of these
directives implicitly bracketing each source file and aeotbracketing their ensemble.

Usage

The #hide+ and#hide- directives can be used as follows. Readers who find these
matters perfectly lucid probably have been thinking abaogmmming languages too
long.

e Unlike other directives, these directives can occur onlprioperly nested matched
pairs, or else an exception is raised.

e The declarations between a paistfide+ and#hide- directives are not normally
visible outside them, even within the same file.

e The#export directives can be used in conjunction with tieide directives to
make declarations selectively visible outside their imiatdname space.

— The visibility extends only one level outward by default.

— A symbol can be exported another level outward by a furtfexport+ di-
rective that textually precedes the symbol’s enclogthgle+ directive at the
same level (and so on).

e If no #export directives are used within a given name space, then by defaul
last symbol declared (textually) is visible one level outdva

¢ If a symbol exported from a nested space (or visible by défaak the same name as
a symbol that is exported from a space containing it, onlydtter is visible outside
the enclosing space.

Name clashes

To complete the picture, a name clash resolution policy &led when multiple declara-
tions of the same identifier are visible. For this purposecese regard name spaces as
forming a tree, with nested spaces as the descendents eféhctosing them. The least
common ancestor of any two nodes is the smallest subtreainorg them.

253

e The name clash resolution policy favors the declarationnatiantifier whose least
common ancestor with the declaration using it is the minimum

o If multiple declarations meet the above criterion, prefieeis given to the one that
textually precedes the use of the identifier most closebnif

¢ If the there are multiple minima and none of them precedesisiee the one closest
to the end of the file takes precedence.

The ordering of textual precedence is generalized to nalfiles based on their order in
the command line invocation of the compiler.

7.3 Binary file output

There are four directives that are relevant to the outpuirtdry files. Library files, exe-
cutable files, and binary data files are each written by ways#erate directive, and the
remaining directive inserts comments into any of theseypes.

7.3.1 Binary data files

Any data of any type generated in the course of a compilateonke saved in a file for
future use by thetbinary+ directive. The file format is standardized by the compiler
and the virtual machine so that no printing or parsing needsetspecified by the user.
Although they are called binary files in this manual, theyuatlty contain only printable
characters as a matter of convenience. The use of printhblaacters does not restrict the
types of their contents.

Usage

The usual way to generate binary data files is by havittjinary+ directive preceding
any number of declarations, optionally followed byanary- directive.

#binary+

(identifier), (expressiofy

(identifier),, = (expressiop,
#binary-

Compilation of this code will cause binary files to be written to the current directory,
with file names given by the identifiers and contents givenhsy éxpressions. If the
#binary- directive is omitted, then all declarations up to the encheffile or the next
#hide- directive are involved.

Other forms of declarations can also be used to generateyHites, such as records,
lambda abstractions, and imported libraries.

254

¢ In the case of a record declaration, a separate file will beemrfor each field iden-
tifier, for the record type expression, and for the recortahzing function.

o If the left side of a declaration is parameterized with dunwvayiables, the file is
named after the identifier without the parameters, and itaioa the virtual machine
code for the function determined by the lambda abstracpagd 249).

e If an #import directive (Section 7.2.1) appears within the scope #bemary+
directive, one file is written for each imported symbol.

It is an error to attempt to cause multiple binary files with game name to be written in
the same directory. There is no provision for name clashluéea, and an exception is
raised.

Example

A short example shows how a numerical value can be writterbinay file and then used
in a subsequent compilation.

$ fun --m="#binary+ x=1"
fun: writing ‘X’

$ fun x --m=x --c

1

The value in a binary file is used by passing the file name as anaod line parameter to
the compiler, and using the name of the file as an identifignersburce text.

7.3.2 Library files

The #library+ and#library- directives may be used to bracket any sequence of
declarations in a source text to store them in a library féestaown below.

#library+

(identifie; = (expressio

(identifier),, = (expressiof,

#library-
If the #library- directive is omitted, the scope of thdibrary+ directives extends

to the end of the file or current name space. The declaratiansalso be for imported
modules or records.

Usage

The binary file written in the case of thdibrary+ directive is named after the source
file in which it appears, with a suffix chvm . At most one library file is written for each

255

Listing 7.1 a library source file

#library+
rec :: Xy
foo = ‘a
bar = b
baz = ‘c

Listing 7.2 excerpt of the binary file from Listing 7.1

rec (9)

- X

4 -y

bar (6)

baz @)

foo (5)

#

{wW{yZKk{AsMU{r[yU[sx\Mz[MAnkczDgmAac\AlZ[[ra<MeUx KbKYop D‘Et[?IxPQ...
Sh{"'wKtuzD]Z0zD]Z\=XJ['DS_ctcd<S?cv<Ar]"Z\=XEt=VBE z]d=VB<L\@"<

source file. If multiple pairs oftlibrary+ and#library- directives appear in a file,

all of the declarations between each pair are collectedhegéto the same file.

The normal way to use a library file is by th@mport directive, which will cause
the symbols stored in the library to be declared in the ctimame space, as explained in
Section 7.2.1. A library file can also be used directly astaoli@ssignments of strings to
values (typeoomor as a compressed list of assignments of strings to valyes¥oomQ
A library will be compressed if the command line optiearchive is used when it is
compiled.

Example

An example of a library file is shown in Listing 7.1, and partloé binary file is shown in
Listing 7.2.

File formats The binary file for a library contains an automatically gexted preamble
listing the symbols alphabetically and their sizes measuréwo bit units (quits). If any
records are declared in the library, they are listed firshuhe field identifiers as shown.
This format makes it easy to find the file containing a known Isghin a directory of
library files by a command such as the following.

$ grep foo *.avm
libdem.avm:# foo (5)

256

Compilation The library source file is compiled by the command

$ fun libdem.fun
fun: writing ‘libdem.avm’

It can be tested as follows.

$ fun libdem --main="<foo,bar,baz>" --cast
'abc’

The suffix.avm on the file name may be omitted when the file name is given as a
command line parameter. When library symbols are refereite --main expres-
sion, no#import directive is necessary, but if the library were used in as®fite, the
#import libdem directive would be needed in the file.

7.3.3 Executable files

An executable file is one that can be invoked as a shell comrmapdrform a computa-
tion. The compiler can be used to generate executable fdes $pecifications in Ursala,
which are implemented as wrapper scripts that launch thagalimachinedvram) loaded
with the necessary code. These scripts appear to executelpad the end user, but are
portable to any platform on which the virtual machine isatisd.

Usage

The#executable directive is used to generate executable files. It is nognadpears
in a source text as shown.

#executable ((optiong, (configuration file¥)
(identifien, (expressioly

(identifien,, = (expressiop,
#executable-
The options and configuration files are lists of strings, Wy be empty.

e The idiomatic usag#executable& pertains to an executable with no options and
no configuration files.

e Each enclosed declaration should represent a functiomstheganingful to invoke as
a free standing application.

o If the #executable- directive is omitted, all declarations up to the end of the
current name space are included.

e A separate executable file is written for each declaratiamed after the identifier.

257

Execution models

The run time behavior of an executable file is specified pdylyhe function it contains
and partly by the way the virtual machine is invoked. Theelats determined by the
options given in the left side of the parameter to#executable directive, which are
supplied automatically to the virtual machine as commamel ¢iptions.

A complete list of command line options for the virtual mashwith brief explanations
can be viewed by executing the command

$ avram --help

All options are documented extensively in taeram reference manual. Some of them
are less frequently used because they are applicable osperial circumstances, such as
infinite stream processing, but the two that suffice for mpgtiaations are the following.

e A directive of the form
#executable (<’parameterized’, (configuration filey)

will cause the virtual machine to pass a data structure contpathe environment
variables, file parameters, and command line options asgameant to the function
declared under it. The function will be required to returmsadf data structures rep-
resenting files, which will be written to the host’s file systby the virtual machine.

e A directive of the form
#executable (<’'unparameterized>,<>)

will cause the virtual machine to pass a list of charactengsrto the function de-
clared under it, which are read from the standard input strarun time, up to the
end of the file. The function will be required to return a ligtobharacter strings,
which the virtual machine will write to standard output. @garation files are not
applicable to this usage.

These options may be recognizably truncated, for examplg’ asand’u’ . The latter
is assumed by default if no options are specified and the &xdeleus invoked at run time
with no command line parameters. Nothing more needs to lbeabaiut unparameterized
execution, but the alternative is documented below.

Parameterized execution

The main argument to a function compiled to an executablei§iieg the'par’ option

is a record of type invocation , as defined by the standard library distributed with the
compiler and excerpted in Listing 7.3. This record is iniii@d by the virtual machine at
run time depending on how the executable is invoked. Fantylisvith the conventions
pertaining to record declarations and usage documentedeinopis chapters would be
helpful for understanding this section.

258

Listing 7.3 data structures used by parameterized executable files

command_line . files _file%L options _option%L

file .. stamp %sbU path %sL preamble %sL contents %sLxU
option .. position %n longform %b keyword %s parameters %sL
invocation ;> command _command_line environs %sm

Listing 7.4 a utility to display the command line record

#import std

#comment -[

Invoked with any combination of parameters or options,

this program pretty prints a representation of the command | ine
record to standard output.]-

#executable (‘parameterized’,<>)

#optimize+

crec = "&INC+ file$[contents: --<">+ command_line%P+ “c ommand]

Invocation records There are two fields in amvocation record, one for the environ-
ment variables, and the other for the command line parashatet options.

e The environment variables are represented iretherons field as a list of assign-
ments of environment variable identifiers to strings, sieh a

<’DISPLAY’": "0.0",’VISUAL’: 'xemacs’ S

These are the usual environment variables familiar to Unk@NU/Linux develop-
ers and users, which are initialized by #et or export shell commands prior to
execution.

e The command field is a record of type command_line , with two fields, one
containing a list of the file parameters and the other comtgia list of the command
line options.

Some applications might not depend on the environmentbasaand will be expressed
as something likeny_app = "“command; The rest of the code in an expression
of this form accesses only the command line record.

Command line records The data structures used to represent files and commandgliioas
are designed to allow convenient access with mnemonic fiedtifiers. As an example,
a short text file

$ cat mary.txt
Mary had a little lamb.

259

passed as a command line argument to the application showisting 7.4 with some
other parameters will have the output below.

$ crec mary.txt --foo --bar=baz
command_line[
files: <
file[
stamp: 'Sun Apr 29 13:48:48 2007,
path: <'mary.txt’>,
contents: <’Mary had a little lamb.’,">]>,
options: <
option[position: 1,longform: true,keyword: ’foo’],
option[
position: 2,
longform: true,
keyword: 'bar’,
parameters: <baz’>]>]

The application in Listing 7.4 is distributed with the cotepiunder thecontrib subdi-
rectory.

e Thefiles field in a command line record contains the list of files sefgdydrom
theoptions field in the order the files are named on the command line.

e If any configuration file names are supplied to #texecutable directive when

the application is compiled, their files will appear at thgibaing of the list without
the end user having to specify them.

e The application aborts if any file parameters or configurefiles don’t exist or aren’t
readable.

File records The records in the list of files stored in the command line r@passed to an
application are organized with four fields.

e Thestamp field contains the modification time of an input file expresasd string,
if available.

e Thepath field is a list of strings whose first item is the file name. Feilog strings,
if any, are parent directory names in ascending order. Ifdkestring in the list is
empty, the path is absolute, but otherwise it is relativeh durrent directory. An
empty path refers to the standard input stream.

e The preamble is a list of character strings that is empty for text files am-no

empty for binary files. Any comments or other front matteratbin a binary file
are recorded here.

e Thecontents field is a list of character strings for text files and any typelfinary
files.

260

As mentioned previously, file records are also used for dut@éhen an application
returns a list of files for output, similar conventions apgkcept as follows.

e Thestamp field is treated as a boolean value. If it is non-empty, angteng file at
the given path is overwritten, but if it is empty, the file ip@pded.

e An empty path in an output file record refers to standard duggher than standard
input.

There is no direct control over the attributes of output filest any binary file whose
preamble’s first line begins with will be detected by the virtual machine and marked as
executable.

Option records The other field in a command line record contains a list of leswep-
resenting the command line options. This field is initiadizey the virtual machine to
contain the command line options passed to the applicatienvit is invoked. Although
command line options are parsed automatically by the Ginahine, it is the application
developer’s responsibility to validate them.

An option record contains four fields and their interpretasi are straightforward.

e Theposition field is a natural number whose value implies the relativeong)
of the options and file parameters. This information is usefily to applications
whose options have position dependent semantics. Pasai@numbered from the
left starting at zero. Non-consecutive position numbet&/ben consecutive options
indicate intervening file parameters.

e Thelongform field is true if the option is specified with two dashes, anddal
otherwise.

e Thekeyword field contains the literal name of the option as given on threroand
line in a character string.

e The parameters field contains any associated parameters following theoopti
with an optionak in a comma separated list.

Some experimentation with tleeec application (Listing 7.4) may be helpful for demon-
strating these conventions.

Interactive applications

Applications that perform interactive user input are natnanageable in Ursala but they
may constitute a duplication of effort. The major classesgplications that need to
be interactive, such as editors, browsers, image manipaolptogramsetcetera contain
mature representatives with robust, extensible desidowialyj new modules or plugins.
One of them undoubtedly would be the best choice for the feort to any interactive
application implemented in this language. It should alsartamtioned that functional

261

Listing 7.5 An application to perform interactive user input

#import std
#import cli

#executable (<'par’>,<>)
grab =
"&INC+ file$[

stamp: &!,

path: <'transcript’>!,
contents: --<">+ "&zm+ ask(bash)/<>+ <’zenity --entry’> N

languages are notoriously awkward at user interactionitdekgmg years of effort by the
community to put the best face on it.

With this disclaimer, one small example of an interactivplaation is shown in List-
ing 7.5. This application opens a dialog window in which tlsemcan type some text.
When the user clicks on the “ok” button, the window closesl @@ application writes the
text to the a file namettanscript in the current directory.

The application can be compiled and run as shown below. Atthdhe dialog window
isn’t shown, that's where the text was entered.

$ fun cli grab.fun

fun: writing ‘grab’

$ grab

grab: writing ‘transcript’
$ cat transcript

this text was entered

The real work is done by theenity utility, which needs to be installed on the host
system. Itis invoked in a shell spawned by #sk function defined in theli library, as
documented in Part Ill of this manual.

7.3.4 Comments

The #comment directive adds user supplied front matter to binary data fildbraries,
and executable files without altering their semantics.qunees a parameter that is either
a character string or a list of character strings.

The text of the comment can be anything at all, and is nornsdiyething to doc-
ument the file for the benefit of an end user. Instructions foerecutable or calling
conventions for a library file are appropriate. Commentsadse good places to include
version information obtained by the pre-declared idemsifie source_time_stamp
or __ursala_version (page 249).

A pair of comment directives must bracket the directives ¢femerate the files in which
comments are desired. The closiigomment- directive may be omitted, in which

262

case the effect extends to the end of the enclosing name gpaigeally the end of the
source file unlesghide directives are in use). A general outline of a source filegisin
#comment directives would be the following.

#comment (texp

(directive (+|(expressiop)
(declaratior)

(declaratior)
(directive)-

(directive (+|(expressioh)
(declaratior)

(declaration
(directive -

#comment-

As the above syntax suggests, a single comment directiveapply to multiple binary
file generating directives, each of which may apply to midtigeclarations. The same
comment will be inserted into every file that is generated.

More complicated variations on this usage are possible ynpaested pairs of com-
ment directives. The outer comment will be written to evautpait file, and the inner ones
will be written in addition only to files generated by the pautar directives they bracket.

Although it is intended primarily for binary files, tHcomment directive can also be
used in conjunction with the#text and#output directives documented in the next
section. In these cases, it is the user’s responsibilitynsuee that the comment does not
interfere with the semantic content of the files.

7.4 Text file output

There are four directives pertaining to the output of tessfilas shown in Table 7.1. The
#cast and#output are parameterized, whereshow+ and#text+ directives are
not. All of them may be used in matched pairs to bracket a segpief declarations, and
will apply only to those they enclose. If the matching memiifethe pair is omitted, their
scope extends to the end of the file or current name space. pEedis features of each
directive are documented in the remainder of this section.

263

7.4.1 Thettcast directive

The#cast directive requires a type expression as a parameter, atiésapgpdeclarations
of values that are instances of the type. It ignores all beitiaist declaration within the
sequence it brackets, and causes the value of the last oree dsfilayed on standard
output. The display follows the concrete syntax implied iy type expression.

This directive therefore performs the same operation as-ttest command line
option used in many previous examples, except that it ocgithsn the file instead of on
the command line, and the type expression is not optional.

7.4.2 The#show+ directive

The#show+ directive performs a similar operation to theast , explained above, ex-
cept that no type expression or any other parameter is ejuit ignores all but the last
declaration in the sequence it brackets, and causes therladb be written to standard
output. The type of the value that is written must be a listiedracter strings, or else an
exception is raised. No formatting of the data is performed.

The #show+ directive performs the same operation as t#show command line
option, except that it occurs within the source text instefaoh the command line.

7.4.3 Thettt ext + directive

This directive causes a text file to be written for each datian within its scope. The text
file is named after the identifier on the left side of the deatian, with a suffix of.txt
appended. The value of the expression on the right is redjiirdoe a list of character
strings, but if the value is of a different type, the declamats silently ignored and no
exception is raised. A short example using this directivtbésfollowing.

$ fun --m="#text+ foo = <’bar’,”>"
fun: writing ‘foo.txt’

$ cat foo.txt

bar

7.4.4 The#out put directive

This directive allows more control over the names and cdateh output files than is
possible with other directives. It is parameterized by acfiom whose input is a list of
assignments of character strings to values, and whose tostpulist of file records as
documented on page 260.

Interface

The input to the function parameterizing theutput directive contains the values and
identifiers of the declarations in its scope, as this examemeonstrates.

264

$ fun --m="#output %nmM foo=1 bar=2"
fun:command-line: <’foo’: 1,bar: 2>

The error messengé&bnmMeports its argument in a diagnostic message when control
passes to it, as documented on page 145. The argumeiibof: 1,’bar: 2> is
derived from the declarations following the directive.

The output from the function may make any use at all of thetigpugnore it entirely
when generating the list of files to be written, as the nextrgla shows.

$ fun --m="#output <file[contents: <’done’,”>]>! foo=1"
done

e There is the option of defining a non-empty preamble field twegate a binary file
rather than a text file.

¢ A non-empty path will cause the output to be written to a fikaea than to standard
output.

e Arbitrary binary data can be written in text files by using fmting characters. A
byte value ofn is written for then-th item instd-characters

Alternative interface

It is often more convenient to use tleutput directive with the functiordot , which
the standard library defines as follows.

"s". M * file$[
stamp: &!,
path: "&NC+ --(:/'. "s")+ "&n,
contents: "f'+ “&m]

Thedot function is used in a directive of the form
#output dot (suffiy (function

which causes a separate file to be written for each declaratithin the scope of the
directive. The file is named after the identifier in the deati@mn with the suffix appended,
and the contents of the file are computed by applying the iimdb the value of the
declaration. The function is required to return a list ofreleter strings.

7.5 Code generation

Several directives modify the code generated by the compite regard to optimization,
profiling, and handling of cyclic dependences. The lastiregisome discussion at length,
but the others are easily understood.

1The shell commandet +H may be needed in advance to suppress interpretation of theneation point.

265

7.5.1 Profiling

The virtual machine provides the means to profile an appbindity making a record of
its run time statistics. For any profiled function, the numbgtimes it is evaluated is
tabulated, along with the total and average number of dir&chine instructions (a.k.a.
reductions) required to evaluate it, and their percentdgdetotal. This information
may be useful for a developer to identify performance bo#étks and potential areas for
performance tuning.

Profiling a function does not alter its semantics or behawvi@ny way. The run time

statistics are recorded in a file nampubfile.txt in the current directory, without
affecting any other file operations.
One way of profiling a functiori is to substitute the functioprofile(f,s) for

it, wheres is a character string used to identifyin the table of profile statistics, and
profile is a function provided by the standard library. However, &ynsometimes be
more convenient to use thigprofile+ directive.

Usage

When a sequence of declarations is enclosed within a p#ipwaifile directives, pro-
filing is enabled for all of them. A simple example demongsahe effect.

$ fun --m="#profile+ f="& #profile- x = f + 'abc™ --C
'abc’
$ cat profile.txt

invocations reductions average percentage

3 3 1.0 0.000 f
1 18522430 18522430.0 100.000

18522433 reductions in total

The table shows thdt was invoked three times, each invocation required one texyc
and these three reductions were approximately zero peotéme total number of reduc-
tions performed in the course of compilation and evaluaftidrese statistics are consistent
with the fact that was mapped over a three item list, and its definition as thaikydunc-
tion makes it the simplest possible function.

Hazards

The #profile directives are simple to use, but care must be taken to appiy tse-
lectively only to functions and not to general data declare, which they might alter
in unpredictable ways. In the above example, profiling iBpally switched off so as
not to affect the declaration of, which is not a function. Otherwise we would have this
anomalous result.

266

$ fun --m="#profile+ f="& g=f + 'abc” --C
(&&,0,<(abc’,'g’)>)

As one might imagine, overlooking this requirement can kathysterious bugs.

Another hazard of théprofile directives is their use in combination with higher
order functions. Although it is not incorrect to profile a heg order function, it might not
be very informative. In this code fragment,

#profile+

(h "n") "x" = ..
#profile-

t = hl X

u = h2 x

only the functiorh is profiled, which is a higher order function taking a natumainber to
one of a family of functions. However, the statistics of net& are likely to be those fl
andh2, which are not profiled. Extending the scope of #ipgofile directives would
not address the issue and in fact may cause further problemdsstribed above. This
situation calls for using therofile function mentioned previously for more specific
control than théfprofile directives.

7.5.2 Optimization directives

A tradeoff exists between the speed of code generation anguality of the code based
on its size and efficiency. For production code, the quastynore important than the
time needed to generate it. For code that exists only duheglevelopment cycle, the
speed of generating the code is advantageous. By defauiidienground between these
alternatives is taken, but it is possible to direct the cdenpo make the code more optimal
than usual, or to make it less optimal but more quickly geteera

Examples

The directive to improve the quality of the codetigptimize+ , and the directive to
improve the speed of generating itdpessimize+ . The first can be demonstrated as
follows.

$ fun --m="f=%bP" --decompile
f = compose(
couple(
conditional(
field(0,&),
constant ’true’,
constant ’'false’),
constant 0),
couple(constant O,field &))

267

The above code is compiled without optimization, but an iowpd version is obtained
when optimization is requested.

$ fun --m="#optimize+ f=%bP" --decompile

f = couple(
conditional(field &,constant ’'true’,constant ’‘false’),
constant 0)

Some understanding of the virtual machine semantics mayebdead to recognize that
these two programs are equivalent, but it should be cledrtiigalatter is smaller and
faster. The#pessimize+ directive is demonstrated on a different example.

$ fun --m="f = "&x+"&y" --decompile
f = compose(field(0,&),reverse)
$ fun --m="#pessimize+ f = "&x+"&y" --decompile
f = compose(
reverse,
compose(reverse,compose(field(0,&),reverse)))

Although there is no reason to use #iessimize directives in cases like the one above,
it often occurs during the development cycle that a shorptegyram takes several minutes
to compile because a large library function used in the @ogis being optimized every
time. These delays can be mitigated considerably by fessimize directives.

Hazards

The same care is needed with theptimize directives as with théprofile direc-
tives to avoid using them on declarations other than funstidor the reasons discussed
above. It is sometimes possible to detect a non-functiomduptimization, and in such
cases a warning is issued, but the detection is not compledtighble.

Pessimization can safely be applied to anything with no alous effects. However,
it is probably never a good idea to have pessimized code ibraryi function or exe-
cutable, so a warning is issued when #tibrary ~ or #executable directives detect
a#pessimize directive within their scope.

7.5.3 Fixed point combinators

The #fix directive is an unusual feature of the language making isipts to solve
systems of recurrences over any semantic domain to any. draéenecessary only for the
user to nominate a fixed point combinator specific to the dorohinterest, or a hierarchy
of fixed point combinators if solutions to systems in highetess are desired. Systems of
recurrences involving multiple semantic domains are alanageable.

First order recurrences

Recurrences involving functions are the most familiar egl@ybecause in most languages
there is no alternative for expressing recursively defingattions. Listing 7.6 shows an

268

Listing 7.6 a naive first order functional fixed point combinator

#import std
#fix "h". refer "H("h"+ refer+ ~&f,"&a)

rev = "&?\"& "IrNCTV"&h rev+ &t

example of a recursively defined list reversal function esped in this style. To see that
it really works, we can save it in a file nam#étk.fun and test it as follows.

$ fun ffix.fun --m="rev ’abc™ --c

‘cba’

Normally a declaration of a functiorev defined in terms ofev would be circular and
compilation would fail, but the fixed point combinator

"h". refer "H("h"+ refer+ "&f,"&a)

tells the compiler how to resolve the dependence.

Calling conventions The calling convention for a first order fixed point combindtee., the
function supplied by the user as a parameter ta#the directive) is that given a function
h, it must return an argumentsuch thatr = h(zx). Intuitively, h can be envisioned as
a function that plugs something into an expression to amivthe right hand side of a
declaration. In this example, the functibrwould be

h(z) = "&?\"& “IINCT\"&h o+ &t

In particular,h(rev) would yield exactly the right hand side of the declaratiorList-
ing 7.6. Since the right hand side is equatdg by definition, the value afev satisfying
rev = h(rev) is the solution, if it can be found. The job of the fixed pointrdmnator is
to find it, hence the calling convention above.

Semantic note The rich and beautiful theory of this subject is beyond thepscof this
manual, but it should be noted that the most natural defmitiba fixed point for most
functionsh of interest generally turns out to be an infinite structuresame form. In
practice, a finitely describable approximation to it mustfdmend. It is this requirement
that calls on the developer’s ingenuity. The fixed point corator in the above example
works by creating self modifying code that unrolls as far asassary at run time, but this
method is only the most naive approach.

The construction of fixed point combinators varies widelyhwvihe application domain,
thereby precluding any standard recipe. For example, ttes$miques have been used
successfully for solving recurrences over asynchronoosgss networks in an electronic
circuit CAD system, where the fixed point combinator takesrasaerably different form.
Specific applications are not discussed further here.

269

Listing 7.7 a better first order functional fixed point combinator

#import std
#import sol

#fix function_fixer

rev = "&?\"& "IrNCTV'&h rev+ &t

Practical functional recurrences There are of course better ways of expressing list rever-
sal and recursively defined functions in general. Even foumences in this style, the
fixed point combinator in Listing 7.6 should never be used racpce because it gen-
erates bloated code, albeit semantically correct. Users avh nevertheless partial to
this style, perhaps due to prior experience with other laggs, are advised to use the
function_fixer as a fixed point combinator, as shown in Listing 7.7, fromgbke
library distributed with the compiler.

$ fun sol bffx.fun --decompile
rev = refer conditional(
field(0,&),
compose(
cat,
couple(
recur((&,0),(0,(0,&))),
couple(field(0,(&,0)),constant 0))),
field(0,&))

The results are seen to be comparable in quality to handewigthde, although not as good
as using the virtual machine’s built ,everse function or"&x pseudo-pointer.
Higher order recurrences

The recurrences considered up to this point are of the fornh(t), but there may also be
a need to solve higher order recurrences in these forms,

t = "X0". h(t,"x0")
t = "x0". "x1". h(t,"x0" ,"x1")
t = "xO0". "x1". "x2". h(t, "x0" ,"X]." ,"X2")

and their equivalents$("x0") = h(t,"x0"), or variable-free formg = h/ t, and so on.
In these recurrences has a higher order functional semantics regardless of theaofo
The order is at least the number of nested lambda abstracbancould be greater if the
expressions are written in a variable-free style. It can &fedd as the number in the

270

Listing 7.8 different fixed point combinators for different orders ofuerences

#import std

#import nat

#import sol

#import tag

#fix general_type_fixer O

ntre = ntre%WZnwAZ # a zero order recurrence
#fix general_type_fixer 1

xtre "s" = ("s"xtre "s")%drWzZwlwAZ # first order

#fix fix_lifterl general_type fixer O

stre "s" = ("s",stre)%drWwWZwlwAZ # zero order lifted by 1

minimum expressio. .. (¢ z;) ...x,) whereby the solution yields an element of the
semantic domain of interest.

