
Avram
a virtual machine code interpreter

for avram Version 0.13.0

by Dennis Furey

Copyright c© 2006, 2007 Dennis Furey

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the Free Software Foundation.

i

Short Contents

Preface . 1

1 User Manual . 3

2 Virtual Machine Specification . 19

3 Library Reference . 65

Appendix A Character Table . 123

Appendix B Reference Implementations 129

Appendix C Changes . 133

Appendix D External Libraries . 135

GNU GENERAL PUBLIC LICENSE 167

Function Index . 175

Concept Index . 177

ii avram - a virtual machine code interpreter

Table of Contents

Preface . 1

1 User Manual . 3
1.1 General Options . 3
1.2 Modes of Operation . 4

1.2.1 Filter Mode . 4
1.2.2 Parameter Mode . 5

1.3 Filter Mode Options . 6
1.4 Parameter Mode Options . 7
1.5 Command Line Syntax . 8
1.6 Diagnostics . 9

1.6.1 Internal Errors . 10
1.6.2 i/o Errors . 10
1.6.3 Overflow Errors . 11
1.6.4 File Format Errors . 11
1.6.5 Application Programming Errors 12
1.6.6 Configuration Related Errors 12
1.6.7 Other Diagnostics and Warnings 14

1.7 Security . 14
1.8 Example Script . 15
1.9 Files . 15
1.10 Environment . 16
1.11 Bugs . 16

2 Virtual Machine Specification 19
2.1 Raw Material . 19
2.2 Concrete Syntax . 20

2.2.1 Bit String Encoding . 21
2.2.2 Blocking . 22

2.3 File Format . 22
2.3.1 Preamble Section . 23
2.3.2 Data Section . 23

2.4 Representation of Numeric and Textual Data 23
2.5 Filter Mode Interface . 24

2.5.1 Loading All of Standard Input at Once 24
2.5.1.1 Standard Input Representation 25
2.5.1.2 Standard Output Representation 25

2.5.2 Line Maps . 26
2.5.3 Byte Transducers . 26

2.6 Parameter Mode Interface . 27
2.6.1 Input Data Structure . 27
2.6.2 Input for Mapped Applications 29

iii

2.6.3 Output From Non-interactive Applications. 30
2.6.4 Output From Interactive Applications 30

2.6.4.1 Line Oriented Interaction 31
2.6.4.2 Character Oriented Interaction 32
2.6.4.3 Mixed Modes of Interaction 33

2.7 Virtual Code Semantics . 33
2.7.1 A New Operator . 34
2.7.2 On Equality . 34
2.7.3 A Minimal Set of Properties . 35
2.7.4 A Simple Lisp Like Language 35

2.7.4.1 Syntax . 36
2.7.4.2 Semantics . 36
2.7.4.3 Standard Library . 37

2.7.5 How avram Thinks . 37
2.7.6 Variable Freedom . 39
2.7.7 Metrics and Maintenance . 41

2.7.7.1 Version . 41
2.7.7.2 Note . 41
2.7.7.3 Profile . 41
2.7.7.4 Weight . 42

2.7.8 Deconstruction . 42
2.7.8.1 Field . 42
2.7.8.2 Fan . 43

2.7.9 Recursion . 43
2.7.9.1 Recur . 44
2.7.9.2 Refer . 44

2.7.10 Assignment . 45
2.7.11 Predicates . 46

2.7.11.1 Compare . 46
2.7.11.2 Member . 46

2.7.12 Iteration . 47
2.7.13 List Combinators . 47

2.7.13.1 Map . 47
2.7.13.2 Filter . 48
2.7.13.3 Reduce . 48
2.7.13.4 Sort . 49
2.7.13.5 Transfer . 50
2.7.13.6 Mapcur . 52

