\begin{picture}(400.00,300.00)(-32.50,-75.00) \psset{unit=1pt} % left axis \put(-10.00,220.00){\makebox(0,0)[l]{tunneling probability ($\rho$)}} \psline{->}(0,0.00)(0,200.00) \put(-10,0.00){\begin{rotate}{0.00}\makebox(0,0)[r]{0.00}\end{rotate}} \put(0,0.00){\psline{-}(0,0)(-5,0)} \put(-10,20.00){\begin{rotate}{0.00}\makebox(0,0)[r]{0.10}\end{rotate}} \put(0,20.00){\psline{-}(0,0)(-5,0)} \put(-10,40.00){\begin{rotate}{0.00}\makebox(0,0)[r]{0.20}\end{rotate}} \put(0,40.00){\psline{-}(0,0)(-5,0)} \put(-10,60.00){\begin{rotate}{0.00}\makebox(0,0)[r]{0.30}\end{rotate}} \put(0,60.00){\psline{-}(0,0)(-5,0)} \put(-10,80.00){\begin{rotate}{0.00}\makebox(0,0)[r]{0.40}\end{rotate}} \put(0,80.00){\psline{-}(0,0)(-5,0)} \put(-10,100.00){\begin{rotate}{0.00}\makebox(0,0)[r]{0.50}\end{rotate}} \put(0,100.00){\psline{-}(0,0)(-5,0)} \put(-10,120.00){\begin{rotate}{0.00}\makebox(0,0)[r]{0.60}\end{rotate}} \put(0,120.00){\psline{-}(0,0)(-5,0)} \put(-10,140.00){\begin{rotate}{0.00}\makebox(0,0)[r]{0.70}\end{rotate}} \put(0,140.00){\psline{-}(0,0)(-5,0)} \put(-10,160.00){\begin{rotate}{0.00}\makebox(0,0)[r]{0.80}\end{rotate}} \put(0,160.00){\psline{-}(0,0)(-5,0)} \put(-10,180.00){\begin{rotate}{0.00}\makebox(0,0)[r]{0.90}\end{rotate}} \put(0,180.00){\psline{-}(0,0)(-5,0)} \put(-10,200.00){\begin{rotate}{0.00}\makebox(0,0)[r]{1.00}\end{rotate}} % bottom axis \put(166.25,-25.00){\makebox(0,0)[t]{velocity ($v$)}} \psline{-}(0.00,0.00)(332.50,0.00) \put(0.00,-10.00){\begin{rotate}{-60.00}\makebox(0,0)[tl]{impulse}\end{rotate}} \put(0.00,-10.00){\psline{-}(0,5)(0,10)} \put(110.83,-10.00){\begin{rotate}{-60.00}\makebox(0,0)[tl]{light speed}\end{rotate}} \put(110.83,-10.00){\psline{-}(0,5)(0,10)} \put(221.67,-10.00){\begin{rotate}{-60.00}\makebox(0,0)[tl]{ludicrous speed}\end{rotate}} \put(221.67,-10.00){\psline{-}(0,5)(0,10)} \put(332.50,-10.00){\begin{rotate}{-60.00}\makebox(0,0)[tl]{ridiculous speed}\end{rotate}} \put(332.50,-10.00){\psline{-}(0,5)(0,10)} % curves \psline{-*}( 0.00, 0.00)( 0.00,169.96) \psline{-*}( 55.42, 0.00)( 55.42,147.96) \psline{-*}(110.83, 0.00)(110.83, 69.16) \psline{-*}(166.25, 0.00)(166.25, 82.95) \psline{-*}(221.67, 0.00)(221.67,127.72) \psline{-*}(277.08, 0.00)(277.08,104.78) \psline{-*}(332.50, 0.00)(332.50,101.52) \psset{linecolor=lightgray} \psline{-}% ( 0.00,169.96)( 1.67,173.24)( 3.34,176.24)( 5.01,178.97) ( 6.68,181.41)( 8.35,183.57)( 10.03,185.44)( 11.70,187.02) ( 13.37,188.32)( 15.04,189.33)( 16.71,190.06)( 18.38,190.51) ( 20.05,190.68)( 21.72,190.59)( 23.39,190.24)( 25.06,189.64) ( 26.73,188.80)( 28.40,187.73)( 30.08,186.43)( 31.75,184.92) ( 33.42,183.21)( 35.09,181.31)( 36.76,179.24)( 38.43,177.00) ( 40.10,174.62)( 