All of these recurrences can be accommodated bytilxe directive, but an appropri-
ate fixed point combinator must be supplied by the user, wiiégtends in general on the
order.

Calling conventions For ann-th order recurrence of the form

t = "x1". ... "xn". A(t,"x1" ,....,"xn")
or of the equivalent form

(..t "x2")..."xn") = h(¢t,"x1" , ... ,"xn")

or any combination, or for a recurrence that is semantieajlyivalent to one of these but
expressed in a variable-free form, the argument to the fixatk gombinator supplied by
the user as a parameter to t#fex directive is the function

no="t". "x1". oo "xn, h("t" JUxAt oo "xn)

The fixed point combinator is required to return an argumesdtisfyingy = »'(y).

Type expression recurrences Although a distinct fixed point combinator is required for ev
ery order, it may be possible to construct an ensemble of fhem a single definition
parameterized by a natural number, as a developer explibvasg facilities will discover.
Two ready made examples of semantic domains with completarchies of fixed point
combinators are functions and type expressions. For tredakariety, the latter is illus-
trated in Listing 7.8.

271

The ensemble of fixed point combinators for type expressmgs/en by the function
general_type_fixer defined in thegag library, which takes a numberto then-th
order fixed point combinator for type expressions. An exangpbla zero order recurrence
is simply the recursive type expression for binary treesatfiral numbersjtre .

$ fun sol tag nxs.fun --m="1: (2: (),3: ())" --c ntre
1 (20 (0,3: ()

A first order recurrencestre , defines the function that takes a type expression to a type
of binary trees containing instances of the given type.

$ fun sol tag nxs.fun --m="1: (2: (),3: ())" --c "xtre %bL"
<true>: (<false,true>: (),<true,true>: ())

Becausetre is afunction requiring a type expression as an argumeistapplied to the
dummy variable in the recurrence. A similar function is iemplented bystre .

$ fun sol tag nxs.fun --m="1: (2: (),3: ())" --c "stre %tL"
<&>: (<0,&>: (),<&,&>: ()

This recurrence is solved without recourse to higher ordedfipoint combinators, as
explained below.

Lifting the order If a function p returning elements of a semantic domdtnhaving a
family of fixed point combinatorg, is the solution to a first order recurrence of the form

p=""" h(p V', V")
then one way to get it would be by evaluating
p = Fy "f."V (" V)
but another way would be
p ="v'". Fy " A("f" ,"V")

because occurs only by being applied to the dummy varidlé in the recurrence. Most
non-pathological recurrences satisfy this condition, tansltransformation generalizes to
higher orders.

The latter form may be advantageous because it depends oithe@ero order fixed
point combinatorFy, especially when higher orders are less efficient or unknoih
that’s needed is to put the equation in the form

p=H"F. . hCf V)

so that it conforms to the calling conventions for tfiex directive (i.e., withH as the
parameter), for som& depending only orfy and not higher orders of.

272

This effect is achieved by taking = L, F,,, with a transformation_,, shiftingn
variables'v" , in this case 1.

Ly = "g". "h". "' "g" "f. ("h" Uf) v

This transformation is valid for any fixed point combinatidy, and any ordern. The
family of transformationd.,, is implemented by théx_lifter function defined in
thesol library distributed with the compiler, takingas an argument.

Heterogeneous recurrences

Although this section begins with small contrived exammgfinctions and type expres-
sions that could be expressed easily without recurrenbedifficulty of a manual solu-
tion quickly escalates in realistic situations involvingtmal dependences among multiple
declarations. It is compounded when the system involvesipheisemantic domains and
various orders of recurrences, to the point where a methabdpproach may be needed.

In the most general case, eachmofleclarations can be associated with a separate fixed
point combinatorF; for i ranging from 1 tan, in a source text organized as shown below.

#fix I

1 = V11. ... Uip- h1<.’1§'1...$‘m,1}11...’l}1n)
#fix F,,

Tm = Umi- o Umne Bon(T1 .0 Ty Ut « o On)

Although the declarations are shown here as lambda abstracany semantically equiv-
alent form is acceptable, as noted previously.

e Each declared identifier; is defined by an expressidi(. . .) that may depend on
itself and any or all of the other’s.

e Dummy variables,;, if any, are not shared among declarations, and their nagezb n
not be unique across them.

e There is no requirement for any solutiansto belong to the same semantic domain
as any others, only that the corresponding fixed point coatbin; is consistent
with its type and the order of its declaration.

e Asingle#fix directive can apply to multiple declarations following i to the next
one.

In other respects, solving a system of recurrences autoafigtis no more difficult
from the developer’s point of view than solving a single oseraprevious examples. In
particular, there is no need for the developer to give angiapeonsideration to hetero-
geneous or mutual recurrences when designing the fixed pombinator hierarchy for
a particular semantic domain. It can be designed as if it Wyeieg to be used only to
solve simple individual recurrences. Similar use may aksanade of lifted fixed point
combinators using thiex_lifter function.

273

7.6 Reflection

Most of the remaining compiler directives in Table 7.1 areksthat can be made to per-
form any user defined operations not covered by the otheesy ddme under the heading
of reflection because they can access and inform the corspiler-time data structures
describing the application being compiled. Because theesgpermits unrestricted mod-
ifications, there is a possibility of disruption to the coleps correct operation. Fortu-
nately, safety is ensured by the user’s capable judgmennéentions.

There is also a directive to interface with external develept tools (e.g., “make”
file generators and similar utilities) by providing a stamlitzed access to user specified
metadata.

7.6.1 The#depend directive

This directive takes any syntactically correct expressigm parameter, or at least an ex-
pression that can be parsed without causing an exceptioa.eXjpression is never eval-
uated and is ignored during normal use. However, if the ctans invoked with the
--depend command line option, then the expression is written to steshdutput along
with the source file name, and the rest of the file is ignored.

The reason this directive might be useful is that it allowg aser defined metadata
embedded in the source file to be extracted automaticallyshet script or other devel-
opment tool without it having to lex the file.

For example, the directive can be used to list the names difléseon which a source
file depends, so that a “make” utility can determine whenqurees recompilation.

#import foo
#import bar

#depend foo bar

If a file baz.fun containing the above code fragment is compiled with-tdepend
command line option, the effect will be as follows.

$ fun baz.fun --depend
baz.fun:
foo bar

The script or development tool will need to parse this oytiputtthat’s easier than scanning
the source file fotimport directives. It's also more reliable if the directive is peoly
used because a file may depend on other files without impdtiang.

7.6.2 The#pr eprocess directive

This directive takes a function as a parameter that perf@parse tree transformation.
The parse tree contains the declarations within the scoffedfirective. When the tree is

274

passed to the function during compilation, the functioneiguired to return a tree of the
same type.

The parse trees used by the compiler are of tyjo&en%T , where theoken record
is defined in thdag library. For example, compilation of a file naméabbar.fun
containing the code fragment

#preprocess lag-_token%TM
X=y
would result in diagnostic message similar to the following

fun:foobar.fun:1:1: " (
token[

lexeme: '#preprocess’,
filename: ’foobar.fun’,
filenumber: 3,
location: (1,1),
preprocessor: 399394%fOi&,
semantics: 33568%fOi&],

~
token[
lexeme: =,
filename: ’foobar.fun’,
filenumber: 3,
location: (3,2),
preprocessor: 4677323%f0i&,
semantics: 13%fOi&],

":<> token|[
lexeme: X,
filename: ’foobar.fun’,
filenumber: 3,
location: (3,1),
semantics: 12%fOi&],
":<> token][
lexeme: 'y,
filename: ’foobar.fun’,
filenumber: 3,
location: (3,3)]>)>)

Of course, in practice the function parameter to#ipeeprocess directive should
do something more useful than dumping the parse tree as aadisg message. Effective
use of this directive requires a knowledge of compiler imés as documented in Part IV
of this manual. Possibly an even less useful example wouttd#ollowing,

#preprocess * 0 &d.semantics:= “&d.semantics|| O!!!

275

which implements something like the infamous Fortranesiyiplicit declaration by giving
every undeclared identifier used in any expression a defalue of O rather than letting it
cause a compile-time exception.

7.6.3 The#post process directive

This directive gives the user one last shot at any files gésebtay directives in its scope
before they are written to external storage by the virtuatimae. It is parameterized by a
function that takes a list of files as input, and returns aolisiles as a result. The files are
represented as records in the form documented on page 260.

The following simple example will cause all output files is gcope to be written to
the/tmp directory instead of being written relative to the curremtrking directory or at
absolute paths.

#postprocess * path:= “path; "&i&& \<'tmp’,”>+ "&h

This directive can be used intelligently without any furthkeowledge of compiler inter-
nals beyond the file record format documented in this chdptdess of course it is used
to modify the content of libraries or executable files sigpaifitly).

7.7 Command line options

An alternative way to use most of the directives documemetlis chapter is by naming
them on the command line when the compiler is invoked ratieam by including them in
the source text.

e An unparameterized directive likebinary+ is expressed on the command line as
--binary or-binary

e A parameterized directive likiécast is written as--cast " ¢" on the command
line for a parametet, with quotes and escapes as required by the shell.

A directive given on the command line applies by default tergudeclaration in every
source file as if it were inserted at the beginning of eachilkgrd directive in a file, there
isn't the capability of switching it off selectively from éhcommand line, even if applying
it to every declaration is inappropriate, with two excepsio

e Any directive selected on the command line can be made to/appust one dec-
laration by supplying an optional parameter stating thatifier of the declaration
to which it applies. For examplescast foo, bar specifies that the value of the
identifierbar should be cast to the tygeo and displayed as such.

e Some directives, such #sast and#show, apply only to the last declaration within
their scope in any case, so applying them to a whole file isaheesas applying them
only to the last declaration.

276

There are two other general differences between directisehe command line and di-
rectives in afile.

e Command line options other thatirace can be recognizably truncated, whereas
directives in files must be spelled out in full.

e Command line options can also be ambiguously truncateckifathbiguity can be
resolved by giving precedence to the optiergptimize , --show , --cast
--help ,--archive ,--parse ,and--decompile

There are also some differences pertaining to specifictiiesc

e Forthe--cast command line option, the parameter is optional, but whed usa
file as the#tcast directive, the parameter is required.

e The#hide directives can be given only in a file and not on the commarel lin

e The#depend directive has a different effect from thedepend command line
option, as noted in the Section 7.6.1.

Several other settings are selected only by command linergpand not by direc-
tives in files. A complete list of command line options otheairt those corresponding to
the directives documented previously is shown in Table THbse under the heading of
customization allow normally fixed features of the langut@ée changed, such as the
definitions of operators and type constructors. Effectise af these command line op-
tions requires a knowledge of the compiler internals, sar fldl discussion is deferred
until Part IV. The remaining command line options in Tab[2 &e documented in the rest
of this section.

7.7.1 Documentation

The two command line optionsversion and--warranty have the conventional

effects of displaying short messages containing the canpirsion number and non-
warranty information. The-help option provides a variety of brief documentation
interactively, and is intended as the first point of refeeefar real users.

The--help option by itself shows some general usage information anst afl all
options with an indication of their parameters. It can alsove more specific information
when used with one of the following parameters. These passiean be recognizably
truncated.

e Theoptions parameter shows a listing similar to table 7.2 that alsauithes the
compiler directives accessible by the command line.

e Thedirectives parameter shows a list of all compiler directives with sheoet
planations.

e Thetypes parameter shows a list of the mnemonics of all primitive sypad type
constructors with explanations (see Listing 4.10, pagg.175

277

documentation

--help show information about options and features
--version show the main compiler version number
--warranty show a reminder about the lack of a warranty
verbosity
--alias use a specified command name in error messages
--no-core-dumps suppress all core dump files
--no-warnings suppress all warning messages
--phase disgorge the compiler’s run-time data structures
--trace echo dialogs of thinteract ~ combinator
data display
--decompile suppress output files but display formatted virtual code
--depend display data fromtdepend directives
--parse parse and display code in fully parenthesized form
file handling
--archive compress binary output files and executables
--data treat an input file as data instead of compiling it
--gpl include GPL notification in executables and libraries

--implicit-imports
--main

infer#import directives for command line libraries
include the given declaration among those to be compiled

--switches set application-specific compile-time switches
customization

--help-topics load interactive help topics from a file

--pointers load pointer expression semantics from a file

--precedence load operator precedence rules from a file

--directives load directive semantics from a file

--formulators load command line semantics from a file

--operators load operator semantics from a file

--types load type expression semantics from a file

Table 7.2: command line options; ellipses indicate an oaior mandatory parameter

278

— The usage-help types, t gives specific information about the type opera-
tor with the mnemonic.

— The usages-help types, n, wheren is 0, 1, or 2, shows information only
about primitive, unary, or binary type constructors, respely.

e Thepointers parameter lists the mnemonics for pointers and pseuddgrsias
documented in Chapter 2.

— The usage-help pointers, p gives specific information about the pointer
constructor with the mnemonic
— The usages-help pointers, n, wheren is 0, 1, 2, or 3, shows informa-

tion only about pointers with those respective arities.

¢ Information about operators is displayed by theelp option with any of the pa-
rametergrefix , postfix ,infix ,solo , oroutfix . The information is spe-
cific to the arity requested by the parameter.

— Information about a specific known operator is requested bgage such as
--help infix,"->"
— If an operator contains the character, the syntax ishelp=solo,"=="
¢ Information about operator suffixes for all operators of amigy is requested by

--help suffixes . This parameter can also be used as above for information
about a particular operator.

e A site-specific list of the virtual machine’s libraries isqreested by théibrary
parameter, which shows a list of library names and functemmes (see Listing 1.10,
page 46). This output is the same as thaawaam --e

— Alist of all functions in any library with a name beginningtivithe stringfoois

obtained by the usagehelp library, foo.
— Alist of functions with names beginning withar in libraries with names begin-
ning withfoois obtained by-help library, foo, bar.

e The usage of-help s, wheres is any string not matching any of those above,
shows a listing of available options beginning withor shows the list of all options
if there are none.

7.7.2 \Verbosity

Several command line options can control the amount of disigminformation reported
by the compiler.

279

Warnings and core dumps

The --no-warnings and --no-core-dumps options have the obvious interpreta-
tions of suppressing warning messages and core dump files.

$ fun --main=0 --c %c

fun: writing ‘core’

warning: can't display as indicated type; core dumped
$ fun --main=0 --c %c --no-core-dumps

$ fun --main=0 --c %c --no-warnings

fun: writing ‘core’

Aliases

The--alias option changes the name of the application reported in distgmmessages
from fun to something else.

$ fun --m=""&h 0"

fun:command-line: invalid deconstruction

$ fun --alias serious --m=""&h 0"
serious:command-line: invalid deconstruction

This option is provided for the benefit of developers of aggiion specific languages who
want to use the compiler as a starting point and customfzg itealias option would
be hard coded into the shell script that invokes the comtethat end users need never
suspect that they’re using a functional programming lagguaven when something goes
wrong. This effect can also be achieved simply by renamiegsthipt.

Troubleshooting the compiler

The--phase option is of interest only to compiler developers. It takgmeameter 00,
1, 2, or 3, and writes a binary file with the nanphase0 throughphase3 , respectively.
The file contains a data structure of a self describing t9pg,(expressing the program
state at a particular phase of the operation. Normal cotmmilas not performed when
this option is selected, but this operation may be time comsg due to the compression
required for large data structures.

A useful technique to avoid including tistd andnat libraries in the binary output
file, thereby saving time and space, is to invoke the compiter

$ avram --par (full path)/fun (command ling --phase n

assuming the troublesome code in the source files in the cochtime has been narrowed
down enough not to depend on the standard libraries.

2or simplify it for a user base they consider less clever thamiselves

280

Debugging client/server interactions

The--trace option is passed through to the virtual machine, requestihcharacters
exchanged between an application usingititeract combinator and an external com-
mand line interpreter to be displayed on the console alotig sdme verbose diagnostic
information. Unlike most command line optionstrace must be written out in full
and may not be truncated. This option is useful mainly forudgjing. See thavram
reference manual for further information. Here is an exawsling a function from the
cli library.

$ fun cli --m=now0 --c --trace
opening bash
waiting for 36 32

> $ 36

> 32

matched

<- e 101

<- x 120

<- 1 105

<-t 116

<- 10

waiting for nothing
matched

closing bash

"Tue, 19 Jun 2007 23:44:30 +0100’

7.7.3 Data display

A small selection of command line options can be used to aysipformation specific to a
given program source text or expression. Hoast command line option, seen in many
previous examples, is derived from tkeast directive documented in Section 7.4.1,
hence not repeated here. The same goes forshew option, which is also frequently
used (Section 7.4.2). The others are summarized below.

e The--decompile option shows the virtual machine code for the last expressio
compiled, assuming it is a function. The expression can doome either the source
text or from a--main option. The code is expressed using the mnemonics from
thecor library, (Listing 3.1, page 113) and documented extengiwethe avram
reference manual. This option is similar-tgast %f , except that it displays the
full declaration.

e The--depend option displays the expression used as a parameter técepend
directives in the source texts on standard output, prefagegtle name of the source
file. See Section 7.6.1 for more information and motivation.

281

e The --parse option causes an expression to be displayed in fully paesizad
form, thereby settling questions of operator precedendeagrociativity. (See page
179 for motivation.) The expression is not evaluated and owayain undefined
identifiers.

— If a parameter is supplied with theparse option, as in-parse x , then
the expression declared with the identifier of the parametsiparsed.

— If the optional parameter is the literal character string
ration in every source file is parsed and displayed.

, then every decla-

— If a --main option is used at the same time as-parse option with no
parameter, then expression in thmain parameter is parsed.

— If no --main option is present, and theparse option has no parameter, the
last declaration in the last file is parsed.

7.7.4 File handling

The remaining command line options in Table 7.2 pertain ®hhandling of input and
output files.

Output files

The --archive and--gpl options are specific to library files and executables (i.e.,
those generated by tdibrary or #executable directives). Each takes an optional
numerical parameter.

--archive This option causes a library file to be compressed, or an ¢&xieleu code file
to be stored in a compressed self-extracting form. The patiparameter is the granularity
of compression, which has the same interpretation as thrilgnaty of compressed types
explained on page 169. The default behavior without a pal@mme maximum compres-
sion, which is usually the best choice. Compression is lysaahatter of necessity for any
non-trivial application, without which the file size expkx and the memory requirements
even more so.

e Compressed libraries are indistinguishable from uncosga® libraries when im-
ported by thefimport directive or dereferenced with the dash operator.

e Compressed executables are indistinguishable from uness@d executables, be-
cause they are automatically made self-extracting. Thexg Ioe a small run-time
overhead incurred by the extraction when the applicatidawisched.

--gpl This option causes a notification to be inserted into themhda of every library
or executable file generated in the course of a compilatidng@ffect that its distribution
terms are given by the General Public License as publishedeblfree Software Founda-
tion. The optional parameter is the version number of thenke, with versions 2 and 3

282

character spelling

Zero
one

two
three
four

five

Six
seven
eight
nine
paren
thesis
dot

, comma
- dash

;. semi

@ at

% percent
space

T~ o0 oooO~NOOUA WNE O

Table 7.3: rewrite rules for special characters in file names

being the only valid choices at this writing. The default &sion 3. Only the specified
version is applicable, as the text does not include the prawifor “any later version”.

Needless to say, this option is optional. It should not bectet unless the author
intends to distribute the software on these terms. Onenaltige is to keep it only for
personal use. Another is to distribute it subject to a nee-ficense. In the latter case,
the software must not depend on any code from the standaediéb distributed with the
compiler, which would ordinarily be copied into it as a campsence of compilation. The
specifications in Part Il of this manual will enable a cleaem re-implementation of
these libraries for proprietary redistribution if necegsa

Input files

When the compiler is invoked with multiple input files, thefaldt behavior is to treat
the binary files as data and to compile the text files as sowde.cFor this purpose,
binary files are those that conform to the format used in fiezsegated by the directives
#library , #binary , and#executable , and text files are any other files, even if
they contain unprintable characters.

No explicit i/o operations are required in the source fileadoess the contents of the
data files. Instead, the contents of the data files are abtessithe source files as the
values of pre-declared identifiers derived from the file neme

¢ If a data file name contains only alphabetic characters,déetifier associated with
it is the file name.

283

¢ If the name of a data file contains any characters that areatidtin identifiers, these
characters are rewritten according to Table 7.3.

e The rewritten character are bracketed by underscores imémifier. For example,
a data file nametbo.bar would be accessed as the identifieo_dot_bar

e The default file suffix for library files,avm, is ignored, so that identifiers ending
with _dot_avm are not needed.

The remaining command line options in Table 7.2 affect thg wput files are treated.

--data This option can be used to override the default behaviorexirfiles by causing
them to be treated as data files instead of being compiled. vahe of the identifier
associated with a text file will be a list of character strisgging the contents of the file.
The--data option is unusual in that its placement on the command lisgisificant.

It must immediately precede the name of the file that is to éatéd as data. It pertains
only to that file and not to any files given subsequently on th@mand line. If there
are multiple text files to be treated as data files, each one lbeusreceded by a separate
--data option.

--implicit-imports When this option is selected, all files with suffixes.afm on
the command line are detected. These files are required talioeiorary files generated
by the #library directive during a previous compilation. Afimport directive is
constructed with the name of each library file, and this seqga@®f#import directives
is inserted at the beginning of each source file. The regudifect is that the code in the
source files may refer to symbols within the library files athdy were locally declared,
without having to import them.

--switches This option takes a comma separated sequences of paranaeteisauses
the predeclared identifier switches to evaluate to them in any source text being com-
piled, as this example shows.

$ fun --m=__switches --switches=foo,bar,baz --c
<'foo’,’bar’,’baz’>

The type of the predeclared identifierswitches is always a list of character strings.
See page 249 for more information and motivation.

--mai n This option is used in many previous examples. Its purposeadiow for easy
interactive compilation of short expressions directlynfrthe command line without re-
quiring them to be stored in a file.

e The parameter to themain option contains the text be compiled, which can be
either a single expression or a sequence of one or more dtolzs.

284

¢ In the case of a single expressian,the text of the parameter is compiled as if it
contained the declaratianain = .

e The language syntax is the same+fgnain expressions as for ordinary source text,
but it may need to be quoted or escaped to prevent interfznetay the shell.

e The --main expression may use identifiers declared in any librariestiomsd
on the command line, as well as teed andnat libraries, without need of an
#import directive.

e The--main expression may use identifiers declared in the last souecedihed on
the command line, if any, without need of #iexport directive.

7.8 Remarks

This chapter concludes Part 1l of this manual on Languagmgies. These specifications
are expected to remain fairly stable for the forseeableéytwith most new development
work concentrating on the standard libraries documenté&amlll.

Readers with a good grasp of this material are well poseddgmlakeveloping practical
applications with Ursala. Please use your powers wiselyamy for the benefit of all
mankind.

285

Part Il

Standard Libraries

286

I require the exclusive use of this room, as well as that graft
sewer you call the library.

Sheridan Whitesidelhe man who came to dinner

A general purpose library

Most applications in this language as in others are not deeelab initio but from a

reusable code base of tried and tested components. A graellegtion of library mod-
ules packaged and maintained along with the compiler peswdvariety of helpful utilities
in the way of functions, combining forms, and data strucgecifications.

8.1 Overview of packaged libraries

There are three subdirectories in the main distributiorkage populated witbavm vir-
tual code library files, these being thec/ , lib/ , andcontrib/ directories.

e Thecontrib/ directory contains libraries for experimental, illusivat or archival
purposes, that are not necessarily maintained and are acobumted in this manual.

e Thesrc/ directory contains libraries necessary to bootstrap tinepdler. They are
maintained but are unlikely to be of any independent inteegsept for thestd
andnat libraries. Somed hocdocumentation about them suitable for compiler
developers is provided in Part IV.

e Thelib/ directory contains the libraries that are considered ingmicomplements
to the core functionality of the language. These are maiethiand meticulously
documented in this chapter and the succeeding ones in Part Il

8.1.1 Installation assumptions

In the recommended installation, aivm files insrc/ andlib/ are stored in the host
filesystem undefusr/lib/avm/ or /usr/local/lib/avm/ , Where they are auto-
matically detected by the virtual machine with no path sjeation required.

287

e These files are architecture independent and thereford bewdxported on a network
filesystem for use by multiple clients without binary codengatibility issues.

e Non-standard installations may require the the user oresystdministrator make
arrangements for specifying the library file paths when kinvg the compiler. See
Section 1.3.1 on page 51 for a related discussion.

8.1.2 Documentation conventions

Each library is documented in a separate chapter, even thege chapters may be very
short. The style is that of a reference manual, often witlelinore than a catalog of
descriptions of the library functions and data structufdége emphasis is more on accuracy
and completeness than motivation or literary merit, and $tyle is most conducive to
maintaining current information about an evolving codeshd8hese chapters need not be
read sequentially, but they take a working knowledge of théamal in Part 1l for granted.

Thestd andnat libraries are under therc/ directory in the packaged distribution
because they are necessary for bootstrapping the conipilethey are also suitable for
more general use so they are documented in Part III.

The remainder of this chapter documentsste library. Unlike most other libraries,
this one can be imported into any source text without beivgrgias a command line
parameter to the compiler, because it is automatically Igegbpy the shell script that
invokes the compiler.

8.2 Constants
The standard library defines three constants that are usefaput parsing and validation.

characters
the list of 256 characters (ty8éc ordered by their ISO codes

letters

the list of 52 upper and lower case alphabetic characerszA. . . Z, with the lower
case characters first

digits
the list of ten decimal digit®. .. 9

A predicate that tests whether its argument is a digit coalddded as=digits , as an
example.

Other constants, such &sle andfalse , are also defined by the standard library,
because all symbols in theor library (Listing 3.1, page 113) are included in it.

288

8.3 Enumeration
Two functions tangentially related to the idea of enumerasre the following.

upt o

Given a natural number, this function returns a list containing every possibleidat
of any type whose binary representation size measured is doesn’t exceed

For example, there are 9 data with a size up to three.

$ fun --m=upto3 --c %tL
<
0,
&,
(0,&),
(&,0),
(0,(0,&)),
(0,(&,0)),
(&,&),
((0,&),0),
((&,0),0)>

This function is useful for exhaustively testing code thag@ates on small data structures
or pointers. However, it should be used with caution becalobsenumber of results in-
creases exponentially with the sizebeing given by}~ | f(¢), wheref(0) = 1 and

i—1

FG)y =" f()fGE =)

j=0
fors > 0.

enum

This function takes a set of data and returns a type expres$siothe type whose
instances are the data. See page 173 for an example.

8.4 File Handling

Executable applications that have a command line interdadbat generate output files
are expressed as functions that observe consistent cathimgentions. The standard li-
brary provides a small set of data structure declaratiodsamctions in support of these
conventions.

289

8.4.1 Data Structures

The following four identifiers are record mnemonics. Thaage is explained with exam-
ples starting on page 258, but they are briefly recountedfbereference.

i nvocati on

A record of this form passed to any command line applicatienegated by the
#executable directive with a parameterized interface. The record ciagf two
fields,commandandenvirons . The latter contains a module of character strings
specifying the environment variables.

command_l i ne

A record of this form makes up tleemmandfield of an invocation record. It has two
fields,files andoptions

file

A list of records of this form is stored in tHdes field inacommandline record.
It has four fields describing a file, which are callg@dmp , path , preamble and
contents . The interpretation of these fields is explained on Page 260.

option

A list of these records is stored in tbptions field of acommandline record. Its
four fields are calleghosition , longform , keyword , andparameters . Their
interpretations are explained on page 261.

