cur.fun 1.2 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344
  1. #import std
  2. #import nat
  3. #import flo
  4. #import fit
  5. #import plo
  6. x = # ^(~&,rand)* ari6/0. 1.
  7. -{
  8. {{wk{g{{{zgfOkw[w{rge{lGxOw{J{{]fu?HuNzgKlGw{jo{
  9. {]ft={]Nz=<zPkvszwmz{ewjBg<]XAGxItPkdLbj=bwB{<ki
  10. ZkzBfzdPk@OlPk\>W]btd?uN{DkfzqtV`LTQ>gfAGlclUk@o
  11. ]NzrGzg\Lc]dT?\LTQ?GNB[CClPk\>etVjyjB]]\JaRBN\mf
  12. AGlIXBg]<[\Da\=\Q^]]Rj`dVxUS<D\UB==]U]hDM^>>B<TC
  13. vb>D=TB<D\<}-
  14. fitter =
  15. ("t","f"). plot visualization[
  16. picture_frame: ((400.,190.),&),
  17. ordinates: <axis[variable: "t",hatches: ari5/0. 1.]>,
  18. curves: <
  19. curve[points: ^(~&,"f" x)* ari300/0. 1.],
  20. curve[attributes: {'linewidth': '1.5pt'},scattered: true,points: x]>]
  21. #output dot'tex' mat0+ fitter*
  22. cur = <'spline': chord_fit 0,'sinusoidal': sinusoid,'polynomial': one_piece_polynomial>
  23. #output-
  24. differ =
  25. ("t","f"). plot visualization[
  26. picture_frame: ((400.,190.),&),
  27. ordinates: <axis[variable: "t"]>,
  28. curves: <curve[points: ^(~&,"f" x)* ari300/0. 1.]>]
  29. #output dot'tex' mat0+ differ*
  30. pder = ^A(~&n,poly_dif1++ ~&m)* <'spline': chord_fit 0,'polynomial': one_piece_polynomial>
  31. gder = ^A(~&n,derivative++ ~&m)* <'spline': chord_fit 0,'sinusoidal': sinusoid,'polynomial': one_piece_polynomial>