41.77,172.09)( 43.44,169.44)( 45.11,166.68) ( 46.78,163.82)( 48.45,160.88)( 50.13,157.86)( 51.80,154.78) ( 53.47,151.65)( 55.14,148.49)( 56.81,145.30)( 58.48,142.09) ( 60.15,138.88)( 61.82,135.68)( 63.49,132.48)( 65.16,129.31) ( 66.83,126.17)( 68.51,123.07)( 70.18,120.02)( 71.85,117.01) ( 73.52,114.07)( 75.19,111.18)( 76.86,108.37)( 78.53,105.62) ( 80.20,102.95)( 81.87,100.36)( 83.54, 97.84)( 85.21, 95.41) ( 86.88, 93.07)( 88.56, 90.81)( 90.23, 88.64)( 91.90, 86.56) ( 93.57, 84.56)( 95.24, 82.66)( 96.91, 80.84)( 98.58, 79.11) (100.25, 77.48)(101.92, 75.93)(103.59, 74.47)(105.26, 73.09) (106.93, 71.81)(108.61, 70.61)(110.28, 69.51)(111.95, 68.49) (113.62, 67.55)(115.29, 66.71)(116.96, 65.95)(118.63, 65.27) (120.30, 64.69)(121.97, 64.19)(123.64, 63.78)(125.31, 63.46) (126.98, 63.23)(128.66, 63.09)(130.33, 63.03)(132.00, 63.07) (133.67, 63.20)(135.34, 63.41)(137.01, 63.72)(138.68, 64.12) (140.35, 64.61)(142.02, 65.19)(143.69, 65.86)(145.36, 66.62) (147.04, 67.46)(148.71, 68.40)(150.38, 69.42)(152.05, 70.53) (153.72, 71.72)(155.39, 72.98)(157.06, 74.33)(158.73, 75.75) (160.40, 77.24)(162.07, 78.80)(163.74, 80.41)(165.41, 82.09) (167.09, 83.82)(168.76, 85.59)(170.43, 87.41)(172.10, 89.26) (173.77, 91.14)(175.44, 93.05)(177.11, 94.96)(178.78, 96.89) (180.45, 98.82)(182.12,100.74)(183.79,102.65)(185.46,104.53) (187.14,106.39)(188.81,108.21)(190.48,109.98)(192.15,111.71) (193.82,113.37)(195.49,114.97)(197.16,116.50)(198.83,117.95) (200.50,119.32)(202.17,120.59)(203.84,121.78)(205.52,122.86) (207.19,123.84)(208.86,124.71)(210.53,125.48)(212.20,126.13) (213.87,126.68)(215.54,127.11)(217.21,127.42)(218.88,127.63) (220.55,127.72)(222.22,127.70)(223.89,127.58)(225.57,127.35) (227.24,127.02)(228.91,126.60)(230.58,126.09)(232.25,125.50) (233.92,124.82)(235.59,124.08)(237.26,123.27)(238.93,122.41) (240.60,121.50)(242.27,120.55)(243.94,119.56)(245.62,118.55) (247.29,117.53)(248.96,116.50)(250.63,115.47)(252.30,114.45) (253.97,113.45)(255.64,112.47)(257.31,111.53)(258.98,110.63) (260.65,109.77)(262.32,108.96)(263.99,108.22)(265.67,107.53) (267.34,106.92)(269.01,106.37)(270.68,105.90)(272.35,105.50) (274.02,105.18)(275.69,104.93)(277.36,104.76)(279.03,104.67) (280.70,104.64)(282.37,104.69)(284.05,104.81)(285.72,104.98) (287.39,105.21)(289.06,105.50)(290.73,105.82)(292.40,106.18) (294.07,106.57)(295.74,106.98)(297.41,107.40)(299.08,107.82) (300.75,108.24)(302.42,108.63)(304.10,108.99)(305.77,109.32) (307.44,109.60)(309.11,109.81)(310.78,109.96)(312.45,110.03) (314.12,110.00)(315.79,109.88)(317.46,109.65)(319.13,109.30) (320.80,108.83)(322.47,108.22)(324.15,107.48)(325.82,106.59) (327.49,105.56)(329.16,104.37)(330.83,103.02)(332.50,101.52) \end{picture}