8.4.2 Functions

Two further functions are intended to facilitate genematoutput files or other possible
uses.

gpl

This function takes a version number as a character stringafly '2’ or '3’),
and returns a list of character strings containing the stah@eneral Public License
notification for the corresponding version, “This prograiree software..”. If an
empty string is supplied as an argument, the version nundfaulis to 3.

dot

This function is meant to be used in an output file generatingctive of the form
#output dot (suffix (functior) as explained on page 265.

290

8.5 Control Structures

A small group of control structures comparable to those replanguages is specified by
the combining forms documented in this section. These arbuilb into the language but
defined as library functions.

8.5.1 Conditional

An idea originated by Tony Hoare, case statements are wseéustructured form of nested
conditionals whose predicates test the argument agaistsaant. (This construct is more
restrictive than the cumulative conditional combinatdnjei allows general predicates as
explained on page 191.) In typical usage, a funcfibof the form

H = (case f) (
<

Ko gos

ki gn>,
h)

applied to an argumentfirst computes the value = f(z), and then tests against each
possiblek; in sequence. For the first matchiing the corresponding functiog(x) is
evaluated and its result is returned. If no match is four(d,) is returned. Note thaj;
or h is applied to the original argument, not to k, which is only an intermediate result
that is not returned. Evaluation is non-strict insofar aly dme g; for the matchingk; is
evaluated, if any, and is not evaluated unless no match is found.

Two forms ofcase statement defined in the standard library differ in the reatirthe
test, and the third generalizes both of these.

case

This function takes a functiofias an argument and returns a function that maps a pair
(<ko: go, ... kn: ¢,>, h) toafunctionH as above. In terms of the foregoing
notation, a match betwednandk; occurs precisely when they are equal in the sense
described on page 78.

cases

This function follows the same calling convention as tiase function, above, but
differs in the semantics of the resultiify In order for a match to occur between the
temporary valué and a constant;, the constank; must be a list or a set of which

is a member.

A short example of theases function is the following, which takes a character or any-
thing else as an argument and returns a string describictagsification, if recognized.

201

classifier = cases &\'unrecognized’! <
'aeiouAEIOU’: 'vowel'!,
letters: 'consonant’!,
digits: 'digit'!>

Note that because the order in which the cases are listegngisant, the patterns may
overlap without ambiguity. If the patterns are mutuallyjaiist, use of braces is preferable
to angle brackets as a matter of style and clarity.

The concept of a case statement generalizes to arbitraphingtcriteria beyond equal-
ity and membership.

gcase

Given a any functiom computing a predicate, this function returns a case stateme
constructor in which a match betwekandk; is deemed to occur whertk, ;) holds,
wherek andk; are as in the preceding explanations.

For example, the firstase function can be defined agase ==, and the second one,
cases , can be defined agcase -= . A case statement based membership in numerical
intervals would be another obvious example.

| esser

This function takes a binary relational predicate to theesponding binary mini-
mization function. For any funcitop, the functionlesser p takes an argument
(z,y) tox if p(x,y) is non-empty, and tg otherwise.

8.5.2 Unconditional

Most of the basic functional combining forms in the languageprovided by the operators
documented in Chapter 6, but several are expressible asvioll

gang

This function takes a list of functions to a function retungpia list. The function
gang< fy, ..., f,> applied to an argument returns the list<f, =, ..., f, >
This function is equivalent t&. fy, ..., f,>. (See page 194 for an example.)

associ ate_|l eft

This function takes any function operating on a pair to a fiomcthat operates on
a list. The functionassociate _left f returns<> for an empty list and returns
the head of list with only one item. For lists with more thareatem, it satisfies the
recurrence

(associate _left f) a:b:x = (associate _left f) (f(a,b)):x

292

A simple example of this function would be

$ fun --m="associate left"& 'abcdef" --c

(((((a,'b),'c),"d),’e),)

fused

The argument to this function should be a record initiaizumctionr (i.e., something
declared with the: operator as explained in Section 4.2). The result is a fancti
that takes a pair of records, y) each of type_r and returns a recordalso of type
—r. The resultz consists of the non-empty fields fromand the remaining fields, if
any, fromy, followed with initialization by the functiom.

A short example of this function is as follows.

$ fun --m="r:a %n b %n x=fused(r)/r[a: 1] r[b: 2]" --c _r
rfa: 1,b: 2]

8.5.3 lterative

A couple of functions useful mainly for debugging can be ussterate a function a fixed
number of times.
rep

This function takes a natural numberas an argument, and returns a function that
maps a given functiorf to the composition of with itself n times (or equivalent). If
n =0, theresultofrep n) fisthe identity function.

The following example demonstrates tfeg function by inserting a zero at the head of a
list five times.

$ fun --m="rep5&NIiC <1>" --c %nL
<0,0,0,0,0,1>

next

This function takes a natural numbeand returns a function that takes a given func-
tion f to the equivalent ok.rep0 f, ... ;rep (n—1) f>. Thatis, the result of
(next n) fisafunction returning a list of length whosei-th item is the result of

i iterations off on the argument, starting from zero.

An example of thaenext function following on from the previous example is as shown.

$ fun --m="next5"&NiC <1>" --c %nLL
<<1><0,1><0,0,1>,<0,0,0,1>,<0,0,0,0,1>>

293

8.5.4 Random

Three functions are defined in the standard library for geiey pseudo-random data
according to some specified distribution. The underlyingdcan number generator is
the Mersenne Twister algorithm provided by the virtual maels mtwist library, as
documented in thavram reference manual.

arc

This function, mnemonic for “arbitrary constant”, takey @t as an argument, and
constructs a program that ignores its input but returns admseandomly chosen
member of the set. The value returned by the program may lereht for each
execution, with all members of the set being equally probabl

An example of thearc function is given by the following expression.

$ fun --m="arc<0,1,2> T -
<0,2,1,1,0,1,2,1>

choi ce

This function takes a set of functions as an argument andiremts a program that
chooses one to apply to its input each time it is invoked. Ausitted non-deterministic
choice is made, with all choices being equally probable.

This example shows a choice of three functions applied taregswith a different choice
made for each execution.

$ fun --m="choice{"&,"&x,”&iiT} 'foo™ --c %s

'foofoo’
$ fun --m="choice{"&,"&x,”&iiT} 'foo™ --c %s
'foo’
$ fun --m="choice{"&,"&x,”&iiT} 'foo™ --c %s
'oof’

st ochasm

This function takes a séipy: fo ...p,: fn} Of assignments of probabilities to func-
tions, and constructs a program that simulates a non-detistio choice among the
functions each time it is invoked. Preference is given tdhdaaction in proportion

to its probability. Probabilitiep; needn’t sum to unity but they must be non-negative.
They may be either floating point or natural numbers (t/eor %rn).

Two examples of thetochasm function demonstrate filters that lose twenty and seventy
percent of their input on average.

$ fun --m="stochasm{0.8: "&INC,0.2: "I} *= letters" --c

294

"abcdhijkmopgrsvwxzADEGHIJKLMNOPQRSTVXZ'
$ fun --m="stochasm{0.3: "&INC,0.7: "I} *= |etters" --c
'dehilnosDFLMNOSVY’

8.6 List rearrangement

A collection of functions defined in the standard library égrerating on lists supplements
the operators and pseudo-pointers in the core language.

8.6.1 Binary functions
These functions take a pair of lists to a list.
zip
Given a pair of list((zg ... x,), (vo - .. yn)) Of the same length, this function returns

the list of pairs((zo, yo) - . - (zn, yn))- If the lists are of unequal lengths, the function
raises an exception with the diagnostic messagel“ zip .

Thezip function is equivalent to th&p pseudo-pointer (page 75).
Zi pt
This function performs a truncating zip operation. It fefa similar calling conven-

tion to thezip function, above, but does not require the lists to be of elgnagjth. If
the lengths are unequal, the shorter list is zipped to a poéfixe longer one.

Thezipt function is equivalent to the one used in an example on Page 73
gcp

This function returns the greatest common prefix of a paiist$,| which is the longest
list that is a prefix of both of them.

An example of an application of trgep function is the following.
$ fun --m="gcp/abc’ 'abd™ --c %s

1ab1

8.6.2 Numerical

The function in this section perform operations on lists #iv@ parameterized by natural
numbers.

295

I ol
Given any list, this function returns a list of consecutiatural numbers starting with
zero that has the same length as its argument.

This function is exemplified in the following expression.

$ fun --m="iol ’catabolic™ --c
<0,1,2,3,4,5,6,7,8>

num

This function takes any list as an argument and returns aflipairs in which the
left sides form a consecutive sequence of natural numbentsngt from zero, and the
right sides are the items of the argument in their origindkor It is equivalent to the
function”p/iol "&

Thenumfunction numbers the items of a given list as shown.

$ fun --m="num ’abcde™ --c %ncXL
<(0,a),(1,'b),(2,c),(3,'d),(4,'e)>

skip

Given a pain(n, =), wheren is a natural number andis a list, this function returns a
copy of the listz with the firstn items deleted. If: does not have more thanitems,
the empty list is returned.

t ake

Given a pair(n, z), wheren is natural number and is a list, this function returns a
copy of the listz with all but the firstn items deleted. If: does not have more than
items, the whole list is returned.

bl ock

Given a number, this function returns a function that maps any lisnto a list of
listsy such that&L y = z, and every item of) has a length ofi except possibly the
last, which may have a length less than

An example of thélock function is the following.

$ fun --m="block3 ’abcdefghijkl™ --c %sL
<’abc’,’def’,’ghi’,’jkI'>

296

SW n
Given a number, this function returns a function that maps any ltsnto a list of
lists y whosei-th item is the lengt substring ofr beginning at position.

The function name is mnemonic for “sliding window”. An exalapf theswin function
is the following.

$ fun --m="swin3 ’'abcdef" --c %sL
<'abc’,’bcd’,’cde’,'def’>

8.6.3 General

Some further list editing operations parameterized by tions or constants are docu-
mented in this section. These include functions for paddiesl xariations on flattening
and unflattening, sorting, and conditional truncation.

zi pp
This function takes a constahtto a function that zips two lists together of arbitrary

length by padding the shorter one with copies @fnecessary. It satisfies the follow-
ing recurrences.

(zipp k) (<>,<>) = <>
(zipp k) (a:z,<>) = (ak):((zipp k) (z,<>))
(zipp k) (<>b:y) = (kb):((zipp k) (<>,y))
(zipp k) (a:2,b:y) = (a,b):((zipp k) (2,9))
This example shows thdpp function zipping two lists of natural numbers by padding
the shorter one with zeros.

$ fun --m="zipp0/<1,2,3> <4,5,6,7,8>" --c %nWL
<(1,4),(2,5),(3,6),(0,7),(0,8)>

pad

This function takes a constahtto a function that takes a list of lists of differing
lengths to a list of lists of the same length by appendinge®pik to those that are
shorter than the maximum. It is defined as follows.

pad "k" = "&i&& "&rSS+ zipp"k"" *D\'& leql$”

This example shows how a list of lists of lengths 2, 1, and Basgformed to a list of three
lists of length three by padding the shorter lists.

$ fun --m="padl <<0,1><2><3,4,5>>" --c %nLL
<<0,1,1><2,1,1>,<3,4,5>>

297

mat

This function takes a constahbf typet to a function that flattens a list of typéoLL
to a list of typet%L after inserting a copy ofk> between consecutive items. It can
be defined asO0+ “|T/ &+ /I , among other ways.

The following example shows how a ten is inserted after etlege numbers in the list of
natural numbers from O to 9.

$ fun --m="matl0 block3 <0,1,2,3,4,5,6,7,8,9>" --c %nL
<0,1,2,10,3,4,5,10,6,7,8,10,9>

sep

This function serves as something like an inverse to re function, in that
(mat k)+ sep k is equivalent to the identity function. For a given separdto
the functionsep k£ scans a list for occurrences bf and returns the list of lists of
intervening items.

Thesep function can be used in text processing applications toemint a simple lexical
analyzer. In this example, a path name containing forwaadh&s is separated into its
component directory names.

$ fun --m="sep\'/ 'usr/share/doc/texlive-common™ --c %s L
<’usr’,’share’,’doc’,’texlive-common’>

Note that the backslash is there to suppress interpretafitme backquote character by
the shell, and would not be used if this code fragment weresiouace file.

psort

This function, mnemonic for “priority sort”, takes a list @élational predicates
<po . .. pp> to a function that sorts a list by the members of in order of decreas-
ing priority. That is, the ordering of any two items ofis determined by the firgi;
whereby they are not mutually related.

The psort function is useful for things like sorting a list of time stpmby the year,
sorting the times within each year by the month, sorting tme$ within each month by
the day, and so on. This example shows how a list of stringsisally sorted with higher
priority to the second character.

$ fun --m="psort<lleg+"&bth,lleq+ &bh> <’za’,’ab’’aa’ >" -c
<’aa’,’za’,’ab’>

The lexical order relational predicateq is documented subsequently in this chapter.

298

ric

This function, mnemonic for “run length code”, takes a rielaal predicate as an

argument and returns a function that separates a list iitists1 The predicate is

applied to every pair of consecutive items, and any twoeelaems are classed in the
same sublist. The cumulative concatenation of the sulvkstsvers the original list.

An example of thelc function that collects runs of identical list items is thddaing.

$ fun --m="rIc"'&E <0,0,1,0,1,1,1,0,1,0,0>" --c %nLL
<<0,0>,<1>,<0><1,1,1>,<0>,<1>,<0,0>>

This function could be carried a step further to compute twentional run length encod-
ing of a sequence byflength,”&h) *+ rIc’&E , which would return a list of pairs
with the length of each run on the left and its content on tgbtri

t akewhi | e

This function takes a predicate as an argument, and retdumcaon that truncates a
list starting from the first item to falsify the predicate.

In this example, the remainder of a list following the firshef odd numbers is deleted.

$ fun --m="takewhile"&h <1,3,5,2,4,7,9>" --c %nL
<1,3,5>

ski pwhi |l e

This function takes a predicate as an argument, and retdumscton that deletes the
maximum prefix of a list whose items all falsify the predicate

In this example, the odd numbers at the beginning of a listaleted.

$ fun --m="skipwhile"&h <1,3,5,2,4,7,9>" --c %nL
<2,4,7,9>

Recall thaf&h tests the least significant bit of the binary representaif@natural num-
ber.

8.6.4 Combinatorics

Various functions relevant to combinatorial problems agéreed in the standard library.
These include functions for computing transitive closwuaad cross products, permuta-
tions, combinations, and powersets.

299

cl osure

Given a relation represented as a set of pairs, this functionputes the transitive
closure of the relation. The transitive closure of a relatidis defined as the min-
imum relation containing? for which membership of anyz, y) and(y, z) implies
membership ofz, z).

A simple example of thelosure function is the following.
$ fun --m="closure{('x’,’y"),(y’,’z")}" --c %sSWS
{(xy).(x'2),(y''Z)}

Cross

This function takes a pair of sets to their cartesian pradUice cartesian product of
a pair of setg.5, T') is defined as the set of all pais, y) for whichxz € S andy € T.
This function is equivalent to tH&KO pseudo-pointer (page 91).

per mut ati ons

Given a listz of lengthn, this function returns a list of lists containing all podsib
orderings of the members in The result will have a length of! (thatis,1-2-- - --n),
and will contain repetitions if: does.

An example of thegermutations function for a three item list is the following.
$ fun --m="permutations 'abc™ --c %sL
<’abc’,’bac’,’bca’,’acb’,’cab’,’cba’>

power set

This function takes any set to the set of all of its subsetse Gdrdinality of the
powerset of a set of elements is necessartdy.

This example shows the powerset of a set of three natural exsmb

$ fun --m="powerset {0,1,2}" --c %nSS
{{}.{0},{0,2},{0,2,1},{0,1},{2}.{2,1},{1}}

choi ces

Given a paif(s, k), wheres is a set and: is a natural number, this function returns the
set of all subsets of having cardinalityk. For a set of cardinalityn, the number of

subsets will be
ny\ n!
k) Kl(n—k)

300

For a very small example, the set of all three element subresisa universe of cardinality
4 is illustrated as shown.

$ fun --m="choices/'abcd’ 3" --c %sL
<'abc’,’abd’,’acd’,’bcd’>

cuts

Given a paif(s, k), wheres is a list andk is a natural number, this function finds every
possible way of separatingnto k£ + 1 non-empty consecutive parts. Each alternative
is encoded as a list of sublists whose concatenation yielddist containing all such
encodings is returned.

This example shows all possible subdivisions of a nine itists into three consecutive
parts.

$ fun --m="cuts('abcdefghi’,2)" --c %sLL
<
<’a’,’b’,’cdefghi’>,
<’a’,’bc’,’defghi’>,
<’a’,’bcd’,’efghi’>,
<’a’,’bcde’,’'fghi’>,
<’a’,’bcdef’,’ghi’>,
<’a’,’bcdefg’,’hi’>,
<’a’,’bcdefgh’,’i’>,
<’ab’,’c’,’defghi’>,
<’ab’,’cd’,’efghi’>,
<’ab’,’cde’,’'fghi’>,
<’ab’,’cdef’,’ghi’>,
<’ab’,’cdefg’,’hi’>,
<’ab’,’cdefgh’,’i’>,
<’abc’,’d’,’efghi’>,
<’abc’,’de’,'fghi’>,
<’abc’,’def’,’ghi’>,
<’abc’,’defg’,’hi’>,
<’abc’,’defgh’,’i’>,
<’abcd’,’e’,'fghi’>,
<’abcd’,’ef’,’ghi’>,
<’abcd’,’efg’,’hi’>,
<’abcd’,’efgh’,’i’>,
<’abcde’,’'f’,’ghi’>,
<’abcde’,’'fg’,’hi’>,
<’abcde’,'fgh’,’i’>,
<’abcdef’,’g’,’hi’>,

301

<’abcdef’,'gh’,'i’>,
<’abcdefg’,’h’,’i’>>

The result is ordered by length of the first sublists withetiint lengths.

wor ds

This function takes a natural numberto a function that takes an alphaketo an
enumeration of all length sequences of membersaf

The words function differs from thechoices function described previously insofar
as order is significant and repetitions are allowed. Henneexpression of the form
words(n) a will evaluate to a list of lengthu|™, where|a| is the cardinality of.. Here
is an example usage.

$ fun --m="words5 '01™ --c
<
’00000’,
'00001",
'00010’,
‘00011,
'00100’,
‘00101,
‘00110,
‘001171,
'01000’,
'01001",
'01010’,
‘01011,
'01100’,
‘01101,
‘01110,
‘011177,
’10000’,
10001,
10010,
10011,
’10100’,
10101,
'10110’,
101177,
’11000’,
11001,
11010,
1101717,

302

11100,
111071,
11110,
"11111">

8.7 Predicates

Various primitive functions and combinators are definedhmdtandard library to assist in
applications needing to compute truth values or decisionguures.

8.7.1 Primitive

A number of predicates that are mostly binary relations aoxiged by the definitions
documented in this section.

e As a matter of convention, predicates may return any nontgngiue when said to
hold or to be true, and will return the empty valje when false.

e These predicates are false in all cases where the desnsplmnot stipulate that they
are true.

e Equality is in the sense described on page 78.

¢ Read “if” as “if and only if".

eql

This predicate holds for any pair of lists, y) in which = has the same number of
items agy, counting repeated items as distinct.

| eql

This predicate holds for any pair of lists,) in which = has no more items than
counting repeated items as distinct.

i ntersecting

This predicate is true of any pair of lists or séisy) for which there exists an item
that is a member of both andy. It is logically equivalent to thé&c pseudo-pointer
but faster (page 77).

subset

This predicate is true of pairs of sets or ligtst) wherein every element afis also
an element of. If sis empty, then it is vacuously satisfied.

303

substring

This predicate is true of any pair of lists, ¢) for which there exist lists andy such
thatz-- s-- yis equal tol.

suf fix

This predicate is true of any pair of strings or listst) for which there exists a list
such thate-- s is equal tof.

'l eq

This function computes the lexical partial order relationoharacters, strings, lists of
strings, and so on. Given a pair of stringst), the predicate is true i alphabetically
precedes. For a pair of characters;, t), the predicate holds if the ISO code ofs
not greater than that of

i ndexabl e

This predicate is true of any pdjp, =) for which » x can be evaluated without caus-
ing an exception. This relationship is best understood byseming bothr andp as
transparent types and considering it recursively.

e If pis a pair that is non-empty on both sides, then it is indexwlitle = only if
both sides are individually indexable with it.

o If pis empty on one side and not the other, then it is indexable winly if the
non-empty side is indexable with the corresponding side of

¢ If pis empty on both sides, then it is always indexable with

si ngl y_branched

This predicate is true of the empty p§r, and of any pair that is empty on one side
and singly branched on the other.

8.7.2 Boolean combinators

The boolean operations are most conveniently obtained impowtors taking predicates
to predicates rather than by first order functions. Predgaised as arguments to the
functions in this section could be any of those documenteldamprevious section, as well
as any user defined predicates.

304

Each of these predicate combinators is unary in the senti thiges a single predicate
as an argument and returns a single predicate as a resulevdowhe predicate it returns
may operate on a pair of values. In that case, evaluationnisstrect in that only the left
value is considered where it suffices to determine the result

Similar conventions to those of the previous section reggrtiuth values apply here
as well.

not

Given a predicate, this function constructs a predicate that is true whengvier
false, and vice versa.

bot h

Given a predicate, this function constructs a predicate that appti¢s both sides of
a pair, and is true only if the result is true in both cases.

nei t her

Given a predicate, this function constructs a predicate that appti¢és both sides of
a pair, and returns a true value if the result of both appbaoatis false.

ei t her

Given a predicate, this function constructs a predicate that appti¢s both sides of
a pair, and returns a true value if the result of at least opécagtion is true.

8.7.3 Predicates on lists

These combinators take an arbitrary predicate as an arguandmeturn a predicate that
operates on a list.

ordered

Given a relational predicatg this function constructs a predicate that is true if its
argument is a list whose items form a non-descending sequsitb respect ta.
That is,(ordered p) z is true ifx is equal top-< x. If p is a partial order relation,
thenordered p may also be more generally true, because the sorteg-fst =
could be only one of many alternatives.

al |

This function takes a predicateto a predicate that holds jfis is true of every item
of its argument. It is similar to thg pseudo-pointer (page 70).

305

al | _sane

This function takes any functiofi as an argument, not necessarily a predicate, and
constructs a predicate that is truefifyields the same value when applied to every
item of the input list. Note that this condition is strongkam logical equivalence,
which implies only that two values are both empty or both eompty, so care must
be taken iff is a predicate whose true results may vary. This functiomgar to the

K1 pseudo-pointer (page 84).

any

This function takes a predicateas an argument, and returns a predicate that holds
whenevep is true of at least one member of its input list. It is similathek pseudo-
pointer (page 70).

8.8 Generalized set operations

The combinators documented in this section generalizedheapts of intersection, dif-
ference, and membership for lists and sets by parametgtizém with an arbitrary binary
relational predicate.

gdi f
This function takes a relational predicat@and returns a function that maps a pair of
sets({xo...zn},{% .. ym}) t0o a copy of the left one with alt; deleted for which

there exists g, satisfyingp(z;, y;). The standard set difference operation is obtained
with p as equality.

gi nt
This function takes a relational predicat@and returns a function that maps a pair of
sets({zo ...z}, {yo...ym}) to a copy of the left one with alt; deleted for which

there exists ng; satisfyingp(z;,y;). The standard set intersection operation is ob-
tained withp as equality.

gl di f

This function follows the same calling conventiongahf , but constructs a function
that operates on pairs of lists rather than pairs of setskigdahe order and multi-
plicity of the items into account. For each deleteda distincty, satisfiesp(z;,y;).
A unique result is obtained by choosing the assignment othiag y’s to deletable
x’s in the order they are detected by scanning forward thrabgh’s for eachz.

306

A short example using this function is the following.

$ fun --m="gldif"'&E/'aaabbbcccaaa’ 'aaccccd™ --c %s
'abbbaaa’

glint

This function performs an analogous operation to the gdéimedilist difference com-
binatorgldif , but pertains to intersection rather than difference.

The generalized set operations above are related 0tBehroughK13 pseudo-pointers,
whereas the remaining one is similar to thpseudo-pointer o= operator.

| sm

Given a ses, this function, mnemonic for “large set membership”, constis a pred-
icate that is true for all members sfand false otherwise.

Although it would be trivial to implemensm asV-= , the implementation in the stan-
dard library attempts to construct the optimal decisioncpdure for a large set, which
may be more efficient than the default set membership algoritf sequential search. The
crossover point between the speed of the two algorithms mbership testing occurs
around a cardinality of 8, not including the time requiredsm to construct the predicate.
Best performance is achieved when the set members have rssistithr representations.

307

I’'m your number one fan.
Kathy Bates irMiisery

Natural numbers

The natural number& 1, 2. . ., are a primitive type in the language, with the type expres-
sion mnemoni®on as explained in Chapter 3. Any application involving natutmumbers
may elect to manipulate them directly on the bit level. Aiegively, thenat module
presents an interface to them as an abstract type.

Similarly to thestd library documented in the previous chapter, tiad library is
automatically loaded by the compiler’s wrapper script, asdd not be specified on the
command line. This chapter documents its functions.

9.1 Predicates

A couple of functions take natural numbers as input and meduruth value.

nl eq

This function computes the partial order relational pratic Given a pair of numbers
(n,m), it returns a non-empty value if and onlyrif< m.

An example using this function is the following.

$ fun --m="nleq * <(1,2),(4,3),(5,5)>" --c %bL
<true,false,true>

odd

This function returns a true value if and only if its argumenan odd number (i.e.,
1,3,5...).

308

9.2 Unary
The following functions take a natural number as an argurmedteturn a natural number

as a result.

e Standard mathematical notation is used in the descrip{emgsn + 1) as opposed to
language syntax in the examples (edpuble+ half).

e Natural numbers in Ursala have unlimited precision, so fbm&ris not an issue for
any of these functions unless the whole host machine runsfanémory.

hal f
This function performs truncating division by two. That given a numbenm, it
returnsn/2 if n is even, and return@ — 1)/2 if n is odd.

Half of the first six natural numbers are computed as follows.

$ fun --m="half * <0,1,2,3,4,5>" --c %nL
<0,0,1,1,2,2>

factori al

This function returns the factorial of an argumentwhich is defined a$[;_, i, and
has applications in combinatorial problems as the numbeoss$ible orderings of a
sequence o distinct items.

The factorial of a numbet is conventionally denoted!, but the exclamation point has an
unrelated meaning in the language as the constant combinato

doubl e
Given a number, this function returns the numbegn.

Thedouble functionis a partial inverse toalf , becauséalf+ double isequivalent
to the identity function. The functiodouble+ half is equivalent to rounding down to
the nearest even number.

pr edecessor

Given a number, this function returns: — 1 if n > 0, and raises an exception if
n = 0. The diagnostic message in the latter case&ural out of range ”

successor
Given a number., this function returns + 1.

309

tenfol d
Given a number, this function returngOn by a fast bit manipulation algorithm.

9.3 Binary

All of the functions documented in this section take a painafural numbers as input.
Thedivision function returns a pair of natural numbers as a result, aadest return
a single natural number.

sum

This function takes a paimn, m) to its sumn + m.

di ff erence

This function takes a pairn, m) ton —m if n > m, but raises an exceptionif < m.
The diagnostic message in the latter casenattiral out of range ”

quot i ent

This function takes a pain, m) and returns the quotient rounded down to the nearest
natural number|n/m| unlessm = 0. In that case, it raises an exception with the
diagnostic messageatural out of range ”

This example shows an exact and a truncated quotient.

