#import std #import nat #import flo #import fit #import plo #import ren #import tbl #output dot'tex' sectioned_table8+ -+ ~&/<<'$x$'>^: 0,<'$y$'>^: 0,<'$z$'>^: 0>, |=&h; * ~&K7; <.~&h; :^(printf/'%0.2f'+ ~&h,0!*+ ~&t),printf/*'%0.2f'+ ~&th,~&tth>+- xy = # (* :^x/0%ei ~&lrNCC) ~&iiK0 float* iota 4 -{ {{wy{gkkszggzjz{[zgfxZggzjz{[tVkfzSvjgtvjkvwwy{] ftVjSC]fzgc[fvk_fv{gkkszBg=fu>K]ftVjBc]fzg_[fvjc fvwgkkszBfBg?MtVxBg__tVjBgcC]fzgj[fvkzggzjz{[tV] fsalW>BgEtVhBg_ltVjBgp[]fzgt{fvkCfvw gkksz]hu\TVfFBdW>AlhBvBkXutVhBgiG]ftVjUzBgvj{vjg{fvwgkks\> \D=\\A^a\ZCtJCtVh=xBfBg`>>]z>lBBm_BBdWdfW =hDVhaS]flVjgO]ftVk\w\<>B=\`=TBH=ZBlWd?g=j]fnPZjD=nTC]_ TB]_=joRl\TG\d\\<<}- #output- #output dot'tex' "f". right_lit_rendering/('ohe+',~&iiX div\2. plus/1. sqrt 5.) visualization[ picture_frame: ((360.,360.),(-40.,-35.)), abscissa: axis[variable: '$x$'], pegaxis: axis[variable: '$y$'], ordinates: , curves: curve$[peg: ~&hl,points: * ^/~&r ~&lrNCC; (multivariate "f") xy]* |=&l ~&iiK0 ari40/0. 3.] chsur = chord_fit 0 sisur = sinusoid posur = one_piece_polynomial