2.7.14 List Functions . 52
2.7.14.1 Cat . 52
2.7.14.2 Reverse . 52
2.7.14.3 Distribute . 53
2.7.14.4 Transpose . 53

2.7.15 Exception Handling . 53
2.7.15.1 A Hierarchy of Sets 53
2.7.15.2 Operator Generalization 54
2.7.15.3 Error Messages . 55
2.7.15.4 Expedient Error Messages 56

iv avram - a virtual machine code interpreter

2.7.15.5 Computable Error Messages 57
2.7.15.6 Exception Handler Usage 58

2.7.16 Interfaces to External Code 59
2.7.16.1 Library combinator 59
2.7.16.2 Have combinator . 60
2.7.16.3 Interaction combinator 61

2.7.17 Vacant Address Space . 63

3 Library Reference . 65
3.1 Lists . 65

3.1.1 Simple Operations . 66
3.1.2 Recoverable Operations . 69
3.1.3 List Transformations . 70
3.1.4 Type Conversions . 72

3.1.4.1 Primitive types . 72
3.1.4.2 One dimensional arrays 73
3.1.4.3 Two dimensional arrays 74
3.1.4.4 Related utility functions 78

3.1.5 Comparison . 80
3.1.6 Deconstruction Functions . 81
3.1.7 Indirection . 81
3.1.8 The Universal Function . 84

3.2 Characters and Strings . 84
3.3 File Manipulation . 88

3.3.1 File Names . 88
3.3.2 Raw Files . 89
3.3.3 Formatted Input . 91
3.3.4 Formatted Output . 93

3.4 Invocation . 96
3.4.1 Command Line Parsing . 96
3.4.2 Execution Modes . 99

3.5 Version Management . 100
3.6 Error Reporting . 102
3.7 Profiling . 103
3.8 Emulation Primitives . 105

3.8.1 Lists of Pairs of Ports . 105
3.8.2 Ports and Packets . 106
3.8.3 Instruction Stacks . 108

3.9 External Library Maintenance . 110
3.9.1 Calling existing library functions 111
3.9.2 Implementing new library functions 112
3.9.3 Working around library misfeatures 114

3.9.3.1 Inept excess verbiage 114
3.9.3.2 Memory leaks . 115
3.9.3.3 Suicidal exception handling 118

Appendix A Character Table 123

v

Appendix B Reference Implementations 129
B.1 Pairwise . 129
B.2 Insert . 130
B.3 Replace . 130
B.4 Transition . 132

Appendix C Changes . 133

Appendix D External Libraries 135
D.1 bes . 135

D.1.1 Bessel function calling conventions 136
D.1.2 Bessel function errors. 136

D.2 complex . 137
D.3 fftw . 137
D.4 glpk . 138

D.4.1 glpk input parameters . 138
D.4.2 glpk output . 139
D.4.3 glpk errors . 139
D.4.4 Additional glpk notes . 139

D.5 gsldif . 140
D.5.1 gsldif input parameters . 140
D.5.2 gsldif output . 140
D.5.3 gsldif exceptions. 140
D.5.4 Additional gsldif notes . 141

D.6 gslevu . 141
D.6.1 gslevu calling conventions . 141
D.6.2 gslevu exceptions. 141

D.7 gslint . 141
D.7.1 gslint input parameters . 142
D.7.2 gslint output . 142
D.7.3 gslint exceptions. 142
D.7.4 Additional gslint notes . 143

D.8 harminv . 143
D.8.1 harminv input parameters . 143
D.8.2 harminv output . 144
D.8.3 harminv exceptions . 144
D.8.4 Additional harminv notes . 145

D.9 kinsol . 145
D.9.1 kinsol input parameters . 145
D.9.2 kinsol output . 146
D.9.3 kinsol exceptions. 146
D.9.4 Additional kinsol notes . 147

D.10 lapack . 147
D.10.1 lapack calling conventions 147
D.10.2 lapack exceptions . 149
D.10.3 Additional lapack notes . 150

D.11 math . 150

vi avram - a virtual machine code interpreter

D.11.1 math library operators . 150
D.11.2 math library predicates . 151
D.11.3 math library conversion functions 151
D.11.4 math library exceptions . 151
D.11.5 Additional math library notes 152