$ fun --m="quotient * <(21,3),(100,8)>" --c %nL
<7,12>

remai nder

This function takes a paifn, m) and returns their residual, customarily denoted
mod m. This number is the remainder left over wheis divided bym, i.e.,((n/m)—
In/m|) x m.

The standard relationships between truncated quotiedtsesiduals holds exactly.
\"&r sum®/remainder product’/"&r quotient

This expression is equivalent to the identity function fgrear of natural numberg:, m)
providedm # 0.

310

pr oduct

This function multiplies a pair of numbe(s, m) to obtain their productm.

di vi si on
The quotient and remainder can be obtained at the same tirtteébfunction more

efficiently than computing them separately. Given a pairwhber(n, m) with m #
0, this function returns a paig,) wheregq is the quotient and is the remainder.

The following identities hold.

division = “/quotient remainder
guotient = "&I+ division
remainder = "&r+ division

choose

Given a pair of natural numbe(s, m), this function returns the number of ways
elements can be selected from a setofThis quantity is customarily denoted and

defined as shown.
ny___m
m) ml(n —m)!

gcd

This function takes a paim, m) and returns their greatest common divisor, as ob-
tained by Euclid’s algorithm. The greatest common divisodéfined as the largest
numberk for which (n mod k) = (m mod k) = 0.

r oot

This function takes a paify, n) to the truncatech-th root ofy, or | /7], using an
iterative interval halving algorithm. Ik = 0, y must bel, or else an exception is
raised with the diagnostic messagefoth root of non-unity

power

Given a pair of number&:, m) this function returnsn™, i.e., the product of. with
itself m times.

This example shows the size of a conventional DES key space.

$ fun --m="power/2 56" --c

311

72057594037927936
However, powers of two are more efficiently obtained by bittsty.

9.4 Lists

A couple of other functions in thieat library are useful for converting between numbers
and lists.
I ota
This function takes a natural numberand returns the list ok numbers fronD to
n — 1 in ascending order.
This example shows how to generate the list of numbers fromtedifteen.

$ fun --m=iotal6 --c
<0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15>

nr ange

This function takes a pair of natural numbérsb) and returns the list of natural
numbers fromu to b inclusive. Ifb > a, the list is given in descending order.

$ fun --m="nrange(3,19)" --c %nL
<3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19>
$ fun --m="nrange(19,3)" --c %nL
<19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3>

| engt h
Given any list or set, this function returns its length ordtaality, respectively.

The following equivalence holds for any natural number
n = length iota n

Because natural numbers are represented as lists of bepteag also have a length.
Although there is no logarithm function defined in thegt library, a tight upper bound on
the logarithm of a natural number to the base 2 can be foundKkiyg its length.

$ fun --m="length factorial 52" --c %n
226

This result is confirmed by a more precise calculation usioatithg point arithmetic.

$ fun --m="..log2 ..nat2mp factorial 52" --c %E
2.255810E+02

312

He is you, your opposite, your negative, the result of the
equation trying to balance itself out.

The Oracle inThe Matrix Revolutions

Integers

Numbers like--- — 2, —1,0,1,2... of type%zare supported by operations in tim
library documented in this chapter. Non-negative integeesbinary compatible with nat-
ural numbers (typ&on), and any of the functions described in this chapter wilbal®rk
on natural numbers, albeit with the unnecessary overheateking their signs, which
IS not a constant time operation due to the representatiec us

10.1 Notes on usage

Many functions in this chapter have the same names as sifitniletions in thenat library
documented in the previous chapter. Using both in the sameadext is possible by
methods described in Section 7.2 to control the scope amuallitisof imported symbols.
For example, a file containing the directives

#import nat
#import int

in that order preceding any declarations will use integecfions by default, reverting
to natural functions such asta only when there is no integer equivalent, or when it
is specifically requested using the dash operator, asirsuccessor . The opposite
order will cause natural functions to be used by default ssl@herwise indicated. Al-
ternatively, integer operations can be used exclusivelydigg only the#import int
directive and omittingtimport nat from the source text.

10.2 Predicates

This section is for functions that return a boolean valuemiygerating on integers.

313

zl eq

This function computes the partial order relational pratéc Given a pair of numbers
(n,m), it returns a non-empty (i.e., true) value if and only.ik m.

10.3 Unary Operations

The functions documented in this section take a single art@ggument to an integer
result.
abs

This function returns the absolute value of its argumentth& argument is non-
negative, the result is the same as the argument. Otherthieseesult is its additive
inverse. Hence, the result is always non-negative.

sgn

This function returns-1, 0, or 1, depending on whether its argument is negative, zero,
or positive, respectively.

negat i on

This function returns the additive inverse of its argumeéihegative numbers map to
positive results, positives map to negatives, and zerc#ifit

successor
Given any integen, this function returns + 1.

pr edecessor
Given any integen, this function returns — 1.

Unlike thenat-predecessor function, this one is defined for all integers.

10.4 Binary Operations

The functions documented in this section take a pair of Etegs an argument and return
an integer as a result.

314

sum

Given a pain(n, m) this function returns their sum, + m.

di f ference

Given a pain(n, m) this function returns their difference,— m.

Unlike thenat-difference function, this one is defined for all integers.

pr oduct

Given a pairn(n, m) this function returns their produotmn.

quot i ent

Given a pair(n, m) with m # 0, this function returngn/m/| if n/m > 0, and[n/m/]
otherwise (i.e., the truncation toward zerogfn).

The quotient rounding convention has been chosen to s#hisfydentity.

abs (quotient (n,m)) = quotient (abs (n),abs (m))

r enni nder

Given a pair of integer§&:, m) with m # 0 this function returns an integeisatisfying
sum(product (quotient (n,m),m),r) = n.

10.5 Multivalued

Function documented in this section return something otin@n a boolean or integer
value.
di vi si on
This function maps a paifn, m) of integers withm # 0 to the pair of integers
(quotient (n,m),remainder (n,m)).

The same relationship among ttvision , quotient , andremainder functions
holds for integers as for natural numbers. If both the quoead remainder are required,
it is more efficient to compute them using the division fuantthan individually.

315

Zr ange

Given a pair of integergn, m), this function returns the list gi — m + 1| integers
beginning withn, ending withm and differing by 1 between consecutive items. If
n > m, the numbers are listed in descending order.

316

For him, it’s as if there were thousands of bars and behind
the thousands of bars no world.

Robin Williams inAwakenings

Binary converted decimal

The typeY%vrepresents integers sequences of decimal digits, alomgatibolean sign, as
described on page 119, which may be more efficient than tred bgary representation in
applications needing to manipulate and display numbeltsthdusands of digits or more.
Literal numerical constants in this representation aréenias sequences of decimal digits
with a trailing underscore, and an optional leading negagign.

A small set of functions for operating on numbers in this espntation with a similar
API to theint library described in the previous chapter is provided bylibeé library
documented in this chapter. Because many of the functiansiarilarly named, the dis-
cussion of name clash resolution in Section 10.1 is reldvard as well.

11.1 Predicates
A partial order relational predicate on BCD integers is juled as follows.

bl eq

This function computes the partial order relational pratic Given a pair of numbers
(n,m) in BCD format, it returns a non-empty (i.e., true) value itlamly if n < m.

Here is an example usage.

$ fun bed --m="A(&bleq) xp 50%Vi~ *iiX 15" --c %VWbAL
<
(-693480964_,6180548644): true,
(6597127700_,-532915486_): false,
(-855627074_,-166599056_): true,
(913347791_,8147630828_): true>

317

odd

This function returns a true value if its argument is not atipld of 2, and a false
value otherwise.

11.2 Unary Operations
The functions documented in this section take a single B@Draent to an BCD result.

abs

This function returns the absolute value of its argumentth& argument is non-
negative, the result is the same as the argument. Otherthisegsult is its additive
inverse. Hence, the result is always non-negative.

sgn
This function returns-1_, 0_, or 1_, depending on whether its argument is negative,
zero, or positive, respectively.

Here are some examples.

$ fun bcd --m="A("&,sgn) * :/0_ 50%vi * 7" --c %VVvAL
<

0:0_

3741541087 : -1_,

306278996 _: 1_,

-12120849714_: -1 >

negat i on

This function returns the additive inverse of its argumeigative numbers map to
positive results, positives map to negatives, and zer#ifit

successor
Given any BCD integen, this function returns + 1.

predecessor
Given any BCD integen, this function returns — 1.

318

t enf ol d

This function returns its argument multiplied by ten, ob&d using the obvious opti-
mization in place of multiplication.

factori al
This function returns the factorial function a non-negatargument., defined as

[Timé.

11.3 Binary Operations

The functions documented in this section take a pair of BGBgers as an argument and
return a BCD integer as a result.

sum

Given a pairn(n, m) this function returns their sum, + m.

di ff erence

Given a pairn(n, m) this function returns their difference,— m.

pr oduct
Given a paif(n, m) this function returns their produotn.

quoti ent

Given a pair(n, m) with m # 0, this function returngn/m| if n/m > 0, and[n/m/]
otherwise (i.e., the truncation toward zerogfn).

The quotient rounding convention has been chosen to s#hisfydentity.

abs (quotient (n,m)) = quotient (abs (n),abs (m))

remai nder

Given a pair of integer&:, m) with m # 0 this function returns an integersatisfying
sum(product (quotient (n,m),m),r) = n.

319

power

Given a pair of BCD integer&:, m) with m > 0, this function returns the exponen-
tiationn™. Negative values of are allowed, and will imply a negative resultif is
odd. Zero raised to the power of zero is defined as

11.4 Multivalued

Function documented in this section return something dtiar a boolean or BCD value.
di vi si on
This function maps a paifn, m) of integers withm # 0 to the pair of integers

(quotient (n,m),remainder (n,m)).

The same relationship among ttvision , quotient , andremainder functions
holds for BCD integers as for binary integers and natural lmens. If both the quotient
and remainder are required, it is more efficient to compumtbsing the division function
than individually.

br ange

Given a pair of BCD integerg:, m), this function returns the list df. — m + 1| BCD
integers beginning witle, ending withm and differing by 1 between consecutive
items. Ifn > m, the numbers are listed in descending order.

11.5 Conversions

A couple of functions are defined provided for convertinghestn BCD integers and other
types.

t oi nt

Given a BCD integer, this function returns the corresponding integer in theakyjn
representation (i.e., typ#z or if non-negative, typ@aor).

from nt

Given a natural number or integer in the binary represanidiie., type%onor %\),
this function returns the corresponding number conveneti¢ BCD integer repre-
sentation.

320

Don’t knock rationalizations.
Jeff Goldblum inThe Big Chill

Rational numbers

The primitive type%oqrepresents rational numbers in unlimited precision. Thay loe
used to perform exact numerical calculations with the fiamst defined in theat library
and documented in this chapter. Simultaneously their gs¢atrength and their greatest
weakness, their exactitude renders them prohibitivelffizient for routine work, but they
may be useful in special circumstances such as proof chgokioonjecture.

12.1 Unary

The functions documented in this section take a singlematioumber as an argument to
a rational result.

I nver se
This function takes a numberto 1 /z.

This example shows inverses of two numbers.

$ fun rat --m="inverse * <5/2,-3/8>" --¢c %qgL
<2/5,-8/3>

negat i on
This function takes any numberto —z.
In this example, a number is negated.

$ fun rat --m="negation 1/2" --c %q
-1/2

321

abs
This function returns the absolute value of its argumentatTiabs x is equal tor
if « is positive but—z if x is negative.

The following example shows absolute values of positiveandgative number.

$ fun rat --m="abs * <1/3,-2/5>" --c %qL
<1/3,2/5>

simplified
This function reduces a rational number to lowest termss itnnecessary for num-

bers computed by other functions in the library, but may defbefor user defined
functions.

The rational number representation consists of a pair efjes
((numerato}, (denominatoy)

which a user program may elect to construct directly. Falagathis operation with the
simplified function will ensure that the representation meets theirequnvariant of
being in lowest terms with a non-negative denominator.

$ fun rat --m="(2,4)" --c %q

fun: writing ‘core’

warning: can't display as indicated type; core dumped
$ fun rat --m="%qP (2,4)" --s

2/4

$ fun rat --m="simplified (2,4)" --c %q
1/2

12.2 Binary

The functions documented in this section take a pair of nalimumbers and return a
rational number, except fateq , which returns a boolean value.

rleq

This function computes the partial order relation on raailorumbers. Given a pair of
numbergz, y), it returns a true value if and only of < y.

sum

This function takes a pair of numbes, y) to their sume + y.

322

di f ference

This function takes a pair of numbe(s, y) to their differencer — y.

quot i ent

This function takes a pair of numbes,) to the their quotient:/y.

pr oduct

This function takes a pair of numbe(s, y) to their productry.

power
This function takes a pair of numbefs, y) to their exponentiation? if this number
is rational, but returns an empty val(Je otherwise.

Here are two examples of tippwer function, the second case having an irrational result.

$ fun rat --m="rat-power(27/8,4/3)" --c %qZ
81/16
$ fun rat --m="rat-power(27/8,2/5)" --c %qZ

0

12.3 Formatting

The functions documented in this section convert ration@hipers to a character string
representation compatible with the syntax of floating pounnbers. In some cases, the
string representation may require rounding. Each funda&as a natural number as an ar-
gument specifying the number of decimal places, and retfaaction that takes rational
numbers to lists of strings.

fixed

This function takes a natural numberto a function that converts a rational number
to a list of strings in fixed decimal format with places after the decimal point.

scientific

This function takes a natural numberto a function that converts a rational number
to a list of strings in exponential notation withplaces after the decimal point.

323

engi neering
This function takes a natural numbeito a function that converts a rational number

to a list of strings in exponential notation withH- 1 decimal places and the exponent
chosen to be a multiple of 3.

Here are examples of the same number in all three formats.

$ fun rat --m="engineering4 35737875/131" --s

272.80e+03
$ fun rat --m="scientific4 35737875/131" --s

2.7280e+05
$ fun rat --m="fixed4 35737875/131" --s

272808.2061

324

Logsine, clogsine, thingamabob, some bubblegum will do
the job.

The Nowhere Man irvellow Submarine

Floating point numbers

Ursala places substantial resources at the developepesiisin the way of floating point
number operations. A small librarflp , containing some of the more frequently used
functions and constants is documented in this chapter. rQibraries pertaining to more
specialized areas are documented in subsequent chapigthese are further augmented
by the virtual machine’s interface to third party numerililataries as documented in the
avram reference manual.

All functions described in this chapter involve floating ponumbers in standard IEEE
double precision format, corresponding to the primitivee9oein the language. Users
interested in arbitrary precision numbers (1Y€ are referred to the documentation of
thempfr library in theavram reference manual, whose functions are directly accessible
by the library combinators (Section 6.7.2, page 216).

13.1 Constants

The declarations documented in this section pertain to mgaleconstants. These are
usable as numbers in expressions, and require not muclefatiplanation.

eps

A small number on the order of the machine precision, artiligrdefined as x 10~1¢,

i nf
A constant having the algebraic properties of infinity)(such as:/oo = 0 for finite
x, etcetera

325

nan

A constant representing an indeterminate result, such aso, which will propagate
automatically through any computation depending on it.

The representation of indeterminate results is not unigod, is not valid to test a result
for indeterminacy by comparing it tean. The predicatenath..isnan should be used

instead for that purpose.
ni nf

A constant having the algebraic properties of negativeiigfir-oo, analogous to the
inf constant explained above.

pi
The mathematical constant 3.14159familiar from trigonometry

13.2 General

General unary and binary operations on floating point nusmbes documented in this
section. Most of them are simple wrappers for the corresipgndrtual machinenath..
library functions, defined as a matter of convenience.

13.2.1 Unary
The following functions take a single floating point numbsraam argument and return a
floating point number as a result.

abs

The absolute value function, customarily dendtgdor an argument;, returnse if
is positive or zero, and-x otherwise.

negative
This function takes an argumento its additive inverse;-x.

sqr
This function takes a numberand returns:2.

326

sqrt

This function takes a numberand returns/z. The resultishan if z < 0.

sgn

This function takes any argument to a result-of, 0, or 1, depending on whether
the argument is negative, zero, or positive, respectiviie IEEE standard admits a
notion of —0, which is considered negative by this function.

13.2.2 Binary

The usual binary operations on floating point numbers areighed by the functions docu-

mented in this section. Each of them takes a pair of numbempasand returns a number
as a result. Correct handling of indeterminatar() and infinite arguments is automatic.
Overflowing results are mapped to infinity.

pl us
Given a pair(z, y), this function returns the sum,+ y.

m nus

Given a pair(z, y), this function returns the difference— y.

ti mes

Given a pair(z, y) this function returns the producty.

div
Given a pair(z, y), this function returns the quotienfy. A result ofnan is possible
if 4is 0.

pow

Given a pair(x, y), this function returns the exponentiatie# if it is representable
without overflow.

327

bus

Given a pair(z,y) this function returns the differencg — z, i.e., with the order
reversed.

vid

Given a pair(z, y), this function returns the quotiepf .

The last two functions are often more convenient than thevexaional forms of sub-
traction and division. For example, to subtract the basdiiom a list of floating point
numbers, it is slightly quicker and less cluttered to write

bus™ « D\& fleq$-

than the alternative
sub™ * DrIXS\"& fleg$-

13.3 Relational
The following functions involve tests or comparisons ontilogapoint numbers.

fleq

This function computes the partial order relation on flogfdint numbers, returning
atrue value if and only if a given pair of numbéts y) satisfiest < y. The predicate
does not hold if either number is indeterminate.

max

Given a pair of numbergr, y), this function returng if y > =, and returns: other-
wise. Anan value isn't greater or equal to anything.

m n
Given a pair of numbergr, y), this function returng if + < y, and returng, other-
wise.

zeroid

This function returns a true value if its argument is exa6tlyNegative(is also
considered zero, but small values differing from zero byespntable roundoff error
are not.

328

13.4 Trigonometric

Wrappers for circular functions provided by the virtual time’s math.. library are
defined for convenience as shown below. Each of these fursctekes a floating point
argument to a floating point result. The inverse functiony medurn anan value for
arguments outside their domains.

sin
This function returns the sine of a given number

cos
This function returns the cosine of a given number

Definitions of sine and cosine functions are given by thedsaesh construction involving
the unit circle.

tan
This function returns the tangent of a given numberwhich can be defined as

sin(x)/ cos(x).

asin
Given a numbey, this function returns am satisfyingy = sin(z) if possible.

acos
Given a numbey, this function returns am satisfyingy = cos(x) if possible.

at an
Given a numbey, this function returns am satisfyingy = tan(x) if possible.

13.5 Exponential

A short selection of functions pertaining to exponents aghtithms is provided as de-
scribed below. Each of these functions takes a single flgpatoint argument to a floating

point result.

329

exp

Given a numbet, this function returns the exponentiatiety wheree is the standard
mathematical constagt71828

I n

For a positive numbet, this function returns the natural logaritimz, which can be
defined as the numbersatisfyingz = ev.

t anh
This is the so called hyperbolic tangent function, whichefirtkd as

tanh(z) = %
et +e”*

at anh

Given a numbery between—1 and 1, this function returns a numbaer satisfying
y = tanh(x).

13.6 Calculus

Several higher order functions supporting elementaryaipers from integral and differ-
ential calculus are provided as documented in this section.

deri vati ve

Given a real valued functiofi of a single real variable, this function returns another
function f, which is pointwise equal to the instantaneous rate of chafg.

This function works best for smooth continuous functignd he function is differentiated
numerically by the GNU Scientific Library numerical diffestéation routine with the cen-
tral difference method. Users requiring the forward or ekl difference (for example
to differentiate a function di that is defined only for non-negative input) can use the GSL
functions directly as documented by thieram reference manual.

A short example of this function shows hoffz) = 2? can be differentiated, and the
resulting function sampled over a range of input valueshausheari function docu-
mented subsequently in this chapter to generate an arithpregression of eleven values
for x ranging from zero to one.

$ fun flo --m=""("&,derivative sqr) * aril1/0. 1." --c %eWL

330

(0.000000e+00,0.000000e+00),
(1.000000e-01,2.000000e-01),
(2.000000e-01,4.000000e-01),
(3.000000e-01,6.000000e-01),
(4.000000e-01,8.000000e-01),
(5.000000e-01,1.000000e-00),
(6.000000e-01,1.200000e+00),
(7.000000e-01,1.400000e+00),
(8.000000e-01,1.600000e+00),
(9.000000e-01,1.800000e+00),
(1.000000e+00,2.000000e+00)>

For each value af, the derivative off (z) is 2z, as expected.

nth_deriv

This function takes a natural numbeto a function that returns the-th derivative of
a given functionf.

The functiomth_derivl s equivalent to thelerivative function. Ideally the func-
tion nth_deriv2 would be equivalent talerivative+ derivative , and so on,
but in practice there are problems with numerical stabiliben taking higher derivatives.
Thenth_deriv function attempts to obtain better results than the naipeageh by us-
ing an ensemble of progressively larger tolerances foritjtegtn derivatives when invoking
the underlying GSL differentiation routine.

i nt egral

Given a functionf taking a real value to a real result, this function returnsrection
F taking a pair of real values to a real result, such that

F(a,b) = / ba f(z) do

The following examples demonstrate théegral function.

$ fun flo --m="integral(sqr)/0. 3." --c %e
9.000000e+00
$ fun flo --m="integral(sin)/0. pi" --c %e
2.000000e+00

The integral function is based on the GNU Scientific Library integratiautines,
using the adaptive algorithm iterated over a range of talsga if necessary. This function
will give best results in most cases, but users requiringensmecific control (e.g., to
specify tolerances or discontinuities explicitly) areareéd to theavram reference manual
for information on how to access these features.

331

root _fi nder

This function takes a quadrupléa, b), (f,t)) wheref is a real valued function of a
real variable and the other parameters are real. It retufltmeing point number
such that: < z < band|z — zo| < t, wheref(xy) = 0. If no suchz exists, the result
is unspecified.

The function finds a root by a simple bisection algorithm. akgorithm guarantees con-
vergence subject to machine precision if there is a uniqaeawo the interval, but doesn’t
converge as fast as more sophisticated methods based ngestassumptions. The fol-
lowing example retrieves a root of the sine function betw@amd 4. The exact solution
is of courser.

$ fun flo --m="root_finder((3.,4.),(sin,1.e-8))" --c %e
3.141593e+00

13.7 Series

The functions documented in this section are useful for aip®y on vectors or time series
represented as lists of floating point numbers.

13.7.1 Accumulation

These three functions perform cumulative operations, ¢akimg a list of numbers as

input to a list of numbers as output. Differences are in@aeumulative sums.
cu_prod

Given a list(z . . . z,,) this function returns the lisy, . . . y,,) for which
Yi = Hll?j
j=0

Here is a simple example of a cumulative product.

$ fun flo --m="cu_prod <1.,2.,3.,4.,.5.>" --Cc
<

1.000000e+00,

2.000000e+00,

6.000000e+00,

2.400000e+01,

1.200000e+02>

332

cu_sum

Given a list(z . . . z,,) this function returns the lisy, . . . y,,) for which
h=Y
j=0

Here is a simple example of a cumulative sum.

$ fun flo --m="cu_sum <1.,2.,3.,4.,5.,6.,7.,8.,9.>" --c

<
1.000000e+00,
3.000000e+00,
6.000000e+00,
1.000000e+01,
1.500000e+01,
2.100000e+01,
2.800000e+01,
3.600000e+01,
4.500000e+01>

nth_diff

This function takes a natural numbeto a function that computes theth difference
of a list of numbers. For a given list of numbets . . . z,,), then-th difference is the
list of numbers(yg ...y _,,) satisfying this recurrence.

y@Q =

yro= g -t
Then-th difference requires the input list to have more thatems, because it get short-
ened byn. Here are three examples.

$ fun flo --m="nth_diffl <2.,8.,7.,1.>" --c
<6.000000e+00,-1.000000e+00,-6.000000e+00>
$ fun flo --m="nth_diff2 <2.,8.,7.,1.>" --c
<-7.000000e+00,-5.000000e+00>

$ fun flo --m="nth_diff3 <2.,8.,7.,1.>" --c
<2.000000e+00>

13.7.2 Binary vector operations

These two functions compute the standard metrics on paireatbrs.

333

I prod

Given a pair of lists of floating point numbei&s . . . z,,), (yo - - - y»)) having the same
length, this function returns the inner product, which ifrcked as

n
E T;Y;
i=0

eudi st

Given a pair of lists of floating point numbefs:, . . . x,,), (vo - - - y»)) having the same
length, this function returns the Euclidean distance betwaem, which is defined as

For vectors representing Cartesian coordinates of pairaglat two or three dimensional
space, the Euclidean distance corresponds to the ordimaugept of distance between
them as measured by a ruler. In data mining or pattern retogpplications, Euclidean
distance is sometime useful as a measure of dissimilarttydsn a pair of time series or
feature vectors.

opr od

Given a pair of lists of floating point numbef&:, . . . x,,), (vo - - - y»)) having the same
length, this function returns a ligt; . . . z,,) of that length in which this relation holds.

TplY1 — T1Yn if =0
Zi = (_1)7_1(%71,’90 — ToYn—1) if i=n
(_1)Z(xi—1yi+1 - $i+1yi—1) otherwise
If n < 2, the result is undefined.

This function computes the same outer product familiar famibege physics, but gen-

eralizes it to higher dimensions. For example, the magrietie exerted on a moving

charged particle is proportional to the outer product ofé@mcity with the ambient mag-

netic field. In graphics applications, the outer productnigasy way to construct a vector
that is perpendicular to the plane containing two givenmest

13.7.3 Progressions

These two functions allow arithmetic or geometric progiessto be constructed without
explicit iteration required.

334

ari

Given a natural number, this function returns a function that takes a pair of flogtin
point numberga, b) to a list(z; ... x,) of lengthn, wherein

(1—1)(b—a)

r;, = a
+ n—1

That is, there are numbers at regular intervals starting franand ending witlb.

This example shows a list of four numbers from 25 to 40.
$ fun flo --m="ari4/25. 40." --c
<

2.500000e+01,

3.000000e+01,

3.500000e+01,

4.000000e+01>

geo

Given a natural numbet this function returns a function that takes a pair of posi-
tive floating point numbersa, b) to a list ofn floating point numbersz; ... z,) in
geometric progression fromto b. That is,

(z’—l b)
T; = aexp In —
n—1 a

The following example shows a geometric progression frorto11D00.

$ fun flo --m="geo5/10. 1000." --c
<

1.000000e+01,
3.162278e+01,
1.000000e+02,
3.162278e+02,
1.000000e+03>

13.7.4 Extrapolation
These two functions can be used to extapolate a convergésd aed thereby estimate the
limit more efficiently than by direct computation.

levin_limt

Given a list of floating point numbers; . .. z,), this function returns an estimate of
the limit of x,, asn approaches infinity, based on the Levitransform from the GNU
Scientific library.

335

This example shows the limit of a geometric series of numbappsoaching.

$ fun flo --m="levin_limit <0.5,.75,.875,.9375>" --c
1.000000e-00

| evi n_sum

Given a list of floating point numbers; . .. z,,), this function returns an estimate of
the limit of the sum of the seri€s ., z; asn approaches infinity.

This example shows the limit of the sum of a series of whosedepproach zero.

$ fun flo --m="levin_sum <0.5,.25,.125,.0625>" --c
1.000000e+00

13.8 Statistical

A selection of functions pertaining to statistics is docuied in this section. These in-
clude descriptive statistics on populations, random nungie@erators, and probability
distributions.

13.8.1 Descriptive

The following functions compute standard moments andedlparameters for data stored
in lists of floating point numbers.

nean

Given a list ofn numbers(z; ... x,), this function returns the population mean, de-
fined as

I

T=- Zl i

If the available datéz; . .. z,,) are a sample of the population rather than the whole popu-
lation, a more statistically efficient estimator of the trnean has. — 1 in the denominator
rather tham. Users working with sample data may wish to define a diffevension of

this function accordingly.

vari ance

For a list of numbersz; ... x,), this function returns the variance, which is defined

as
1 — .
n Z(xi —)
=1
wherez is the mean as defined as above.

336

st dev

This function returns the standard deviation of a list of lvens, which is defined as
the square root of the variance.

covari ance

Given a pair of lists of number§z; ...x,), (v1...y,)) of the same length, this
function returns the covariance, which is defined as

YRR

In this expressiong is the mean ofz; ... x,) andy is the mean ofy; .. .y,) as defined
above.

correl ati on

This function takes a pair of lists of numbers to their catiein, which is defined as
the covariance divided by the product of the standard dewviat

13.8.2 Generative

A couple of functions are defined for pseudo-random numbeeiggion. Strictly speaking
they are not really functions because they may map the sagunenant to different results
on different occasions.

r and

This function returns a pseudo-random number uniformlyrithsted between zero
and one.

The following example shows five uniformly distributed pdetrandom numbers.

$ fun flo --m="rand * jota5" --c
<

2.066991e-02,

9.812020e-01,

1.900977e-01,

5.668466e-01,

6.280061e-01>

The results are derived from the virtual machine’s impletagon of the Mersenne Twister
algorithm, as documented in th@ram reference manual.

337

Z

This function returns a pseudo-random number normallyibiged with a mean of
zero and a standard deviation of one. This distribution ha®bability density func-
tion given by

)= o (-4)
r) = exp | ——=
p o p 5
Here are a few normally distributed random numbers.

$ fun flo --m="Z * iota3" --c
<7.760865e-01,2.605296e-01,-5.365909e-01>

This function depends on the virtual machine’s interfacén&R math library, which must
be installed on host system in order for it to work.

13.8.3 Distributions

The functions described in this section provide cumulatind inverse cumulative prob-
ability densities. Currently only the standard normalriisition is supported, as defined
above.

N
Given a numbetr, this function returns

1 /“” < xQ) g
— exp | —— z
V2T J_wo P 2

which is the probability that a random draw from a standandhrab population will
be less than.

Q

Given a numbey, this function returns a numbersatisfying

1 /x (xz) g
= exp | —— | dz
) \/ﬂ . p B

Itis therefore the inverse of the cumulative normal proligidunction defined above.

13.9 Conversion

Three functions allow conversions between floating poimhbers and other types.

338

f | oat
Given a natural number of type %n this function returns the equivalent afin a
floating point representation.

A simple example demonstrates this function.

$ fun flo --m=floatl25 --c
1.250000e+02

floatz

Given an integer. of type %z this function returns the equivalent ofin a floating
point representation.

Although natural numbers and positive integers have thesapresentation, tHkatz
function is necessary for coping with negative integersesily. A negative argument to
thefloat function will have an unspecified result.

strtod

This function takes a character string as input and returfigating point number
representation obtained by tls&tod function from the host system’s C library.
The same syntax for floating point numbers as in C is accemtdithe syntax is not
valid, a value of floating point O is returned.

Here is an example of thertod function.

$ fun flo --m="strtod '6.023e23™ --c
6.023000e+23

printf

This function takes a paitf,) as an argument. The left sideis a character string
containing a C style format conversion for exactly one deydsecision floating point
number, such a%0.4e’ , and the parameteris a floating point number. The result
returned is a character string expressing the number inpipafged format.

Here is an example of tharintf function being used to print in fixed decimal format
with five decimal places.

$ fun flo --m="printf/'%0.5f" pi" --c %s
'3.14159’

339

The higher | go, the crookeder it becomes.
Al Pacino inThe Godfather, Part Ill

Curve fitting

A selection of functions in support of curve fitting or intetation is provided in thdit
library. These include piecewise polynomial and sinuddittarpolation methods, avail-
able in both IEEE standard floating point and arbitrary mieci arithmetic by way of the
virtual machine’s interface to thapfr library. There are also functions for differentiation
and higher dimensional interpolation.

The functions in this chapter are suitable for finding exastfr data sets associating
a unique output with each possible input. Readers requidagt squares regression or
generalizations thereof may find thepack library helpful, particularly the functions
dgelsd anddggglm , which are conveniently accessible by way of the virtual niae’s
lapack interface as documented in theram reference manual.

14.1 Interpolating function generators

The functions in this section take a set of points as an argarehreturn a function fitting
through the points as a result.

plin

Given a set of pairs of floating point numbefgro, vo) - . . (2, ys)}, this function
returns a functiory such thatf(x;) = y; for any (x;,y;) in the data set, and(x) is
the linearly interpolated value for any intermediate.

Piecewise linear interpolation is an expedient method daseapproximating the given
function with connected linear functions. An illustrati@given in Figure 14.1. Note that
there is no requirement for the points to be equally spackd.fdllowing example shows
how theplin function can be used.

340

Figure 14.1: piecewise linear interpolation

$ fun flo fit --m="plin<(1.,2.),(3.,4.)> * ari5/1. 3." --c
<

2.000000e+00,

2.500000e+00,

3.000000e+00,

3.500000e+00,

4.000000e+00>

si nusoi d

Given a set of pairs of floating point numbef&o, vo) - - . (2, ys)}, this function
returns a functiory such thatf(z;) = y; for any(x;, y;) in the data set, and(x) is
the sinusoidally interpolateglvalue for any intermediate.

np_si nusoi d

This function follows the same conventions as $irmusoid function, but uses ar-
bitrary precision numbers impfr format as inputs and outputs.

For the latter function, The precision of numbers used irctileulations is determined by
the precision of the numbers in the input data set.

As the names imply, these functions use a sinusoidal ink&ipa method. For equally
spaced values af;, the function that they construct is evaluated by

f(x) = Z yisin(w(x —x;))

r — T

341

for values ofr other thanz;, with a suitable choice ab.

e A function of this form has the property of being continuond aon-vanishing in all
derivatives, and is also the minimum bandwidth solution.

e If the numberse; are not equally spaced, the spacing is adjusted by a cubitespl
transformation to make this form applicable.

e Large variations in spacing may induce spurious high fraquescillations or dis-
continuities in higher derivatives.

one_pi ece_pol ynom al

Given a set of pairs of floating point numbef&eo, o) - . . (z,, y,)}, this function
returns a functiory of the form

n

f(x) = Z c;xt

1=0

with ¢; chosen to ensuré(x;) = y; for all (z;, y;) in the set.

np_one_pi ece_pol ynom al

This function is the same as the one above except that it vsiiaay precision num-
bers inmpfr format. The precision of numbers used in the calculatiodgisrmined
by the input set.

With only two input points, th@ne_piece_polynomial degenerates to linear inter-
polation, as this example suggests.

$ fun fit -m="one_piece_polynomial{(1.,1.),(2.,2.)} 1.5
1.500000e+00

However, for linear interpolation, thain function documented previously is more effi-
cient.

The polynomial interpolation function is obviously difestiable and arguably an aes-
thetically appealing curve shape, but it is prone to inferextrema that are not warranted
by the data, making it too naive a choice for most curve fitapglications.

14.2 Higher order interpolating function generators

The functions documented in this section allow for the casiton of families of interpo-
lating functions parameterized by various means. Therepis@wise polynomial inter-
polation method with selectable order similar to the cotiegral cubic spline method, a
higher dimensional interpolation function, and a functiondifferentiation of polynomi-
als obtained by interpolation.

342

chord_fit

This function takes a natural numberas an argument, and returns a function that
takes a set of pairs of floating point numbé(s, vo) . .. (xm, ym)} to a functionf
satisfying f(x;) = y; for all points in the set. For other valuesofthe functionf
returns a numbey obtained by piecewise polynomial interpolation using polyials

of ordern + 3 or less.

np_chord_fit

This function is similar to the one above but uses arbitraegision numbers impfr
format. The precision of the numbers used in the calculatierdetermined by the
precision of the numbers in the input data set.

Thechord_fit functions generate functiorfshaving the property that
() = f(@iv1) — fxia)
Tit1 — Ti—1
for the interior data points;, wheref’ is the first derivative of . That s to say, the tangent
to the curve at any given; from the data set is parallel to the chord passing through the

neighboring points. Any additional degrees of freedomraita by the orden are used to
meet the analogous conditions for higher derivatives.

e Numerical instability imposes a practical limit af= 3 for the fixed precision ver-
sion.

e Higher orders are feasible for the arbitrary precision ieerprovided that the num-
bers in the input list are of suitably high precision.

e There is unlikely to be any visually discernible differennea plot of the curve for
orders higher than 3.

A gualitative comparison of the three interpolation methddscussed hitherto is af-
forded by Figure 14.2. The figure includes one curve made bly egethod for the same
randomly generated data set. The spline interpolation wenby thechord_fit func-
tion with a value ofn. equal to 0. It can be seen that the piecewise interpolatisritfé
data most faithfully, and is generally to be preferred forsirata visualization or numer-
ical work. The sinusoidal fit has a more wave-like appearavitte symmetric peaks and
troughs, of possible interest in signal processing apipina. The one piece polynomial
fit exhibits extreme fluctuations.

poly_dif

This function takes a natural numberas an argument, and returns a function that
takes a functiory’ as an argument to a functigit. The functionf is required to be
an interpolating function generated by either of ttme _piece _polynomial or
chord _fit functions. The functiorf’ will be the n-th derivative off.

343

spline

1.00
0.75
0.50

0.25 +

0.00 I I I I
0.00 0.20 0.40 0.60 0.80 1.00

sinusoidal

1.00

0.75

0.50

0.25

0.00 | | | |
0.00 0.20 0.40 0.60 0.80 1.00

polynomial

1.00

0.75

0.50

0.25

0.00 I I I I
0.00 0.20 0.40 0.60 0.80 1.00

Figure 14.2: three kinds of interpolation

344

spline

4.97
2.61
0.25
-2.11

-4.47 -

0.00 0.20 0.40 0.60 0.80 1.00

polynomial

5.35
-0.10
-5.55

-11.00

-16.46

-21.91
0.00 0.20 0.40 0.60 0.80 1.00

Figure 14.3: first derivatives of Figure 14.2 by thely _dif function

Thepoly_dif function is specific to polynomial interpolating functiobecause it de-
compiles them based on the assumption that they have arckntai. Thederivative
function from theflo library can be used for differentiation in more general sastow-
ever, differentiation by theoly_dif function is more accurate and efficient where pos-
sible.

Figure 14.3 shows plots of the first derivatives of the poiyra functions in Fig-
ure 14.2 as obtained by tlpoly dif function. Figure 14.4 shows the same functions
differentiated by the&lerivative function for comparison, as well as the first derivative
of the sinusoidal interpolation.

e It can be noted from these figures that the piecewise intatipol is continuous but
not smooth in the first derivative, and hence discontinundsgher derivatives.

345

spline

4.97

2.61

0.25
-2.11

-4.47 -

-6.82 , , , ,
0.00 0.20 0.40 0.60 0.80 1.00

sinusoidal

4.56
2.54
0.51 +
-1.52

-3.54

-5.57 , , , ,
0.00 0.20 0.40 0.60 0.80 1.00

polynomial

5.35
-0.10
-5.55

-11.00

-16.46

0.00 0.20 0.40 0.60 0.80 1.00

Figure 14.4: first derivatives of Figure 14.2 by ttederivative function

346

e The first and last intervals have linear first derivativesdose only second degree
polynomials are used there.

The interpolation methods described hitherto can be gémedato functions of any
number of variables in a standard form by the higher ordectfan described next. The
function itself is meant to be parameterized by one of theegeors (that isplin
sinusoid , mpsinusoid , chord _fit n, orone_piece _polynomial). Ityields
a generator taking points in a higher dimensional spacafggkby a lists of two or more
input values per point.

mul tivari ate

This function takes an interpolating function generatéor functions of one variable
and returns an interpolating function generatoior functions of many variables.

e The input functiong should take a set of paifgxy, f(z1)) ... (., f(z,))} as
input, and return an interpolating functign

— Forz; in the given data sef(z;) = f(;).
— For other inputg, a corresponding output is interpolated py

e The output functiortz will take a set of lists as input,

{(xll T, F<LE11 . x1n>> . <5le o Tmns F<.’L‘m1 .. xmn>>}
wherem = [[; [U;{z;}|, and return an interpolating functian.

— For lists of valuesz;; . .. x;,) in the given data set,

A~

— For other inputsz; . .. z,,), an output value is interpolated .

Intuitively, the technical condition om means that the interpolation function generator
depends on the assumption of the values forming a fully populated orthogonal array.

For eachy, there are
d; = ’U{ﬂfz‘j}}

distinct values forr;;. The numberwd; can be visualized as the number of hyperplanes
perpendicular to thg-th axis, or as thg-th dimension of the array. The product &f
over j is the number of points required to occupy every positiomckehe total number
of points in the data set. A diagnostic messageion¥dlid transpose " may be
reported if the data set does not meet this condition, onewos results may be obtained.

The interpolation algorithm can be explained as followsn I&= 1, the problem re-
duces to the one dimensional case. For interpolation indnigimensions, it is solved
recursively.

347

x Y z

0.00 0.00 0.76476544
1.00 0.91931626
2.00 -2.60410277
3.00 7.35946680

1.00 0.00 -5.05349099
1.00 -4.06599595
2.00 -1.02829526
3.00 -8.83046108

2.00 0.00 0.91525110
1.00 -4.08125924
2.00 5.54509092
3.00 5.68363915

3.00 0.00 2.60476835
1.00 1.86059152
2.00 -1.41751767
3.00 -2.46337713

Table 14.1: randomly generated discrete bivariate funatiith inputs(z, y) and output:

e For eachX;, € |J,{za} with k£ ranging froml to d;, a lower dimensional interpolat-
ing function f;, is constructed from the set of points shown below.

fk = G{(Zl'lg . .ZL‘ln,F<Xk,ZE12 . ZL‘ln>> Ce <ZL‘m2 .. .IL’mn,F<Xk,ZEm2 .. xmn>>}

e To interpolate a value of for an arbitrary given inputz; ... z,), a one dimensional
interpolating functiorh is constructed from this set of points

h = g{(X17 f1<22 cee Zn)) ce (de fdl <Z2 - Zn>)}
andF'(z ... z,) is taken to bé:(z;).

Three small examples of two dimensional interpolation drews in Figures 14.5
through 14.7. These surfaces are interpolated from theoratydgenerated data shown
in Table 14.1. Figure 14.5 is generated by the functiwidtivariate chord_fitO
Figure 14.6 is generated lgultivariate sinusoid , and Figure 14.7 is generated
by multivariate one_piece_polynomial . Qualitative differences in the shapes
of the surfaces are commended to the reader’s attentiom.tNat the vertical scales differ.

348

736
412°
0.88 .i.
2.35 ."-,

5594\

Figure 14.5: spline interpolation of Table 14.1

349

Figure 14.6: sinusoidal interpolation of Table 14.1

350

9.24 -
5.44 ¢
154;
2169
5.96 ¢

9769

Figure 14.7: polynomial interpolation of Table 14.1

351

As you are undoubtedly gathering, the anomaly is systemic,
creating fluctuations in even the most simplistic equations

The Architect inThe Matrix Reloaded

Continuous deformations

Several functions meant to expedite the task of mappingiefiontinua to finite or semi-
infinite subsets of themselves are provided bydbp library. Aside from general math-
ematical modelling applications, the main motivation foege functions is to adapt an
unconstrained non-linear optimization solver suchmaspak to constrained optimiza-
tion problems by a change of variables.

The non-linear optimizers currently supported by virtualmine interfacesninpack
andkinsol , also allow a Jacobian matrix to be supplied by the userleedf two forms,
which can be evaluated numerically by functions in thisdigr

15.1 Changes of variables

The functions documented in this section pertain to cowtirsumaps of infinite intervals
to finite or semi-infinite intervals.

hal f _Ii ne
This function takes a floating point numbernd returns the number

(1 + tar;h(x/k‘)) VT

wherek is a fixed constant equal B60080714.

The half_line function is plotted in Figure 15.1. Its purpose is to serva asnooth
map of the real line to the positive half line.

e Negative numbers are mapped to the intefval. 1.

352

half _line =z

5.00

4.00

3.00

2.00

1.00

0.00 I I I I I I I I I

Figure 15.1: thénalf _line function maps the real line to the positive half line
(half _line =z)—=

0.279
0.278
0.277
0.276
0.275
0.274

0.273

0.272 | T | |
3.00 3.40 3.80 4.20 4.60 5.00

Figure 15.2: thénalf _line function converges monotonically on the positive side

353

e Positive numbers are mapped to the intedval. co.
e For large positive values af, the function returns a value approximately equat to

e The constank is chosen as the maximum value consistent with monotonieazen
gence from above, as shown in Figure 15.2.

The value oft is obtained by globally optimizing the function’s first deative subject to
the constraint that it doesn’t exceed 1.

over

Given a floating point numbeé, this function returns a functiofi that maps the real
line to the intervah . .. co according tof (x) = h + half _line (z — h)

under

Given a floating point numbé, this function returns a functiofi that maps the real
line to the interval-cc .. . h according tof () = h — half _line (h — z).

Similarly to thehalf_line function, over h has a fixed point at infinity, whereas
under h has a fixed point at negative infinity.

bet ween

This function takes a pair of floating point numbeusb) with a < b and returns a
function f that maps the real line to the interval. . b.

e If ¢ andb are infinite, thery is the identity function.
e If ais infinite andb is finite, thenf = under b.
e If ais finite andb is infinite, thenf = over a.

e If ¢ andb are both finite, then

f(x) = ¢+ wtanh ——°

w
wherec = (a + b)/2 andw = b — a.
For the finite case, the functighhas a fixed point and unit slope at= ¢, the center of
the interval.
chov

This function takes a list of pairs of floating point numbéis), &) - . . (a,, b)), and
returns a function that maps a list of floating point numbgrs. . . z,,) to a list of
floating point numbersy; . .. y,) such thaty;, = (between (a;,b;)) z;.

354

To solve a constrained non-linear optimization problemeféunctionf : R — R™ with
initial guessi € R™ and optimal outpud € R™ an expression of the form

xz = (chov ¢) minpack..Imdir(f+ chov ¢, i, 0)

can be used, where= ((ay,b1) ... (a,, b,)) €Xpresses constraints on each variable in the
domain of f.

15.2 Partial differentiation

The functions documented in this section are suitable fosinlmg partial derivatives of
real valued functions of several variables.

j acobi an

Given a pair of natural numbetsn, n), this function returns a function that takes a
functionf : R* — R™ as aninput, and returns a functign R — R™*™ as an output.
The input tof and.J is represented as a li&t; . . . x,,) of floating point numbers. The
output from f is represented as a list of floating point numbgss. . . y,,), and the
output from.J as a list of lists of floating point numbers

({dy1 ... dip) .. dm1 - din))

For eachi ranging froml to m, and for eacly ranging froml to n, the value ofi;; is
the incremental change observed in the valug gkr unit of difference inc; when f
is applied to the argumerit; . .. x,).

The Jacobian is customarily envisioned as a matrix of daté@evatives. If the function
f is expressed in terms of an ensemblero$ingle valued functions of variables,

f=< fi- . fu>
then.J(z, ... x,) contains entried,; given by
Of;
dij = (‘hj <l‘1 Ce ZL’n>

with these differences evaluated by the differentiatiamtires from the GNU Scientific
Library. This representation of the Jacobian matrix is cgrst with calling conventions
used by the virtual machine’kinsol andminpack interfaces.

A simple example of thgacobian function is shown in Listing 15.1. When this
source text is compiled, the following results are dispthye

$ fun flo cop jac.fun --show

<
<1.000000e-00,1.000000e-00>,
<0.000000e+00,-9.040721e-01>,
<2.700000e+00,1.400000e+00>>

355

Listing 15.1 example of Jacobian function usage

#import std
#import nat
#import flo
#import cop

f = <.plus:-0.,sin+"&th,times+"&hthPX>

d = %eLLP (jacobian(3,2) f) <1.4,2.7>

A more complicated example of tHacobian function is shown in Listing 1.6 on
page 33.

j acobi an_r ow

Given a natural numbeit, this function constructs a function that takes a function
f : R* — R™ as an input, and returns a functign: ({0...m — 1} x R") — R* as
an output.

e Theinputtof is represented as a list of floating point numbers. . . x,,).
e The output fromf is represented as a list of floating point numbess. . . y,,,).

e Theinputto/isrepresented as a p&ir (z; . .. z,)), wherei is a natural number
from 0 tom — 1, andz; is a floating point number.

e The output fromVJ is represented as a list of floating point numbegks . . d,,).

For eachj ranging froml to n, the value ofd; is the incremental change observed
in the value ofy,., per unit of difference inc; when f is applied to the argument

(x1...2p).

The purpose of thmcobian_row function is to allow an individual row of the Jacobian
matrix to be computed without computing the whole matrixe himmbet in the argument
(i, {x1...x,)) to the function(jacobian_row n) f is the row number, starting from
zero. A definition offacobian in terms ofjacobian_row would be the following.

jacobian("m","n") "' = (jacobian_row"n" "f") *+ jota"m" *-

Several functions in thkinsol andminpack library interfaces allow the Jacobian to
be specified by a function with these calling conventionsasdo save time or memory
in large optimization problems. Further details are docutea in theavram reference
manual.

356

Can you learn stuff that you haven’t been programmed with,
So you can be, you know, more human, and not such a dork
all the time?

John Connor iMerminator 2 — Judgment Day

Linear programming

Thelin library contains functions and data structures in suppilihear programming
problems. These features attempt to present a convenighighel interface to the virtual
machine’s linear programming facilities, which are praddcurrently by the free third
party librariegylpk andlpsolve . Enhancements to the basic interface include symbolic
names for variables, positive and negative solutions, asts@roportional to magnitudes.

A few standard matrix operations are also included in thuisaly as wrappers for the
more frequently used virtual machine library functionglsas solutions of sparse systems
and solutions in arbitrary precision arithmetic using tiefr library.

Replacement functions implemented in virtual code areraatizally invoked on plat-
forms lacking interfaces to some of these librariegp#éck , umf, andlIpsolve or
glpk). These allow a nominal form of cross platform compatipjlitut are not com-
petitive in performance with native code implementations.

16.1 Matrix operations

The mathematical concept of anx m matrix has a concrete representation as a list of
lists of numbers, with one list for each row of the matrix as thiagram depicts.

<

ay; ... a
1 tm <aii...a1m>,

a Ce a
nl nm <A - Ay >>

This representation is assumed by the matrix operationsmented in this section except
as otherwise noted, and by the virtual machine model in géner

357

mmul t

Given a pair of lists of lists of floating point numbeis b) representing matrices, this
function returns a list of lists of floating point numbersmegenting their product, the
matrix c = ab. For anm x n matrixa and ann x p matrix b, the product is defined
as thenn x p matrix with
Cij = Z i
k=1

m nver se

Given a list of lists of floating point numbers representimgnax n matrix a, this
function returns a matrik satisfyingab = I if it exists, wherel is then x n identity
matrix. If no suchp exists, the result is unspecified. The identity matrix isroedias
that which had;; = 1 for i equal toj, and zero otherwise.

Computing the inverse of a matrix may be of pedagogical @stelout is less efficient for
solving systems of equations than the following functiohisTrule of thumb applies even
if a given matrix needs to be solved with many different vestand even if the inverse
can be computed at no cost (i.e., off line in advance).

nsol ve

Given a pair(a, b) representing an x n matrix and am x 1 matrix of floating point
numbers, respectively, this function returns a representaf ann x 1 matrix x

satisfyingax = b. Contrary to the usual representation of matrices as Ifdists, this
function representsandz as lists(by; . .. b,1) and(zy; ... 7).

The msolve function calls the correspondirigpack routine if available, but other-
wise solves the system in virtual code using a Gauss-Joddamation procedure with
pivoting.

np_sol ve

This function has the same calling conventionsre®lve , but uses arbitrary preci-
sion numbers impfr format (type%B.

spar so

This function solves the matrix equatiam = b for x given the paifa, b) wherea has
a sparse matrix representation, andndb are represented as lists;; ... z,;) and
(b11...by1). The sparse matrix representation is the list of tuplés- 1, j — 1), a;;)
wherein only the non-zero values @f are given, and and; are natural numbers.

358

np_spar so
This function has the same calling conventionsparso but solves systems using
arbitrary precision numbers mpfr format.

The sparso function will use theumf library for solving sparse systems efficiently if

the virtual machine is configured with an interface to it. ¢ftnthe system is converted

to the dense representation and solvedrsplve . There is no native code sparse ma-
trix solver formpfr numbers, sanp_sparso always converts its input to dense matrix
representations and solves itimp_solve .

16.2 Continuous linear programming

There are two linear programming solvers in this librarythwone closely following the
calling convention of the virtual machine interfacegtpk andlpsolve , and the other
allowing a higher level, symbolic specification of the prl The latter employs a record
data structure as documented below.

16.2.1 Data structures

The linear programming problem in standard form is that afifig ann x 1 matrix X to
minimize a costC' X for a knownl x n matrix C', subject to the constraints thatX = B
for given matricesA and B, and all.X;; > 0.

Lettingz; = X1, b; = By, ¢; = Cy;, andz = > | ¢;z; the constraintdX = B is
equivalent to a system of linear equations.

i Aijxj = bl
j=1

In practice, most4;; values are zero. A more user-friendly formulation of thislgem
than the standard form would admit the following features.

e constraints on the variables having arbitrary upper and lower bounds

L <z <uwy

e costs allowed to depend on magnitudes
=1

e an assignment of symbolic namesitoalues(s; : x,...s, : x,)

e the system of equations encoded as a list of pairs of the forr;, s;) ...), b;) with
only the non-zero coefficients;; enumerated

359

A record data structure is used to encode the problem spmficin the latter form,
making it suitable for automatic conversion to the standainah.

| i near _system

This function is the mnemonic for a record having the follogvifield identifiers,
which specifies a linear programming problem in terms of tb&aton introduced
above, with numeric values represented as floating pointoeusnands; values as
character strings.

e lower _bounds —the set of assignmen{s;:l;...s,:l,}

upper _bounds - the set of assignmen{s; :u; ... s, u,}

costs —the set of assignmen{s;:c; ...s,:¢,}

taxes - the setof assignmen{s; :t;...s,:t,}

equations —the se{({(A4;;,s;)...},b;) ...}
e derivations — afield used internally by the library

The members of these sets may of course be given in any ordey.uAspecified
bounds are treated as unconstrained. All costs must beigodmit taxes are optional.

For performance reasons, this record structure perfornvslnation or automatic initial-
ization, so the user is required to construct it consisyentl

16.2.2 Functions

The following functions are used in solving linear programgnproblems.

standard_form

This function takes a record of typelinear _system and transforms it to the
standard from by defining supplementary variables and ensas needed.

e All lower _bounds are transformed to zero.
e All upper _bounds are transformed to infinity.
e Thetaxes are transformed toosts .

Information allowing a solution of the original specifiaati to be inferred from a
solution of the transformed system is stored indlkevations field.

Thestandard_form function doesn’t need to be used explicitly unless thesestoa-
mations are of some independent interest, because it ikgdvautomatically by the next
function.

360

sol uti on

Given a record of type linear _system specifying a linear programming prob-
lem, this function returns a list of assignmefis: z;, ...), where eacls; is a sym-
bolic name for a variable obtained from thquations field, andz; is a floating
point number giving the optimum value of the variable. Valés equal to zero are
omitted. If no feasible solution exists, the empty list iriraed.

| p_sol ver

This function solves linear programming problems by a lovelehigh performance
interface. The input to the function is a linear programmupngblem specified by a

triple
({(c1..oen), (1 —=1,7 = 1), Ajj) ...), (b1 ... b))

wherec; andb; are as documented in Section 16.2.1, and the remaining pteaia
the sparse matrix representation of the constraint matis explained in relation to
thesparso function on page 358. The result is a list of p&ifs— 1, z;) . ..), giving
the optimum value of each non-zero variable with its indembared from zero as a
natural number. If no feasible solution exists, the emstyid returned.

Thelp_solver function is called by thesolution function, and it calls one of the
glpk orlpsolve functions to do the real work. If the virtual machine is nobhfigured
with interfaces to these libraries, it falls through to ttéplacement function.

repl acenent _| p_sol ver

This function has identical semantics and calling conwet#tito thelp _solver
function documented above.

The replacement function is implemented purely in virtua e without callingpsolve

or glpk and can serve as a correct reference implementation of ar lpregramming
solver for testing purposes, but it is too slow for productise, mainly because it exhaus-
tively samples every vertex of the convex hull.

16.3 Integer programming

Integer programming problems are an additionally conséiform of linear program-
ming problems in which the solutions are required to take integer values. If some but not
all z; are required to be integers, then the problem is called adniiteger programming
problem.

Current versions of the virtual machine can be configuredh it interface to the
Ipsolve library providing for the solution of integer and mixed igé¥ programming

361

problems, and this capability is accessible in Ursala by efapelin library! An inte-
ger programming problem is indicated by setting either dhlod these to additional fields
in thelinear _system data structure.

e integers — an optional set of symbolic nam¢s, . .. s;} identifying the integer
variables

e binaries — an optional set of symbolic namgs, . .. s; } identifying the binary
variables

The binary variables not only are integers but are consthio take values of O or 1.
These sets must be subsets of the names of variables agpieatfie equations field.
A data structure with these fields initialized may be passetihé solution function
as usual, and the solution, if found, will meet these conggalthough it will still use
the floating point numeric representation. Solution of dager programming problem is
considerably more time consuming than a comparable canisaase.

There is no replacement function for mixed integer programgnproblems, but there
is a lower level, higher performance interface suitabledpplications in which the the
standard form of the system is known.

m p_sol ver

This function solves linear programming problems givemadr system as input in
the form

(((bvg) (o)) der e oen)y (= 1,5 — 1), Agg) ..), by .. b))

where natural numberis, are indices of binary variables;;, are indices of integer
variables¢; andb; are as documented in Section 16.2.1, and the remaining pégam
is the sparse matrix representation of the constraint mdtas explained in relation
to thesparso function on page 358. The result is a list of pajs — 1, z;) ...),
giving the optimum value of each non-zero variable with itdex numbered from
zero as a natural number. If no feasible solution existsethpty list is returned.

1The integer programming interfacelsolve ~ was introduced in Avram version 0.12.0, and remains baakwampatible with
earlier code. The features described in this section wérednced in Ursala version 0.7.0.

362

I don't set a fancy table, but my kitchen’s awful homey.
Anthony Perkins irPsycho

Tables

This chapter documents a small selection of functions oedrio facilitate the construc-
tion of tables of numerical data with publication qualitpégetting. These functions are
particularly useful for tables with hierarchical headirtgat might be more difficult to

typeset manually, and for tables whose contents come frenoditput of an application
developed in Ursala.

The tables are generated 48K code fragments meant to be included in a document or
presentation. They require the document that includes toamse theAIEX booktabs
package. The functions are defined in thle library.

17.1 Short tables

A table is viewed as having two parts, which are the headingslze body.

e The body is a list of columns, wherein each column is eithestaf character strings
or a list of floating point numbers.

e The headings are a list of trees of lists of strings (194 TL).

— Each non-terminal node in a tree is a collective heading Herdubheadings
below it.

— Each terminal node is a heading for an individual column.

— The total number of terminal nodes in the list of trees is étuéhe number of
columns.

The character strings in the table headings or columns cataicoany valid ATEX code.
Its validity is the user’s responsibility.

363

t abl e

This function takes a natural numberas an argument, and returns a function that
generatesAIeX code for atabular environment from an inputh,b) of type
%sLTLeLsLULX containing heading& and a bodyb as described above. Any
columns in the body containing floating point numbers ares$gp in fixed decimal
format withn decimal places.

A simple but complete example of a table constructed by timgtion is shown in List-
ing 17.1. In practice, the table contents are more likelyetgénerated algorithmically than
written manually in the source text, as the argument tddbk function can be any ex-
pression evaluated at compile time. The example is othemewlistic insofar as it demon-
strates the typical way in which a table is written to a file bg#output dot’tex’
directive with the identity function as a formatter. An aftative would be the usage

#output dot'tex’ table3

atable = (headings,body)

with further variations possible. In any case, the table nheyn be incorporated into a
document by a code fragment such as the following.

\usepackage{booktabs}
\begin{document}

\begin{table}

\begin{center}

\input{atable}

\end{center}

\caption{the tables are turning}
\label{alabel}

\end{table}

This code fragment is based on the assumption that the usgrdsto have the table
centered in a floating table environment, with a caption atetl, but these choices are
all at the user’s option. Only the actuabular environment is stored in the file. Also
note that the file name is the same as the identifier used irthreeswith thetex suffix
appended, but the suffix is implicit in th&lEX code. See Section 7.4.4 on page 264 for
more information about theoutput directive.

The result from Listing 17.1 is shown in Table 17.1. As thersgbe shows, headings
with multiple strings are typeset on multiple lines, all Hegs are vertically centered, and
all columns are right justified.

A more complicated example of table heading specificatisrshown on page 49 and
the result displayed in Table 1.1. These headings are gedeabyorithmically by the user
application in Listing 1.11.

364

Listing 17.1 simple example of theable function usage

#import std
#import nat
#import tbl

headings = # a list of trees of lists of strings

<
<’name’>": <>, # table heading
<'foo’>": <
<'bar’,/’baz’>": <>, # subheadings
<rank’>" <>>>

body = # list of lists of either strings or numbers
<
<X','y',z’>, # each list is a column
<1.,2.,.3.>,
<4.5.,6.>>
#output dot'tex’ "&

atable = table3(headings,body)

foo

bar
baz

x 1.000 4.000
y 2.000 5.000
z 3.000 6.000

name rank

Table 17.1: table generated by Listing 17.1

365

Listing 17.2 usage of theectioned _table function

#import std
#import nat
#import tbl
headings = # a list of trees of lists of strings
<
<name’>"; <>,
<foo’>": <<'bar’,’baz'>"; <><rank’>": <>>>
body = # a list of lists of columns
<
<<'U,'V','W'><7.,8.,9.>,<0.,1.,2.>>,
<<X\y',z2'><1.,2.,3.>,<4.,5.,6.>>>

#output dot'tex’ "&

setab = sectioned_table3(headings,body)

secti oned_t abl e

This function takes a natural numbeto a function that takes a pdik, b) to a ETgX
code fragment for a table with headingsand bodyb. The bodyb is a list of lists

of columns (typeoelLsLULL) with each list of columns to be typeset in a separate
section delimited by horizontal rules. Floating point nwargoin the body are typeset
in fixed decimal format withn places.

Note that although the same headings can be used for a sattiale as for a table, the
body of the latter is of a different type. An example of Seetioned_table function
is shown in Listing 17.2, and the table it generates is showirable 17.2, with horizontal
rules serving to separate the table sections.

There is no automatic provision for vertical rules, becatle author of theAlEX
booktabs package considers vertical rules bad typographic desigabies, but users
may elect to customize the output table manually or by any pagessor of their design.

17.2 Long tables

A couple of functions documented in this section are useiutbnstructing tables that are
too long to fit on a page. These require the document thatdeslthem to use théTeX
longtable package.

The general approach is to construct tables normally by dtfeedunctions described
previously fable or sectioned_table), and then to transform the result to a long

366

foo

bar
name rank
baz

u 7.000 0.000
v 8.000 1.000
w 9.000 2.000
X
y
z

1.000 4.000
2.000 5.000
3.000 6.000

Table 17.2: the table generated by Listing 17.2

table format by way of a post processing operation. [bingtable environment com-
bines aspects of the ordinatgble andtabular environments, precluding postpone-
ment of the choice of a caption and label as in previous exasn@ind hence requiring
calling conventions such as the following.

el ongati on

Given a character string containifggX code specifying a title, this function returns
a function that transforms a giveabular environment in a list of strings to the
correspondindongtable environment having that title.

A typical usage of this function would be in an expressiorhefform

elongation (title) ([sectioned_]table n) ((heading$, (body)

| abel

Given a character string specifying a label, this functietums a function that trans-
forms a giverlongtable environment in a list of strings to langtable envi-
ronment having that label.

A typical usage of this function would be in an expressiorheffiorm
label (name elongation (title) ([sectioned_]table n) ((heading$, (body))

The table thus obtained can be cross referenced in the dotloy¢he usualAIEX label
features such asef{ (name} and\pageref{ (name}.

17.3 Ultillities

A further couple of functions described in this section mayhelpful in preparing the
contents of a table.

367

Listing 17.3 some uses of thewrap function

#import std
#import nat
#import tbl

#output dot'tex’ tableO

chab = # ISO codes for upper and lower case letters

vwrap5(
"&INCNVS <'letter’,’code’>,

<"&NCS,"&hS+ %nP *+ "&IS> "&riK10\letters num characters)

pows = # first seven powers of numbers 1 to 7

vwrap7(
"&INCNVS <'n’,'m’,'$n"m$’>,
"&hSS %nP <."&IS,"&rS,power

*> "&ttKO iota 8)

letter code letter code

letter code letter code

letter code

A 65 L 76
B 66 M 77
Cc 67 N 78
D 68 o 79
E 69 P 80
F 70 Q 81
G 71 R 82
H 72 S 83
| 73 T 84

J 74 Uu 85
K 75 VvV 86

W 87
X 88
Y 89
Z 90
a 97
b 98
c 99
d 100
e 101
f 102
g 103

104
105
106
107
108
109
110
111
112
113
114

— Q0T o353 _~——7

N< X E<E&E "0

115
116
117
118
119
120
121
122

Table 17.3: character table generated by Listing 17.3

3
3
3
3
3
3
3
3

n m n n n n n moon n'm

1 1 1 2 2 3 3 4 4 5 5 6 6 7 7

1 2 1 2 4 3 9 4 16 5 25 6 36 7 49

1 3 1 2 8 3 27 4 64 5 125 6 216 7 343

1 4 1 2 16 3 81 4 256 5 625 6 1296 7 2401
1 5 1 2 32 3 243 4 1024 5 3125 6 7776 7 16807
1 6 1 2 64 3 729 4 4096 5 15625 6 46656 7 117649
1 7 1 2 128 3 2187 4 16384 5 78125 6 279936 7 823543

Table 17.4: table of powers generated by Listing 17.3

368

VW ap

This function takes a natural numberas an argument, and returns a function
that transforms the headings and body of a table given asra(pdi) of type
%sLTLeLsLULX to a result of the same type. The transformation partitides t
columns vertically inton approximately equal parts and places them side by side,
with the headings adjusted accordingly. Repeated columtigiresult are deleted.

If a table is narrow enough that most of the space beside ifp@ye is wasted, thevrap
function allows a more space efficient alternative layouvéayenerated with no manual
revisions to the heading and column specifications required

Two examples of therwrap function are shown in Listing 17.3, with the resulting
tables displayed in Table 17.3 and Table 17.4. Withoutvieap function, both tables
would have only two or three narrow columns and be too long nfthe page.

Table 17.4 demonstrates the effect of deleting repeatado® by thevwrap func-
tion. Because the same valuesmofare applicable across the table, the columnrfois
displayed only once. A table made from the original body isting 17.3 would have
included the repeated values.

scientific_notation

This function takes a character string as an argument aedtdethether it is a syntac-
tically valid decimal number in exponential notation. Iftnthe argument is returned
as the result. In the alternative, the result is*BeL code fragment to typeset the
number as a product of the mantissa and a power of ten.

This function can be demonstrated as follows.

$ fun tbl --m="scientific_notation '6.022e+23™ --c %s
'6.022%\times 107{23}%’

The result appears as 6.02223 in a typeset document.

The scientific_notation function need not be invoked explicitly to get this
effect in a table, because it applies automatically to arlyroa whose entries are char-
acter strings in exponential format. Floating point nunshean be converted to strings in
exponential format by thprintf function as explained in Section 13.9.

369

The core network of the grid must be accessed.
The Keymaker inThe Matrix Reloaded

Lattices

Data of typet%Gusing the grid type constructor explained in Chapter 3sapported by

a variety of operations defined in the library and documented in this chapter. These
include basic construction and deconstruction functidesators analogous to some of the
usual operations on lists, and higher order functions implating the induction patterns
that are the main reason for using lattices.

18.1 Constructors

The first thing necessary for using a lattice is to construet, avhich can be done easily
by thegrid function.

grid
This function takes a pair with a list of lists of vertices be teft and a list of adjacency

relations on the right(((voo - - - Vong) - - - (Vim0 - - - U,), (€0 - - - €m—1)). It returns a
lattice populated by the vertices and connected accorditigetadjacency relations.

e Thei-th adjacency relation; is a function taking pairs of verticg®;;, vi1,x)
as input, with the left vertex from theth list and the right vertex from the
succeeding one.

e A connection is made between any pair of verti¢es, v,) for which the
corresponding relatios; returns a non-empty value.

e Any vertex not reachable by some sequence of connectiogmating from at
least one vertex,; in the first list is omitted from the output lattice.

370

Thegrid function allows the input list of adjacency relations to hentated if subsequent
relations are the same as the last one in the list.

A few small examples of lattices constructed by this funttshould clarify the de-
scription. In these examples, the verticies are the chenslat , ‘b , ‘c and‘d , expressed
in strings rather than lists for brevity. The first examplewh a fully connected lattice,
which is obtained by using a (truncated) list of adjacendgtiens that are always true.

$ fun lat --m="grid/<’a’,’ab’,’abc’,’abcd’> <&!>" --c %cG

<
[0:0: ‘@™ <1:0,1:1>],
[
1:1: '‘b": <2:0,2:1,2:2>,
1:0: 'a": <2:0,2:1,2:2>],
[
2:2: 'c”: <2:0,2:1,2:2,2:3>,
2:1: ‘b <2:0,2:1,2:2,2:3>,
2:0: ‘a" <2:0,2:1,2:2,2:3>],
[
2:3: 'd": <>,
2:2: 'c”: <>,
2:1: ‘b <>,

2:0: a <>>

This example shows a lattice with each letter connectedtortlyose that don't precede it
in the alphabet.

$ fun lat --m="grid/<’a’,’ab’,’abc’,’abcd’> <llegq>" --c % cG
<
[0:0: a": <1:0,1:1>],
[
1:1: ‘b <2:1,2:2>,
1.0: ‘a": <2:0,2:1,2:2>],
[
2:2: ‘¢ <2:2,2:3>,
2:1: ‘b <2:1,2:2,2:3>,
2:0: ‘a": <2:0,2:1,2:2,2:3>],
[
2:3: 'd": <>,
2:2: 'c”: <>,
2:1: ‘b <>,

2:0: ‘a”: <>)>

The next example shows the degenerate case of a latticeettay using equality as the
adjacency relation, resulting in most letters being urtteable and therefore omitted.

1Remember to executet +H before trying this example to suppress interpretation efetkclamation point by the shell.

371

$ fun lat --m="grid/<’a’,’ab’,’abc’,’abcd’> <==>" --c %cG
<

[0:0: ‘a™: <0:0>],

[0:0: ‘a™: <0:0>],

[0:0: ‘a™: <0:0>],

[0:0: ‘@™ <>]>

Finally, we have an example of a lattice generated with adiraig pattern chosen at
random. Each vertex hassa% probability of being connected to each vertex in the next
level.

$ fun lat --m="grid/<’a’,’ab’,’abc’,’abcd’> <50%™>" --c % cG
<

[0:0: a": <1:0,1:1>],

[1:1: ‘b <1:0,1:1>,1:0: ‘@™ <1:0>],

[1:1: ‘¢ <2:1,2:2>,1:0: ‘a": <2:0>],

[2:2: ‘d™: <>,2:1: ‘¢ <>,2:0: b <>)>

Along with constructing a lattice goes the need to deconsbme in order to access its
components. Several functions for this purpose follow.

| evel s

Given a lattice of the forngrid(< vy>: v, €), (i.e., with a unique root vertey)
this function returns the list of lists of verticesy,>: v, subject to the removal of
unreachable vertices.

| nodes
This function is equivalent t6&L+ levels , and useful for making a list of the
nodes in a lattice without regard for their levels.

These functions can be demonstrated as follows.

$ fun lat --m="levels grid/<’a’;ab’,’abc’> <&!>" --c %sL
<lal’labl1labcl>

$ fun lat --m="Inodes grid/<’a’,’ab’,’abc’> <&!>" --c %s
'aababc’

A unigue root vertex is a needed for these algorithms, bagtrégstriction is not severe in
practice because a root normally can be attached to a ldttieeessary.

edges

Given a lattice with a unique root vertex, this function resuthe list of lists of ad-
dresses for the vertices by levels.

372

This function may be useful in user-definad hoclattice deconstruction functions. Here
is an example.

$ fun lat --m="edges grid/<’a’,’ab’,’abc’> <&!>" --c %all
<<0:0>,<1:0,1:1>,<2:0,2:1,2:2>>

sever

Given a lattice of type%G with a unique root vertex, this function returns a lattice
of type t%G @y substituting each vertex with the sub-lattice containing only the
vertices reachable from while preserving their adjacency relation.

The following example demonstrates this function.

$ fun lat --m="sever grid/<’a’,/ab’,’abc’> <&!>" --c %cGG
<
[
0:0: ":<1:.0,1:1> <
[0:0: ‘a™: <1:0,1:1>],
[
1:1: '‘b™: <2:0,2:1,2:2>,
1:0: ‘a™ <2:0,2:1,2:2>],
[2:2: ‘c": <>,2:1: ‘b7 <>,2:0: ‘a": <>]>],

1:1: ":<2:0,2:1,2:2> <

[0:0: 'b™: <2:0,2:1,2:2>],

[2:2: ' <>,2:1: D" <>,2:0: ‘a": <>)>,
1:0: ":<2:0,2:1,2:2> <

[0:0: ‘@": <2:0,2:1,2:2>],

[2:2: ‘c”: <>,2:1: ‘b <>,2:0: ‘a": <>)>],

2:2: (<[0:0: ‘c: <>]>) <>,

2:1: (<[0:0: b <>]>)7 <>,
2:0: (<[0:0: ‘@™ <>]>) <>]>

18.2 Combinators

The functions documented in this section are analoguesiins and combinators nor-
mally associated with lists, such as maps, folds, zips, @stdlelitions. All of them require
lattices with a unique root vertex.

I di s

Given a pair(x, g) whereg is a lattice, this function returns a lattice derived frgm
by substituting each vertexin g with the pair(z, v).

373

This function is analogous to distribution on lists, and bardemonstrated as follows.
$ fun lat -m="Idis/1 grid/<’a’,/ab’;’abc’> <&!>" -c %ncXG
<
[0:0: (1,'a)": <1:0,1:1>],
[
1.1: (1,'b)": <2:0,2:1,2:2>,
1.0: (1,'a)": <2:0,2:1,2:2>],

2:2: (L,c): <>,
2:1: (1,'b)": <>,
2:0: (1,/a): <>]>

| di z

This function takes a paiiz, g) whereg is a lattice having a unique root vertex and
x is a list having a length equal to the number of levelg.inThe returned value is
a lattice derived frony by substituting each vertexon thei-th level with the pair
(x;,v), wherez; is thei-th item of z.

A simple demonstration of this function is the following.
$ fun lat --m="ldiz/'xy’ grid/<’a’,’ab’> <&!>" --c %cWG
<

[0:0: ('x,’a)”: <1:0,1:1>],

[1:1: (y,'b)": <>,1:0: (‘y,'a)": <>]>

| map

Given a functionf, this function returns a function that takes a latticas input, and
returns a lattice derived fromby substituting every vertexin g with f(v).

Thelmap combinator on lattices is analogous to thepcombinator on lists. This exam-
ple shows thémap of a function that duplicates its argument.
$ fun lat --m="(Imap "&iiX) grid/<’a’;/ab’> <&!>" --c %cWG
<
[0:0: (‘a,'a)™: <1:0,1:1>],
[1:1: ('b,'D)": <>,1:0: (‘a,'a)™: <>]>

| zip

Given a pair of lattice$a, b) with unique roots and identical branching patterns, this
function returns a lattice in which every vertex is the pair(u, w) with « being the
vertex at the corresponding positiondrandw being the vertex at the corresponding
position inb.

374

This function is comparable the tlz@ function on lists. The following example shows
a lattice zipped to a copy of itself.

$ fun lat --m="Izip ("&iiX grid/<’a’,/ab’> <&!>)" --c %cWG
<

[0:0: (‘a,'a)™: <1:0,1:1>],

[1:1: ('b,'D)": <>,1:0: (‘a,'a)™: <>]>

This operation has the same effect as the previous exampbtaubdmap “&iiX is
equivalent tdzip+ "&iiX

| fol d

Given a functionf, this function constructs a function that traverses adatback-
wards toward the root, evaluatinfy at each vertexo by applying it to the pair
(v,{(yo - --yn)), Where they values are the outputs frorfiobtained previously when
visiting the descendents of The overall result is that which is obtained when visitng
the root.

Thelfold combinator is analogous to the tree folding operaterexplained in Sec-
tion 6.8.2 on page 219, but it operates on lattices rather titeges. The following simple
example shows how tH&ld combinator of the tree constructor converts a lattice into
an ordinary tree (with an exponential increase in the nurobeertices).

$ fun lat --m="[fold(":) grid/<’a’;ab’,’abc’> <&!>" -c %c T
‘a” <

‘a’ <ar <>,b <> <>
‘b <a <>, b <> <o>>

A more practical example of thiéold combinator is shown in Listing 1.5 with some
commentary on page 32.

18.3 Induction patterns

The benefit of working with a lattice is in effecting a compida by way of one or more
of the transformations documented in this section. Thdsavaln efficient, systematic
pattern of traversal through a lattice, visiting a user aefifunction on each vertex, and
allowing it to depend on the results obtained from neighimpnrertices. Directions of
traversal can be forward, backward, sideways, or a combimatrhese operations are also
composable because the inputs and outputs are latticdcasak.

Many of the algorithms concerning lattices have analogmesttaversal algorithms. As
the previous example demonstrates, a lattice of t§p@an be converted to a tree of type
t%Twithout any loss of information, and operating on the tre@ildde more convenient
if it were not exponentially more expensive, because theeisra simpler and more abstract
representation. The combinators documented in this settierefore attempt to present

375

Listing 18.1 lattice transformation examples

#import std
#import nat
#import lat
X = grid/<’a’,’bc’,’def'ghij’> <&!>

xpress = bwi /&l "&rdS; "&i&& :/'(+ --')'+ mat’,

paths fwi “rIrDIShiX2INXQ\V'&rv "&I?\"&rdNCNC “&rdPILPD rINCTS
roll = swi "HV"&r -$+ "&lizyCX
neighbors =

fswi "\"&rdvDIS /&Il “T(
"&IINCC+ "&rilK16rSPirK16ISPXNNXQ+ ~“&rdPlrytp2X,
"&rvdSNC)

an interface to the user application whereby the latticeeappas a tree as far as possible.
In particular, it is never necessary for the application@acbncerned explicitly with the
address fields in a lattice.

bwi

A function of the formbwi f maps a lattice: of type t%Go0 an isomorphic lattice
y of type u%G Each vertexo in y is given by f (v, (2. .. z,)), wherev is the corre-
sponding vertex i and thez values are trees (of typ€oT) populated by previous
applications off for the vertices reachable from The root ofz; is the value off
computed for the:-th neighboring vertex referenced by the adjacency list of

Thebwi function is mnemonic for “backward induction”, because ¥eetiices most dis-
tant from the root are visited first. In this regard it is sianito thelfold function, but
the argumenj follows a different calling convention allowing it directeess to all rel-
evant previously computed results rather than just thoseceésted with the top level of
descendents. The precise relationship between these ®vatmms is summarized by the
following equivalence.

(bwi f) z = (Imap "&l+ Ifold "\"&v f) sever «x

However, it would be very inefficient to implement the/i function this way.

An example of backward induction is shown in tkgress function in Listing 18.1.
This function is purely for illustrative purposes, attemgtto depict the chain of functional
dependence of each level on the succeeding ones in a backwaidion algorithm. The
argument to thé&wi combinator is the function

Cr&l C&rdS; "&i&& :/f(+ --')’+ mat’,

which is designed to operate on an argument of the farniz, . .. z,,)), for a character

376

v and a list of trees of strings;. It returns a single character string by flattening and
parenthesizing the roots of the trees and inserting theacteaw at the head. The subtrees
of z; are ignored. With Listing 18.1 stored in a file naniad.fun | this function can be
demonstrated as follows.

$ fun lat lax -m="xpress grid/<’a’,’bc’,’def’> <&!>" -¢c %sG

<
[0:0: 'a(b(d,e,f),c(d,e,f)": <1:0,1:1>],
[
1.1: 'c(d,e,f)": <2:0,2:1,2:2>,
1:0: ’'b(d,e,f)”: <2:0,2:1,2:2>],
[2:2: 7 <>,2:1: ' <>,2:0: 'd”: <>)>
f wi

A function of the formfwi f transforms a lattice: of type {%Gto an isomorphic
latticey of type u%GTo computey, the latticer is traversed beginning at the root.

e For each vertex in z, the sub-lattice of reachable vertices frons constructed
and converted to a treeof typet%T

e The functionf is applied to the paif:, z), wherei is a list of inheritances com-
puted from previous evaluations §f When visiting the root nodé s the empty
list.

e The functionf returns a pai(w, b) wherew becomes the corresponding vertex
to v in the output latticey, andb is a list of bequests.

— The number of bequests in(i.e., its length) must be equal to the number
of descendents of (i.e., the length of&v z) or else an exception is raised
with a diagnostic message dfdd forward inducer

— The bequests from each ancestor of each descenderdrefcollected au-
tomatically into the inheritances to be passed tahen the descendent is
visited.

The example of forward induction in Listing 18.1 demongsathe general form of an
algorithm to compute all possible paths from the root to eastex in a lattice. This type
of problem might occur in practice for valuing path depende&rancial derivatives. The
argument to théwi combinator

“rirDIShiX2INXQV'&rv "&I?\"&rdNCNC “&rdPILPDrINCTS

takes an argumertt, z) in which z is tree of characters derived from the input lattice,
and: is a list of lists of paths, each being inherited from a ddfarancestor. If is
empty, the list of the singleton list of the root efis constructed by&rdNCNC, but
otherwise,: is flattened to a list of paths and the rootofs appended to each path by

377

"&rdPILPDrINCTS . The pair returned by this functianw, b) has a copy of this result
asw, and a list of copies of it i, with one for each descendentof

The paths function using this forward induction algorithm in Listiri8.1 can be
demonstrated as follows.

$ fun lat lax --m="paths x" --c %sLG
<
[0:0: <a’>": <1:0,1:1>],
[
1:1: <ac’™>": <2:0,2:1,2:2>,
1:0: <ab’>": <2:0,2:1,2:2>],

2:2: <abf/acf>": <2:0,2:1,2:2,2:3>,
2:1: <'abe’’ace™>": <2:0,2:1,2:2,2:3>,
2:0: <abd’yacd>": <2:0,2:1,2:2,2:3>],

2:3: <abdj',’acdj,’abej,’'acej', abf]’,’acfj’>": <> ,
2:2: <'abdi’,;’acdi’,’abei’,’acei’,’abfi’,’acfi’>"; <> ,
2:1: <abdh’’acdh’,’abeh’,’aceh’,’abfh’,’acfh’>": <> ,
2:0: <’abdg’,’acdg’,’abeg’,’aceg’,’abfg’, ’acfg’>": <> |

As this example suggests, some pruning may be required atigedo limit the inevitable
combinatorial explosion inherent in computing all possipaths within a larger lattice.

S
A function of the formswi f takes a latticer of type t%Gas input, and returns an

isomorphic lattice; of typeu%GEach vertexw in y is given byf (s, v) wherev is the
corresponding vertex im, ands is the ordered list of vertices on the levelof

Theswi combinator is mnemonic for “sideways induction”. An examplith the func-
tion "H\"&r -$+ "&lizyCX shown in Listing 18.1 rolls each level of the lattice by
constructing a finite map$) from each vertex to its successor in the list of siblings.

$ fun lat lax --m="roll x" --c %cG
<
[0:0: ‘@™ <1:0,1:1>],
[
1:1: ‘b <2:0,2:1,2:2>,
1.0: ‘c”: <2:0,2:1,2:2>],

2:2: ‘e” <2:0,2:1,2:2,2:3>,
2:1: ‘d"; <2:0,2:1,2:2,2:3>,
2:.0: ' <2:0,2:1,2:2,2:3>],
2:3: 7 <>,

378

2:2: 'h™: <>,
2:1: 'g" <>,
2.0 7 <>)>

f swi

This combinator provides the most general form of inducpattern on lattices, al-
lowing functional dependence of each vertex on ancestatsiafings. Given a lattice
x of typet%Gthe functionfswi f returns an isomorphic lattiagof type u%G

e For each vertex in z, the sub-lattice of reachable vertices frons constructed
and converted to a treeof typet%T

e The functionf is applied to the tuplé(i, s), z), wherei is a list of inheritances
computed from previous evaluations fifands is the ordered list of vertices in
x on the level ofv. When visiting the root nodé,is the empty list.

e The functionf returns a paifw, b) wherew becomes the corresponding vertex
to v in the output latticey, andb is a list of bequests.

— The number of bequests in(i.e., its length) must be equal to the number
of descendents of (i.e., the length of&v z) or else an exception is raised
with a diagnostic message dfdd forward inducer ”

— The bequests from each ancestor of each descenderdrefcollected au-
tomatically into the inheritances to be passed twhen the descendent is
visited.

The example in Listing 18.1 shows how a lattice can be coatdlin which each vertex
stores a list of lists of neighboring verticés, u, [, d) with the ancestors, upper sibling,
lower sibling, and descendents of the corresponding vantthe input lattice.

$ fun lat lax --m="neighbors x" --c %sLG
<
[0:0: <”)",)"’bc’>": <1:0,1:1>],
[
1:1: <a’,”,’b’,’def>": <2:0,2:1,2:2>,
1:0: <a,'c,”,/def'>": <2:0,2:1,2:2>],

2:2: <'bc’,”/’e’,/ghij’>": <2:0,2:1,2:2,2:3>,
2:1: <bc’,/f/d, ghij>" <2:0,2:1,2:2,2:3>,
2:0: <bc’ye’,”,’ghij>": <2:0,2:1,2:2,2:3>],

2:3: <def,”)i",’>" <>,

2:2: <defj/’h’,">" <>,
2:1: <def,i,/’g,>" <>,
2:0: <'def,/h’,”,’>" <>]>

379

But then if we do not ever take time, how can we ever have
time?
The Merovingian inThe Matrix Reloaded

Time keeping

A small library of functions,stt , exists for the purpose of converting calendar times
between character strings and natural number represamgati

one_tine
the constant character stritigyi Mar 18 01:58:31 UTC 2005’

string_to_tine

This function takes a character string representing a timieraturns the correspond-
ing number of seconds since midnight, January 1, 1970, iggdeap seconds.

e Theinput formatis Thu, 31 May 2007 19:01:34 +0100 .

e The year must be 1970 or later.

e If the time zone offset is omitted, universal time is assumed

e The fields can be in any order provided they are separateddogramore spaces.
e Commas are treated as spaces.

e The day of the week is ignored and can be omitted.

e Time zone abbreviations such@#1Tare allowed but ignored.

e Month names must be three letters, and can be all upper covediricase, in
addition to the mixed case format shown.

380

time_to_string

This function takes a natural number of non-leap secona simdnight, January 1,
1970 and returns a character string expressing the comdsmpdate and time. The
output format is Thu May 31 17:50:01 UTC 2007 .

The following example shows the moments when POSIX time wasager of two.

$ fun stt --m="time_to_string * next31(double) 1" --s
Thu Jan 1 00:00:01 UTC 1970

Thu Jan 1 00:00:02 UTC 1970
Thu Jan 1 00:00:04 UTC 1970
Thu Jan 1 00:00:08 UTC 1970
Thu Jan 1 00:00:16 UTC 1970
Thu Jan 1 00:00:32 UTC 1970
Thu Jan 1 00:01:04 UTC 1970
Thu Jan 1 00:02:08 UTC 1970
Thu Jan 1 00:04:16 UTC 1970
Thu Jan 1 00:08:32 UTC 1970
Thu Jan 1 00:17:04 UTC 1970
Thu Jan 1 00:34:08 UTC 1970
Thu Jan 1 01:08:16 UTC 1970
Thu Jan 1 02:16:32 UTC 1970
Thu Jan 1 04:33:04 UTC 1970
Thu Jan 1 09:06:08 UTC 1970
Thu Jan 1 18:12:16 UTC 1970

Fri Jan 2 12:24:32 UTC 1970

Sun Jan 4 00:49:04 UTC 1970
Wed Jan 7 01:38:08 UTC 1970
Tue Jan 13 03:16:16 UTC 1970
Sun Jan 25 06:32:32 UTC 1970
Wed Feb 18 13:05:04 UTC 1970
Wed Apr 8 02:10:08 UTC 1970
Tue Jul 14 04:20:16 UTC 1970

Sun Jan 24 08:40:32 UTC 1971
Wed Feb 16 17:21:04 UTC 1972
Wed Apr 3 10:42:08 UTC 1974
Tue Jul 4 21:24:16 UTC 1978

Mon Jan 5 18:48:32 UTC 1987
Sat Jan 10 13:37:04 UTC 2004

381

| wish you could see what | see.
Neo inThe Matrix Revolutions

Data visualization

A library namedplo for plotting graphs of real valued functions along the lioé$ig-
ures 15.1 and 15.2 is documented in this chapter. Featwkeslalinear, logarithmic and
non-numeric scales, variable line colors and styles, ramyitrotation of axis labels, in-
clusion of ETpX code fragments as annotations, scatter plots, and pisedimiear plots.
More sophisticated curve fitting can be achieved by usirgliibrary in combination with
thefit library documented in Chapter 14.

The main advantages of this library are that it allows dasaalization to be readily
integrated with with numerical applications developed nsdla, and the results generated
in IATEX code will match the fonts of the document or presentationvinich they are
included. The intention is to achieve publication qualjtydsetting.

20.1 Functions

A plotis normally specified in its entirety by a record datasture which is then translated
as a unit toATpX code by the following functions.

pl ot

Given a record of type visualization , this function returns &TgX code frag-
ment as a list of character strings that will generate theifipd plot.

In order for a plot generated by this function to be typesea ifATeX document, the
document preamble must contain at least these lines.

\usepackage{pstricks}
\usepackage{pspicture}
\usepackage{rotating}

382

Listing 20.1 a nearly minimal example of a plot

#import std
#import plo

#output dot'tex’ plot
f =

visualization[
curves: <curve[points: <(0.,0.),(1.,1.),(2.,-1.),(3., 0.)>]>]

1.00

0.60

0.20

-0.20

-0.60

-1.00 T T T T
0.00 0.60 1.20 1.80 2.40 3.00

Figure 20.1: an unlabeled plot with default settings geteerfrom Listing 20.1

It is also recommended to include the command
\psset{linewidth=.5pt,arrowinset=0,arrowscale=1.1}

near the beginning of the document after tbegin{document} command.

An example demonstrating tipdot function is shown in Listing 20.1, and the result-
ing plot in Figure 20.1. In practice, the points in the plog anore likely to be algorith-
mically generated than enumerated as shown, but it is ofiprogriate to use thplot
function as a formatting function in &output directive. Doing so allows th&TgX file
to be generated as follows.

$ fun plo plex.fun
fun: writing ‘f.tex’

whereplex.fun is the name of the file containing Listing 20.1. The plot stione
f.tex can then be used in another document by Ay .commandinput{f} . The
visualization record structure used in this example is explained in thé sestion.

383

| at ex_document

This function wraps a given &TX code fragment in some additional code to allow
it to be processed as a free standing document.

An attempt to typeset the output from tht function by the shell command such as
$ latex f.tex

will be unsuccessful because’@gX document requires some additional front matter that
is not part of the output from th@ot function. Thelatex_document function solves
this problem by incorporating the commands mentioned alowe output, among others.
A typical usages would be

f = latex_document plot visualization| .

or similar variations involving thétoutput directive. The result can be typeset on its
own but not included into another document. This functionssful mainly for testing,
because in practice the code for a plot is more likely to briged into another document.

20.2 Data structures

A basic vocabulary of useful concepts for describing a @@t follows.

e A planar cartesian coordinate system denominated in powitiere 1 inch= 72
points, fixes any location with respect to the plot

e The rectangular region of the plane bounded by the extrerteeaxes in the plot is
known as the viewport.

— The dimensions of the viewport afe,, v,).
— The lower left corner is at coordinatéd 0).

e A somewhat larger rectangular region sufficient to enclbeesiewport and the labels
of the axes is known as the bounding box.

— Dimensions of the bounding box aft,, b,).
— The lower left corner is at coordinatés;, ¢,).

e Some additional dimensions in the plot are

— the space at the top,= b, + ¢, — v,
— the space on the righty = b, + ¢, — v,

e Numerical values relevant to the functions being plottedsmaled and translated to
this coordinate system.

384

vi sual i zati on

This function is the mnemonic for a record used to specifyo folr theplot func-
tion. The fields in the record have these interpretationenms of the above notation.
All numbers are in units of points.

e viewport —the pair of floating point numbefs,, v,)

picture _frame - the pair of pairg(b,,b,), (cz, c))

headroom — space above the viewpoft= b, + ¢, — v,

margin — space to the right of the viewport, = b, + ¢, — v,

abscissa —arecord of type axis that describes the horizontal axis

pegaxis —arecord of type axis describing a second independent axis

ordinates — a list of one or two records describing the vertical axes

curves - alist of records of type curve specifying the data to be plotted
e boxed — a boolean value causing the bounding box to be displayed whe

In a planar plot, there is no need for a second independesit@xthepegaxis field is ig-
nored by theplot function. The data structures for axes and curves are exqalahortly,
but some further notes on the numeric dimensions invtbealization record are
appropriate.

e If no value is specified for theeadroom , a default of 25 points is used.

¢ If no value is specified for thenargin , a default value of 10 points is used if there
is one vertical axis, and 30 points is used of there are two.

e Default values ob, andb, are 300 and 200 points.
¢ Default values ot andc, are both—32.5 points.
e Theviewport is always determined automatically by the other dimensions

The default values of andm are usually adequate, but they are only approximate.

Their optimum values depend on the width or height of the teed to label the axes. If
the margins are too small or too large, the plot may be impippesitioned on the page.
In such cases, the only remedy is to use Ibloged field to display the bounding box
explicitly, and to adjust the margins manually by trial amcbe until the outer extremes
of the labels coincide with its boundaries. After the righthdnsions are determined, the
bounding box can be hidden for the final version.

The functions depicted in a plot can be real valued functafreal variables, or they
can depend on discrete variables of unspecified types mpszbas series of character
strings. The data structure for an axis accommodates eitteznative.

385

axi s
This function is the mnemonic for a record describing an,axisch is used in several
fields of thevisualization record. This type of record has the following fields.

e variable — a character string containingdgX code fragment for the main
label of the axis, usually the name of a variable

e alias — a pair of floating point numberglz, dy) describing the displacement
in points of thevariable from its default position

e hats —alist of character strings or floating point numbers to lspldiyed peri-
odically along the axis

e rotation — the counter-clockwise angular displacement measureddgrees
whereby thehats are rotated from a horizontal orientation

e hatches - alist of character strings or floating point numbers deieimg the
coordinate transformation

e intercept —alist containing a single floating point number or chanastieng
identifying a point where the axis crosses an orthogonal axi

e placer - function that maps any value along the continuum or discsptice
associated with the axis to a floating point number in theeang. 1.

The coordinate transformation implied by tpkacer normally doesn’t have to be indi-
cated explicitly, because it is inferred automaticallynfrthehatches field.

e If the hatches field consists of a sequence of non-numeric valisgs. . s,,), then
theplacer function is that which maps; to i /n.

e Ifthehatches are a sequence of floating point numbers. . . x,,) for whichz;, | —
x; IS constant within a small tolerance, then tilacer function maps any given

to (z — zo)/(zn — o).

e If the hatches are a sequence of positive floating point numbess. . . z,,) for
which z;,1 /z; is constant within a small tolerance, thiacer function maps any
givenz to (Inz — Inxg)/(Inx,, — Inxy).

e For other sequences of floating point numberspiaeer function performs linear
interpolation.

However, if a value for thelacer field is specified by the user, it is employed in the
coordinate transformation. Thaxis record has several other automatic initialization
features.

e Zero values are inferred for unspecifiedation andalias

386

e If the intercept is unspecified, thelot function positions an axis on the view-
port boundary.

e Ifthe hats field is unspecified, it is determined from thatches field.

— Symbolichatches (i.e., character strings) are copied verbatim to hiagés
field.

— Numerichatches are translated to character strings either in fixed or siéient
notation, depending on the dynamic range.

o If the hatches field is not specified but thieats field is a list of strings in fixed or
exponential notation, thieatches field is read from it using thenath..strtod
library function.

When theaxis forms part of avisualization record, further initialization of the
hatches field is performed automatically, because its values ardi@py thecurves .
curve

This function is the mnemonic for a record data structureesgnting a curve to be
plotted, of which there are a list in tloairves field of avisualization record.
Thecurve record has the following fields.

e points —alistof pairs((zo,yo) - . - (z, yn)) representing the data to be plotted,
wherex; andy; can be character strings or floating point numbers

e peg — a value that’s constant along the curve if it's a functiotvad variables

e attributes — a list of assignments of attributes to keywords recognined
the BTpX pstricks package to describe line colors and styles

e decorations —a list of triples{((xo, o), S0) - - - ((Zn, Yn), sn)) Wherezx; and
y; are coordinates consistent with theints field indicating the placement of
a BTpX code fragment; on the plot, where; is a list of character strings

e scattered - a boolean value causing tpeints not to be connected when
plotted if true

e discrete —aboolean value causing points to be disconnected andaalsong
each point to be plotted atop a vertical line if true

e ordinate — a pointer (e.g.&h or &th) with respect to therdinates field
in avisualization record that identifies the vertical axis whqdacer is
used to transform thg values in thepoints field

Some additional notes on these fields:

e The default value for therdinate field is &h, which is appropriate when there is
a single vertical axis.

387

Listing 20.2 demonstration of decorations, attributes, and axes

#import std
#import plo
#import flo

#output dot'tex’ plot

plop =

visualization[
picture_frame: ((400.,300.),()),
abscissa: axis|
hats: printf/ *'9%0.2f ari13/0. 3.,
variable: 'time (μs)7],

ordinates: <
axis[variable: 'feelgood factor (erg$/$lightyear2)’ 1>
curves: <
curve[points: <(0.,0.),(1.,1.),(2.,-1.),(3.,0.)>],
curve[
decorations: "&INC/(0.35,-0.6) -[
\begin{picture}(0,0)

\psset{linecolor=black}
\psline{-}(0,0)(10,0)
\put(15,0){\makebox(0,0)[[{\textsKrealized}}}
\psset{linecolor=lightgray}
\psline{-}(0,20)(10,20)
\put(15,20){\makebox(0,0)[l]{\textsprojected}}}
\put(-10,-15){\dashbox(75,50){}}
\end{picture}]-,

attributes: <’linecolor’: ’lightgray’>,

points: <(0.,0.),(3.,1.5)>]>]

¢ In a planar plot, thepeg field is ignored.

e If the attributes field contains assignmentsfoo’: ’bar’ ...>, they are
passed through apsset{foo=bar .}

e The assigneattributes apply cumulatively to subsequent curves in the list of
curves in avisualization record.

The psset command is documented in tipstricks ~ reference manual. Frequently
used attributes adenecolor andlinewidth

20.3 Examples

A possible way of using this library without reading all oktpreceding documentation
is to copy one of the examples from this section and modify isuit, referring to the

388

feelgood factor (erdightyear)

1.50
1.00
0.50
0.00
projected
-0.50
— realized
-1.00 T T T T T T T | T T T
0.00 0.25 050 0.75 1.00 1.25 150 1.75 2.00 2.25 250 275 3.00

time (us)

Figure 20.2: output from Listing 20.2

389

Listing 20.3 symbolic axes, rotation, margins, discrete curves, géeeidata, and interpolation

#import std
#import nat
#import plo
#import flo
#import fit

data = “&p(ari7/0. 1.,rand * jota 7)
#output dot'tex’ plot
slam =

visualization[
margin: 35.,
picture_frame: ((400.,300.),((),-75.)),
abscissa: axis[
rotation: -60.,
hats: <
'impulse’,
'light speed’,
‘ludicrous speed’,
ridiculous speed’>,
variable: 'velocity (v)],
ordinates: "&INC axis[
hatches: ari11/0. 1.,
variable: 'tunneling probability (ρ)7],
curves: <
curve[discrete: true,points: data],
curve[
points: “("&,sinusoid data) * ari200/0. 1.,
attributes: <’linecolor’: ’lightgray’>]>]

documentation only as needed. Most of the features are dXepat one point or another.

Listing 20.2 demonstrates multiple curves with differetitilbutes, and user-written
IATEX code decorations inserted “inline”. Note that the cooadiés of the decorations are
in terms of those of the curve, rather than being absolutat patations, so they will scale
automatically if the bounding box size is changed. The tesare shown in Figure 20.2.

Listing 20.3 and the results shown in Figure 20.3 demorestataxis with symbolic
rather than numeric hatches. In this case, the data are fuaret the axis labels are
chosen arbitrarily, but data that are themselves symbahatso be used. Further features
of this example:

¢ the discrete plotting style, wherein the points are sepdr&iom one another but
connected to the horizontal axis by vertical lines.

e a smooth curve generated using #ireusoid interpolation function from thét

390

tunneling probability)

1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20

A z
& . %,
W velocity) 5
2 %
Ry &
>)
B
o2

Figure 20.3: output from Listing 20.3

391

~.
o
(8]

&
%
»
)
%
[og

Listing 20.4 aliases, intercepts, margins, and selective hats

#import std
#import nat
#import plo
#import flo

#output dot'tex’ plot
para =

visualization[

margin: 25.,

picture_frame: ((400.,200.),(-10.,-20.)),

abscissa: axis[
hats: printf/ *'960.2f ari9/-1. 1.,
alias: (205.,27.),
variable: 'x7,

ordinates: "&INC axis[

alias: (8.,0.),
intercept: <0.>,
hats: "&NtC printf/ *'00.2f" ari5/0. 1.,
variable: 'y7],
curves: <curve[points: “("&,sqr) * ari200/-1. 1.]>]

library documented in Chapter 14
e A rotation of the horizontal axis labels

The scattered plot style is similar to the discrete styledmits the vertical lines.

Listing 20.4 and the results in Figure 20.4 demonstrate quossibilities for position-
ing axes and labels. The vertical axis is displayed in thésrday way of thantercept
and the labek of the horizontal axis is displayed to the right rather thatotv. The zero
on the vertical axis is suppressed in thegs field of theordinate so as not to clash
with the horizontal axis. Some manual adjustment to the margnd bounding box are
made based on visual inspection of the bounding box in deaftions.

The last example in Listing 20.5 and Figure 20.5 shows howtipialfunctions can
be plotted on different vertical scales with the same hattiabaxis. With two ordinates
and two curves, each refers to its own. A logarithmic scakui®matically inferred for
the right ordinate because the hatches are given as a geopregression. A decoration
for each curve reduces ambiguity by identifying the funttiorepresents and hence the
corresponding vertical axis.

392

1.00

0.75

0.50

0.25

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

Figure 20.4: textbook style parabola illustration fromtlig 20.4

Listing 20.5logarithmic scales, decorations, and multiple ordinates

#import std
#import nat
#import plo
#import flo

#output dot'tex’ plot
gam =

visualization[
picture_frame: ((400.,250.),(-25.,())),

margin: 50.,
abscissa: axis[variable: 'x’,hats: "&hS %nP * "&tt iota 7],
ordinates: <
axis[variable: '$\Gamma”(x)$',hats: printf/ *'000.1f ari6/0. 2.],
axis[variable: '$\Gamma(x)$',hatches: geo6/1. 120.]>,
curves: <
curve[
ordinate: &h,
decorations: <((2.8,1.0),-[$\Gamma’$]-)>,
points: “("&,rmath..digamma) * ari200/2. 6.],
curve[

ordinate: &th,
decorations: <((4.8,10.),-[Γ]-)>,
points: “("&,rmath..gammafn) * ari200/2. 6.]>]

393

I (z)
2.0

1.6

1.2

0.8

0.4

I\I

I(x)

0.0

1.20x 102

4.61x10"

1.77x 10!

6.79x10°

2.61x10°

1.00x10°

Figure 20.5: gamma and digamma function plots with diffexemtical scales from Listing 20.5

394

It's a way of looking at that wave and saying “Hey Bud, let’s
party”.
Sean Penn ifrast Times at Ridgemont High

Surface rendering

Following on from the previous chapter, a library calted uses the same data structures
to depict functions of two variables graphically as suréacEhe rendering algorithm fea-
tures correct perspective and physically realistic shipdinsurface elements based on a
choice of simulated semi-diffuse light sources. The reindsrare generated &3gX code
depending on thpstricks package, so that hidden surface removal is accomplished by
the back end Postscript rendering engine. The user has etergantrol over the choice

of a focal point, and scaling of the image both in the image@kand in 3-space.

21.1 Concepts

To depict a function of two variables as a surface, a spetificaneeds to be given not
only of the function, but of certain other characteristi€thee image. These include its
focal point relative to a hypothetical three dimensionalcg which can be understood as
the position of an observer or a simulated camera viewingtiiace, and the position of
a simulated light source. Regardless of its relevance ta#t@ shading consistent with
a light source is necessary for visual perception. Thereals® the same requirements
for specifying the axis labels and hatches as in a two dino@asiplot. The conventions
whereby this information is specified are documented indaction.

21.1.1 Eccentricity

A function f : R*> — R defined on a regioffug, a;] x [by, b;] is depicted as a surface
confined to the cube with cornef$, 1} in a right handed cartesian coordinate system.
Each inpufx, y) in the region is associated with a point in the unit squarderbrizontal
plane, and the value gf(z, y) is indicated by the height of the surface above that point.

395

<1 r=1 rz>1

y>1

y<l1

Table 21.1: eccentricity settings as seen fr@s¥ , with origin left andz axis in the foreground

396

coordinates angle (deg.) coordinates

code x y z 0 ¢ code x y z

ile+ 2.040 1578 1.184 35 20 ole+ 3.194 2.386 1.697
ime+ 1.842 1.440 1.647 35 35o0me+ 2.849 2.144 2.508
ihe+ 1.553 1.237 2.032 35 50ohe+ 2.343 1.790 3.181
iln- 1.578 2.040 1.184 55 20 oln- 2.386 3.194 1.697
imn- 1.440 1.842 1.647 55 35o0mn- 2.144 2.849 2.508
ihn- 1.237 1.553 2.032 55 50 ohn- 1.790 2.343 3.181
iin+ -0.578 2.040 1.184 125 20o0ln+ -1.386 3.194 1.697
imn+ -0.440 1.842 1.647 125 35omn+ -1.144 2.849 2.508
ihn+ -0.237 1553 2.032 125 50o0hn+ -0.790 2.343 3.181
ilw- -1.040 1578 1.184 145 20 olw- -2.194 2.386 1.697
imw- -0.842 1.440 1.647 145 35o0mw- -1.849 2.144 2.508
ihw- -0.553 1.237 2.032 145 50ohw- -1.343 1.790 3.181
ilw+ -1.040 -0.578 1.184 -145 20olw+ -2.194 -1.386 1.697
imw+ -0.842 -0.440 1.647 -145 35omw+ -1.849 -1.144 2.508
ihw+ -0.553 -0.237 2.032 -145 50o0hw+ -1.343 -0.790 3.181
ils- -0.578 -1.040 1.184 -125 200ls- -1.386 -2.194 1.697
ims- -0.440 -0.842 1.647 -125 35o0ms- -1.144 -1.849 2.508
ihs- -0.237 -0.553 2.032 -125 500hs- -0.790 -1.343 3.181
ils+ 1.578 -1.040 1.184 -55 20 ols+ 2.386 -2.194 1.697
ims+ 1.440 -0.842 1.647 -55 35oms+ 2.144 -1.849 2.508
ihs+ 1.237 -0.553 2.032 -55 50 ohs+ 1.790 -1.343 3.181
ile- 2.040 -0.578 1.184 -35 20 ole- 3.194 -1.386 1.697
ime- 1.842 -0.440 1.647 -35 350me- 2.849 -1.144 2.508
ihe- 1553 -0.237 2.032 -35 50 ohe- 2.343 -0.790 3.181

Table 21.2: observer coordinates and angular displacerfremb the center of the unit cube

Whereas a cube is normally envisioned as in the center o€ Tbll, the user is also at
liberty to emphasize particular dimensions by elongating one direction or another. A
so called eccentricity given by a pair of floating point numsie, y) hasz = y = 1 for
a neutral appearance, both dimensions greater than one fp@arent pizza box shape,
both less than one for a tower, and different combinationstber rectangular prisms.
The cube is transformed to a box with edges in the ratios ofy : 1 bounded by the
origin, and the surface is scaled accordingly.

21.1.2 Oirientation

The surface is always rendered from the point of view of arenles looking directly at
the center of the prism described above, regardless of ¢esngrgcity, but the position of
the observer is a tunable parameter with three degreesexfdne. The position can be
specified in principle by its cartesian coordinates, bug @danvenient to encode frequently
used families of coordinates as shown in Table 21.2.

A specification of observer coordinates for one of thesedstahpositions is a string of

397

the form
[i o] [I [mh] [e[nws] [+]-]

e The first field, mnemonic for “in” or “out” determines the zopwhich is the distance
of the observer from the center of the cube. The image is ddal¢he same size
regardless of the distance, but the inner position resultsdre pronounced apparent
convergence of parallel lines due to perspective.

e The second field, mnemonic for “low”, “medium” or “high”, rexfs to the angle of el-
evation. The angle is formed by the vector from the centeh@tube to the observer
with the horizontal plane. These angles are define)as35°, and50°, respectively.

e The third field, mnemonic for “east”, “north”, “west” or “sthi’, indicates the ap-
proximate lateral angular displacement of the observeh &referring to the posi-
tive x direction, anch referring to the positiveg direction.

e Because it is less visually informative to sight orthogontd the axes, the last field
of - or + indicates a clockwise or counterclockwise displacemesgpectively, of
35° from the direction indicated by the preceding field.

The cartesian coordinates shown in Table 21.2 apply only¢ocase of neutral eccen-
tricity. For oblong boxes, the positions are scaled acogiglito maintain these angular
displacements.

The effects of zooms, elevations, and lateral angular atgphents are demonstrated
in Tables 21.3 and 21.4, with Table 21.4 showing various sieivthe same quadratic
surface.

21.1.3 [lllumination

The library provides three alternatives for light sourcsipons in a rendering, which are
left, right, and back lighting. The most appropriate chalepends on the shape of the
surface being rendered and the location of the observer.

e left lighting postulates a light source above and behinddlal point to the left
e right lighting is based on a source above and behind the fumat to the right

e back lighting simulates a light source facing the obserslgghtly to the left and low
to the horizon

Best results are usually obtained with either left or righihling, where more visible sur-
face elements face toward the light source than away froBaitk lighting is suitable only
for special effects and will generally result in lower c@st.

An example of each style of lighting is shown in Table 21.5e Tantral maximum does
not cast a shadow on the outer wave, because the image isrnetray tracing simulation.
The shade of each surface element is determined by the ahigieidence with the light
source, and to lesser extent by the distance from it.

398

Zoom

eye level in out
‘e ‘o
. K . s
high
AT ...
. : .'.'. . : K
medium
P e, o e e
low

Table 21.3: orthogonal choices of recommended levels anthgo

399

quadrant +
e+ /n-
n+ / w-
R
QLR AT AT L]
S G AAITTLT
wt/s % R
4 ~Litt
s+ /e-

Table 21.4: visual effects of lateral angular displacement

400

light source visual effect

left

right

back

Table 21.5: effects of left, right, and back lighting

401

21.2 Interface

Use of the library is fairly simple when the concepts expddiim the previous section are
understood.

left_lit_rendering

This function takes an argument of the fo(ife,), v) to a list of character strings
containing theAIEX code fragment for a surface rendering with the light sotiodhe
left.

e 0 is an observer position specified either as a code from Tah[i a char-
acter string, or as absolute cartesian coordinates in aflisiree floating point
numbers.

e cis either empty or a pair of floating point numbé#sy) describing the eccen-
tricity of the box in which the surface is inscribed, as exmpdal in Section 21.1.1.
If e is empty, neutral eccentricity (i.e., a cube shape) is reter

e v is avisualization record as documented in the previous chapter specify-
ing axes and the surface to be rendered as a family of curves.

— Thevisualization record must contain exactly one ordinate axis, an
abscissa, and a non-empty peg axis.

— Each curve in the@isualization must have the same number of points.

— The i-th point in each curve must have the same left coordinatesaaill
curves for alli.

— Each curve must havepseg field serving to locate it along thgegaxis

The abscissa is rendered along ther “east” axis in 3-space, the peg axis along
they or “north”, and the ordinate along the vertical axis.

right_Ilit_rendering

This function follows the same conventions as the one abatvednders the surface
with a light source to the right.

back_lit_rendering
This function is the same as above but with back lighting.

renderi ng

This function renders the surface with a randomly chosdrt Bgurce either to the left
or to the right.

402

Most features of thevisualization record documented in the previous chapter,
such as use of symbolic hatches or logarithmic scales, glreito three dimensional
plots as one would expect, other than as noted below.

e Theintercept ,rotation , andattributes fields are ignored.
e Thediscrete andscattered flags are inapplicable.

e The defaulpicture_frame is((400,400), (—50, —50)) with theheadroom and
themargin at 50 points each.

A squareviewport field (i.e., with its width equal to its height) is not requdrbut
strongly recommended for surface renderings because thgeiwill be distorted other-
wise in a way that frustrates visual perception. Any pref@mlterations to the aspect ratio
should be effected by the eccentricity parameter instdatieimargin andheadroom
are equal in magnitude and opposite in sign togioture_frame coordinates and the
picture frame is square, as in the default setting abova,ttieviewport will be initial-
ized to a square. Otherwise, thiewport should be initialized as such explicitly by the
user.

drafts

This function takes a paife, v) to a completeAIEX document represented as a list
of character strings containing renderings of a surface fatl focal points listed in
Table 21.2, with one per page. The parametés either an eccentricityx,y) as
explained in Section 21.1.1 or empty, with neutral ecceityriinferred in the latter
case. The parameteris a visualization describing the surface as explained @bov

recommended_obser vers

This is a constant of typ#sel XL containing the data in Table 21.2. Each item of the
list is a pair with a code such &sle+” on the left and the corresponding cartesian
coordinates on the right.

Therecommended_observers listis not ordinarily needed unless one wishes to con-
struct a non-standard observer position by interpolatrgresturbation of a recommended
one.

A short example using some of these features is shown imigi&i.1 and Figure 21.1.
Although the family of curves is enumerated in this examipl@puld usually be generated
by an expression such as the following in practice,

curve$[peg: “&hl,points: * & f]* "&IKOIK2x (ari n) ab

wheref is a function taking a pair of floating point numbers to a flogtpoint number.

403

Listing 21.1 short example of a rendering

#import std
#import nat
#import plo
#import ren

#output dot'tex’ left_lit_rendering/(ilw+,())
surf =

visualization[
picture_frame: ((280.,280.),(-55.,-25.)),
margin: 65.,
headroom: 35.,
viewport: (210.,210.),
abscissa: axis[variable: 'x',hats: <'0’,'1’,’2",'3"> 1
pegaxis: axis[variable: 'y’ hatches: <1.,5.,9.>],
ordinates: <axis[variable: 'z]>,
curves: <

curve[peg: 1.,points: <(0.,2.),(1.,3.),(2.,4.),(3.,5.)>1,
curve[peg: 5.,points: <(0.,1.),(1.,2.),(2.,3.),(3.,4.)>1,
curve[peg: 9.,points: <(0.,0.),(1.,1.),(2.,2.),(3.,3.)>1>]

Figure 21.1: output from Listing 21.1

404

You talkin’ to me?
Robert De Niro inTaxi Driver

Interaction

An unusual and powerful feature of Ursala is its interop#itgitwith command line inter-
preters such as shells and computer algebra systems. Realdyimerfaces are provided
for the numerical and statistical packageéstave , R, andscilab , the computer alge-
bra systemaxiom , maxima, andpari-gp , and the number theory packaggp . These
interfaces make any interactive function from these pae&agllable within the language,
even if the function is user defined and not included in thé&age’'s development library.

There are also interfaces to the standard shelh andpsh (theperl shell), and to
privileged shells opened by tls&i command. Orthogonal to the choice of an application
package or shell is the option to access it locally or on a terhost viassh .

The above mentioned packages incorporate an extraordivaaith of mathematical
expertise, and with their extensible designs and scripg@nguages, each is a capable
programming platform by itself. However, for a developeoasing to work primarily
in Ursala, the value added by the interfaces documentedsrchapter is the flexibility
to leverage the best features of all of these packages fromgée sapplication with a
minimum of glue code.

22.1 Theory of operation

The application packages or shells are required to be ledtah the local host or the
remote host in order to be callable from the language. Indtterlcase, the remote host
needs arssh server and the user needs a shell account in it, but the cengwitl virtual
machine need only be installed locally. Installation oflsthapplications is a separate issue
beyond the scope of this manual, but it is fairly painlessast for Debian and Ubuntu
users who are familiar with thapt-get utility.

405

22.1.1 Virtual machine interface

These shells are spawned and controlled at run time by thealimachine through pipes
to their standard input and output streams, as implementdtlexpect library. Hence,
no dynamic loading takes place in the conventional sensghémunore, any console output
they perform is not actually displayed on the user’s condul¢ recorded by the virtual
machine. However, any side effects of executing them gessighe host.

22.1.2 Source level interface

Although a very general class of interaction protocols carsjecified in principle, full
use demands an understanding of the calling conventiolesvied by the virtual machine’s
interact combinator as documented in theram reference manual. As an alternative,
the functions definedli library documented in this chapter insulate a developenfro
some of these details for a restricted but useful class efastions, namely those involving
a sequence of commands to be executed unconditionally.

Several options exist for users requiring repetitive ordittonal execution of external
shell commands. In order of increasing difficulty, they udz

e multiple shell invocations with intervening control deoiss at the source level
e a user defined command in the application’s native scriginguage, if any

¢ a hand coded client/server interaction protocol

22.1.3 Referential transparency

A more complex issue of interaction with external applicas is the possible loss of
referential transparencéyAlthough the code generated by ttie library functions can be
invoked and treated in most respects as functions, it ism@nt on the user to recognize
and to anticipate the possibility of different outputs lgeabtained for identical inputs on
different occasions. The compiler for its part will detelog interact combinator on
the virtual code level and refrain from performing any cogéirizations depending on
the assumption of referential transparency.

22.2 Control of command line interpreters

Several functions concerned with sending commands to aamelsensing its responses
are documented in this section. These are higher orderifunscparameterized by a data
structure of type shell that isolates the application specific aspects of each @hgll,
syntactic differences between computer algebra systembg data structure is docu-
mented subsequently in this chapter for users wishing tdement interfaces to other
applications than those already provided, but may be regaad an opaque type for the
present discussion.

1the property of pure functional languages guaranteeinginua invariance of the semantics of any expression, evesetincluding
function calls

406

22.2.1 Quick start

To invoke and interrogate one of the supported shells onoited host with any sequence
of non-interactive commands, the function described bédae only one needed.

ask

This function takes an argument of typshell and returns a function that takes a
pair (e, ¢) containing an environment and a list of commands to a restdhtaining
a list of responses.

e The environment is list of assignmentsn,: my ...> where each; is a char-
acter string and eacl; is of a type that depends on the shell.

e The commands are a list of character strings, . . . > that are recognizable by
the shell as valid interactive user input.

e The results are a list of assignmentse,: yo ... > where eachr; is one of the
commands irr, and the corresponding is the result displayed by the shell in
response to that command. Thevalue is a list of character strings by default,
unless the shell specification stipulates a postprocessbetcontrary.

Most command line interpreters entail some concept of agierg environment or work-
space that can be modeled as a map from identifiers to elemwiesase application spe-
cific semantic domain. The environment is regarded as ayealsst mutable entity acted
upon by imperative commands. A convention of direct detlaapecification of the en-
vironment separate from the imperative operations is ugdtiib function in the interest
of notational economy. Here are a couple of examples of thistfon usingoash as a
shell.

$ fun cli --m="(ask bash)/<> <'uname’,lpq’,’pwd’>" -c %sL m
<
‘uname’: <'Linux’>,
'Ipg’: <’hp is ready’,’no entries’>
'pwd’: <’’home/dennis/fun/doc’>>
$ fun cli --m="(ask bash)/<’a’: 'b’> <’echo \$a'>" --c %sLm
<'echo $a >

The backslash is needed to quote the dollar sign becaustitizson is being executed
from the command line, but normally would not be required.
22.2.2 Remote invocation

The next simplest scenario to the one above is that of a shapglication installed on a
remote host. Assuming the host is accessiblesdly (the industry standard secure shell
protocol), and that the user is an authorized account haldefollowing functions allow
convenient remote invocation.

407

hop

Given a pair of character strings, p), whereh is a hostname andis a password, this
function returns a function that takes a shell specificatibtype _shell to a result
of the same type. The resulting shell specification will éatla remote connection
and execution when used as a parameter taslkefunction.

The host name is passed through togkk client, so it can be any variation on the form
user@host domain An example of how th@op function might be used is in the following
code fragment.

(ask hop(‘root@kremvax.gov.ru’,’glasnost’) bash)/<> <’ du>

Invocations ohop can be arbitrarily nested, as in

hop(ho, po) hop(hs, p1) .. hop(A, p) (shel)

and the effect will be to connect first tg, and then from there th,, and so on, provided
that all intervening hosts havesh clients and servers installed, and the passwerds
are valid. This technique can be useful if access,tas limited by firewall restrictions.

However, in such cases it may be more convenient to use tlogvfah function.

mul ti hop

This function, defined as++-+ hop =+, takes a list of pairs of host names and pass-
words<(hg, po) ... (h,, p,)> to a function that transforms an a given shell to a
remote shell executable on hdst through a connection by way of the intervening
hosts in the order they are listed.

This function could be used as follows.

multihop<(ho, po) , --. (hn, Pn)> (shell

sask

This function, defined assk++ hop , combines the effect of thask and hop
functions for a single hop as a matter of convenience. Thgeusask(h, p) s
is equivalent task hop(A, p) s.

22.3 Defined interfaces
As indicated in the previous sectioask and related functions are parameterized by a

data structure of typeshell , which specifies how the client should interact with the ap-
plication. It also determines the types of objects that magdclared in the application’s

408

environment or workspace, and generates the necessaajization commands and set-
tings. Although a compatible specification for any shell bamefined by the user, some of
the most useful ones are defined in the library as a mattenmvieroence, and documented
in this section.

22.3.1 General purpose shells

It is possible for an application in Ursala to execute adbjtrsystem commands by inter-
acting with a general purpose login shell. When such a shislused in an expression of
the form(ask s)(< ng: mg...>, ¢), eachm,; value can be either a character string or a
list of character strings.

e If m,; is a character string, then an environment variable is icitplidefined by
export n;=m,;.

e If m; is a list of character strings, then a text file is temporasilyated in the current
working directory with a name at; and contentsn; using the standard line editor,
ed. The text file is deleted when the shell terminates.

There are certain limitations on the commands that may appéiae listc.

¢ Interactive commands that wait for user input should bedeaibecause they will
cause the client to deadlock.

e Commands using input redirection (for exampleat' - > file ") also won't
work.

e Commands that generate console output generally are abéepbut they may con-
fuse the client if they output a shell prom)(at the beginning of a line.

bash

This shell represents the standard GNU command line ireerpof the same name.
Some examples usirgash are given in Section 22.2.1.

psh

This shell is similar tdoash but provides some additional features to the commands
by allowing them to includgerl code fragments. Please refer to & home
pages athttp://www.focusresearch.com/gregor/psh/index.html

for more information.

Su

This function takes a pair of character stringsp) representing a user name and
password. It returns a shell similar bash but that executes with the account and
privileges of the indicated user. If the user name is empty, is assumed.

409

The following example demonstrates the usagsuaf

$ fun cli -m="(ask su/0 'Z10N0101’)/<> <'whoami>" -c %sLm
<'whoami’: <’root’>>

If an application is already executing &asot , it should not attempt to use a shell
generated by theu function, because such a shell relies on the assumptionit thvlt
be prompted for a password. However, any application ruighasroot can achieve the
same effect just by executirsy (usernameas an ordinary shell command.

22.3.2 Numerical applications

The numerical applications whose interfaces are desciib#us section include linear
algebra functions involving vectors and matrices of nurebéiacilities are provided for
automatic initialization of these types of variables in &pplication’s workspace.

e When a shells interfacing to a numerical application is used in an expoessf
the form(ask s)(< ng: mg...>, ¢), eachm; value can be a number, a list of
numbers, or a lists of lists of numbers, and will cause a bégito be initialized in
the application’s workspace that is respectively a scalagctor, or a matrix.

e Different numeric types are supported depending on thaegdjan, including natu-
ral, rational, floating point, and arbitrary precision nwerdin thempfr (%8B repre-
sentation. The type is detected automatically.

¢ If the application supports them, vectors and matrices afatter strings are simi-
larly recognized, and may be initialized either as quotedgs$ or symbolic names
depending on the application.

e If an application supports vectors of strings, an attemphasle to distinguish be-
tween lists of character strings representing vectors laosktrepresenting functions
defined in the application’s scripting language based omasyic patterns as docu-
mented below. In the latter case, the list of strings is prieted as the definition of a
function and initialized accordingly.

This shell pertains to thR system for statistical computation and graphics, for which
more information can be found http://www.R-project.org . Four types of
data can be recognized and initialized as variables iRRtwerkspace when this shell
Is used as a parameter to task function. Data of typeéoe %el, and%eLL are
assigned to scalar, vector, and matrix variables, resgti Data of type%sL are
assumed to be function definitions and are assigned verbatine identifier.

In this exampleRis invoked with an environment containing the declaratiba gariable
X as a scalar equal tb The value ofl + 1 is computed by executing the command to add
1tox.

410

$ fun cli --m="ask(R)/<'x: 1.> <'x+1'>" --c %sLm
<Ix+1: <'[1] 2'>>

oct ave

This shell interfaces with the GNOctave system for numerical computation. It
allows real valued scalars, vectors, and matrices to balimgd automatically as
variables in the interactive environment when used as anpete to theask func-
tion, from values of typ&oe %el, and%eLL, respectively. It also allows a value
of type %sL to be used as a function definition. Because most results @otave
are numerical, the interface specifies a postprocessoattaiatically converts the
output from character strings to floating point format whegpelicable.

In this examplepctave is used to compute the sum of a short vector of two items.

$ fun cli -m="ask(octave)/<’x: <1.,2.>> <'sum(x)’>" -c %e m
<’sum(x)’: 3.000000e+00>

gp

This shell interfaces to thBARI/GP package, which is geared toward high per-
formance numerical and symbolic calculations in exacbrati, modular, and arbi-
trary precision floating point arithmetic, with emphasispmwer series. Documenta-
tion about this system can be foundrdtp://pari.math.u-bordeaux.fr

Scalar values, vectors, and matrices of strings and all narygpes including arbl-
trary precision $oB are recognized and initialized. A list of strings is intexjed as a
function definition rather than a vector if thecharacter appears anywhere within it.

This example askgp to computel + 1.

$ fun cli --m="(ask gp)/<> <'1+1'>" --¢c %sLm
<141 <2>>

scil ab

This shell interfaces with thecilab system, which performs numerical calculations
with applications to linear algebra and signal processBaglars, vectors, and matri-
ces of all numeric types and strings can be recognized atidlized as variables
in the workspace when this shell parameterizesatsle function. A list of strings

Is interpreted as a function definition rather than a vedttine = character appears
anywhere in it.

This example askscilab to computel + 1.
$ fun cli --m="(ask scilab)/<> <'1+1'>" --c %sLm

<141 < 2. >>

411

22.3.3 Computer algebra packages

The interfaces documented in this section pertain to coen@lgebra packages, which are
used primarily for symbolic computations.

gap
This shell interfaces with thgap system, which pertains to group theory and ab-
stract algebra, as documentedch#p://www.gap-system.org . Scalars, vec-

tors, and matrices of natural numbers, rational numbessamgs (but not floating
point numbers) can be declared automatically in the wortespeengap is used as
a parameter to thask function. These are indicated respectively by values oétyp
%n %nL, %nLL, %q %qL, %qLL, %s %sL, and%sLL. However, if any string in a list

of strings contains the wordunction 7, then the list is treated as a function defi-
nition and assigned verbatim to the identifier rather thandmitialized as a vector
of strings.

This example demonstrates the use of rational numbersgaijth

$ fun cli --m="ask(gap)/<’x’: 1/2> <'x+2/3'>" --c %sLm
<x+2/3;: <716'>>

Most commands t@ap need to be terminated by a semicolon or ejsg will wait
indefinitely for further input. The shell interface will thefore automatically supply a
semicolon where appropriate if it is omitted.

axi om

This shell interfaces with thexiom computer algebra system, which is documented
at http://savannah.nongnu.org/projects/axiom . Scalars, vectors,
and matrices of all numeric types and strings are recognideeh this shell is the
parameter to thask function. A list of strings is treated as a function definitio
rather than a vector of strings if any string in it containsthcharacter. Vectors and
matrices of strings are declared as symbolic expressidingrrthan quoted strings.

Any automated driver for théxiom command line interpreter is problematic because
the interpreter responds with sequentially numbered ptsitiyat can’'t be disabled, and
the number isn’t incremented unless an operation is suitteg&srors in commands will
therefore cause the client to deadlock rather than raisingxaeption, as it waits indefi-
nitely for the next prompt in the sequence.

A further difficulty stems from the default two dimensionekt output format being
impractical to parse for use by another application. Howeaeartial workaround for
this issue is to display an expressiorusing the type cast::INFORM on the Axiom
command line, which will cause most expressions to be dygplanlisp format. This
notation can be transformed to a parse tree by the funetparse defined in thecli
library for this purpose, and documented subsequentlyisctiapter.

412

maxi ma

This shell interfaces to thaxima computer algebra system, as documented at
http://www.sourceforge.net/projects/maxima . Whenmaxima pa-
rameterizes thask function, only strings and lists of strings are usable ttialize
variables in the workspace (i.e., not vectors or matricesiaieric types as with other
interfaces). These are assigned verbatim to their iderstifie

The scripting language fdvlaxima allows interactive routines to be written that prompt
the user for input. These should be avoided via this interfaecause a non-standard
prompt will cause the client to deadlock.

22.4 Functions based on shells

A small selection of functions using some of the standardisigeincluded in thecli
library for illustrative purposes and possible practicsé u

22.4.1 Front ends

The following functions uséash , octave , or Ras back ends to compute mathematical
results or perform system calls.

now
This function ignores its argument and returns the systema ih a character string.

Here is an example afow.

$ fun cli --m=now0 --c %s
'Sat, 07 Jul 2007 07:07:07 +0100’

ei gen

This function takes a real symmetric matrix of typeelLL to the list of pairs
<(<z...> \)...>representing its eigenvectors and eigenvalues in ordexayeds-
ing magnitude.

Here is an example of the above function.

$ fun cli --m="eigen<<2.,1.>,<1.,2.>>" --c %elLeXL
<
(<7.071068e-01,7.071068e-01>,3.000000e+00),
(
<-7.071068e-01,7.071068e-01>,
1.000000e+00)>

413

A similar result can be obtained with less overhead by thetfan dsyevr among others
available through the virtual machindapack library interface if it is appropriately
configured.

chol eski

This function takes a positive definite matrix of tyfeLL and returns its lower tri-
angular Choleski factor. If the argument is not positiverdedi an exception is raised
with a diagnostic message to that effect.

Here are some examples of Choleski decompositions.

$ fun cli --m="choleski<<4.,2.>,<1.,8.>>" --c %elLL
<
<2.000000e+00,0.000000e+00>,
<1.000000e+00,2.645751e+00>>
$ fun cli --m="choleski<<1.,2.>,<3.,4.>>" --c %elL
fun:command-line: error: chol: matrix not positive defini te

The latter example demonstrates the technique of passioggh a diagnostic message
from the back endctave application. Note that if the virtual machine is configured
with alapack interface, a quicker and more versatile way to get Cholesdtors is by
thedpptrf andzpptrf functions.

st dmvnor m

This function takes a triplé<ay . . . a,,>,<by . . . b,>,0) to the probability that a random
draw <z, ...x,> from a multivariate normally distributed population witheans0
and covariance matrix hasa; < x; < b; forall 0 <7 < n.

nvnorm

This function takes a quadrupl€ay . .. a,>,<by . .. b,>,<po . .. u,>,0) to the proba-
bility that a random dravkz, . .. z,,> from a multivariate normally distributed pop-
ulation with means<y ... u,,> and covariance matrix hasa; < z; < b; for all
0<7<n.

It would be difficult to find a better way of obtaining multivare normal probabilities
than by using th&® shell interface as these functions do, because there isrresponding
feature in the system’s C language API.

22.4.2 Format converters

A couple of functions are usable for transforming the ouipiua shell. In the case of
Axiom , the default output format is somewhat difficult to parse.

$ fun cli --m="ask(axiom)/<> <'(x+1)"2'>" --c %sLm

414

'(x+1)2: <
) 21’
' 1) x + 2x + 1,

Type: Polynomial Integer'>>

Although suitable for interactive use, this format makesdwkward input to any other
program. However, the following technique can at leastdieim it to alisp expression.
$ fun cli --m="ask(axiom)/0 <'((x+1)"2)::INFORM’>" --c %s Lm
<
(x+1)"2)::INFORM™: <
@ (o x2)(* 2x) 1),

Type: InputForm’>>

This format can be made convenient for further processing, (@ith tree traversal com-
binators) by the following function.

axpar se

Given alisp expression displayed bdxiom with anINFORMtype cast, this func-
tion parses it to a tree of character strings.

The following example demonstrates this effect.

$ fun cli --c %sT \
> --m="axparse "&hm ask(axiom)/<> <'((x+1)"2)::INFORM> !

7S

+7 <
+T <
Tk T X <27 <>,
T <27 <SUXTL <>,
1T <>>
oct hex

This function is used to convert hexadecimal charactemgdrdisplayed byDctave
to their floating point representations.

Theocthex function is used internally by thectave interface but may be of use for
customizing or hacking it.

$ octave -q

octave:1> format hex

octave:.2> 1.234567

ans = 3ff3c0c9539h8887

octave:3> quit

$ fun cli --m="octhex ’'3ff3c0c9539b8887"" --c %e
1.234567e+00

415

22.5 Defining new interfaces

The remainder of the chapter needs to be read only by devslepshing to modify or
extend the set of existing shell interfaces. To this endptmac building blocks are what
will be called protocols and clients.

e A protocol is a declarative specification of a prescribedrnadttion or fragment there-
of between a client and a server.

e Aclientis a virtual machine code program capable of exeguaiprotocol when used
as the operand to the virtual machingigeract combinator.

e A server in this context is the shell or command line intetgaréor which an interface
is sought, and is treated as a black box.

e An interface is a record made up of a combination of clientstqzols, or client
generating functions each detailing a particular phaseefriteraction, such as au-
thentication, initializationgtcetera

22.5.1 Protocols

A protocol is represented as a non-empty 4isto, po), - .. (cn,pn)> Of pairs of lists of
strings wherein each} is a sequence of commands sent by the client to the servethand
corresponding; is the text containing the prompt that the server is expecté@d@nsmit in
reply.
e Line breaks are not explicitly encoded, but are impliedtiier list contains multiple
strings.

¢ If and when all transactions in the list are completed, th&neation is closed by the
client and the session is terminated.

Certain patterns have particular meanings in protocolipations. These interpreta-
tions are a consequence of the virtual machiimgisract combinator semantics.

e If any promptp; is a list of one string containing only the end of file chara¢t8O
code 4), the client waits for all output until the server el®she connection and then
the session is terminated.

e If a promptp; is <> |, the list of the empty string, the client waits for no outptut a
all from the server and proceeds immediately to send thelis¢xbommands:; . 1, if

any.

e If a promptp; is <>, the empty list, the client waits to receive exactly one ahter
from the server and then proceeds with the next commandyif an

The last alternative, although supported by the virtuallmra; is not presently used in the
cli library. It could have applications to matching wild cardgprompts.

416

The following definitions are supplied in tlodi library as mnemonic aids in support
of the above conventions.

eof
the end of file character, I1ISO code 4, defined#x0i&

handshake

Given a pair(p,<c, ...c,>) wherep andc; are character strings, this function con-
structs the protocei(< ¢y,”>,<”, p>), ... (<c,, ><", p>)> describing

a client that sends each commandollowed by a line break and waits to receive the
stringp preceded by a line break from the server after each one.

conpl eti ng

Given any protocoK(co, po), ---(ca,pn)>, this function constructs the protocol
<(co,po), - - - (cn,<<eof>>)>, which differs from the original in that the client waits
for the server to close the connection after the last command

cl osi ng
Given any protocoK(co, po), ---.(cn,pn)>, this function constructs the protocol
<(co,p0), ---(cn,<">)>, which differs from the original in that the connection is

closed immediately after the last command without the tligaiting for another
prompt.

22.5.2 Clients

A client in this context is a functiorf expressed in virtual machine code that is said to
execute a protocat(co, po), - - - (cn, pn)> if it meets the condition

V<zo...2,> 3<q ... ¢:>. f() = (o, 0, o)
AVie{0...n =1} f(g,-[-[][pll-) = (G, Civ1,Pit1)
where eachy; is a list of character strings and the dash bracket nota@sritie semantics

explained on page 118, in this case concatenating a pastsff strings by concatenating
the last string in;; with the first one irp;, if any. Theg; values are constants of unrestricted

type.
A client f in itself is only an alternative representation of a protao@an intensional

form, but when a progranmteract f is applied to any argument, the virtual machine
carries out the specified interactions to return the trapiscr

<co,-[-[@ol-[pol-l- ..l @l-l pall->

with the z values emitted by a server.

417

Thecli library contains a small selection of functions for consting or transforming
clients more easily than by hand coding them, which are decued below.

Clients from strings

expect

Given a protocot, this function returns a client that executes in the sense defined
above.

exec

Given a single character string this function returns a client that is semantically
equivalent toexpect completing handshake/0 < s>, which is to say that
the client specifies the launch ofollowed by the collection of all output from it until
the server closes the connection.

An example of the above function follows.

$ fun cli --m="interact(exec 'uname’) 0" --c %sLL
<<’'uname’><’Linux>>

Clients from clients

seq

This function takes a prompt to a function that takes a list of clients to their se-
guential composition in a shell with prompt The sequential composition is a client
that begins by behaving like the first client in the list, thea second when that one
terminates, and so on, expecting the promt between.

e If any client in the list closes the connection, interactiath the next one starts
immediately.

¢ If any client waits for the server to close the connectiontijwi<eof>>), the
prompt<”, p>isexpected instead (i..preceded by a line break), any accom-
panying com