D.12 mtwist . 152
D.12.1 mtwist calling conventions 152
D.12.2 mtwist exceptions . 153
D.12.3 Additional mtwist notes . 153

D.13 minpack . 154
D.13.1 minpack calling conventions 154
D.13.2 minpack exceptions . 154
D.13.3 Additional minpack notes . 155

D.14 mpfr . 155
D.14.1 mpfr binary operators . 156
D.14.2 mpfr unary operators . 156
D.14.3 mpfr binary operators with a natural operand

. 157
D.14.4 mpfr binary predicates . 157
D.14.5 mpfr unary predicates . 158
D.14.6 mpfr constants . 158
D.14.7 mpfr functions with miscellaneous calling

conventions . 158
D.14.8 mpfr conversion functions . 159
D.14.9 mpfr exceptions . 159
D.14.10 Additional mpfr notes . 160

D.15 lpsolve . 160
D.15.1 lpsolve calling conventions 160
D.15.2 lpsolve return values . 161
D.15.3 lpsolve errors . 161

D.16 rmath . 161
D.16.1 rmath statistical functions 161
D.16.2 rmath miscellaneous functions 163
D.16.3 rmath exceptions . 163

D.17 umf . 163
D.17.1 umf input parameters . 164
D.17.2 umf output . 165
D.17.3 umf exceptions . 165
D.17.4 Additional umf notes . 165

GNU GENERAL PUBLIC LICENSE 167
Preamble . 167
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION

AND MODIFICATION . 168
How to Apply These Terms to Your New Programs 172

Function Index . 175

vii

Concept Index . 177

Preface 1

Preface

avram is a virtual machine code interpreter. It reads an input file containing a user-
supplied application expressed in virtual machine code, and executes it on the host machine.
The name is a quasi-acronym for “Applicative ViRtuAl Machine”. Notable features are

• strong support for functional programming operations (e.g., list processing)

• interfaces to selected functions from mathematical libraries, such as

• gsl (numerical integration, differentiation, and series acceleration)

http://www.gnu.org/software/gsl/

• mpfr (arbitrary precision arithmetic)

http://www.mpfr.org

• minpack (non-linear optimization)

http://ftp.netlib.org/minpack

• lapack (linear algebra)

http://ftp.netlib.org/lapack

• fftw (fast fourier transforms)

http://www.fftw.org

• Rmath (statistical and transcendental functions)

http://www.r-project.org

• ufsparse (sparse matrices)

http://www.cise.ufl.edu/research/sparse/SuiteSparse/current/SuiteSparse/

• glpk (linear programming by the simplex method)

http://tech.groups.yahoo.com/group/lp_solve/

• lpsolve (mixed integer linear programming)

http://www.llnl.gov/CASC/sundials/

• kinsol (constrained non-linear optimization)

http://www.llnl.gov/CASC/sundials/

• interoperability of virtual code applications with other console applications or shells
through the expect library

• a simple high-level interface to files, environment variables and command line param-
eters

• support for various styles of stateless or persistent stream processors (a.k.a. Unix
filters)

The reason for writing avram was that I wanted to do some work using a functional
programming language, didn’t like any functional programming languages that already
existed, and felt that it would be less trouble to write a virtual machine emulator than the
back end of a compiler. As of version 0.1.0, the first public release of avram as such in
2000, most of the code base had been in heavy use by me for about four years, running
very reliably. At this writing some six years later, it has seen even more use with rarely
any reliability issues, in some cases attacking large combinatorial problems for weeks or

2 avram - a virtual machine code interpreter

months at a time. These problems have involved both long running continuous execution,
and batches of thousands of shorter jobs.

Although the virtual machine is biased toward functional programming, it is officially
language agnostic, so avram may be useful to anyone involved in the development of compil-
ers for other programming, scripting, or special purpose languages. The crucial advantage
of using it in your own project is that rather than troubling over address modes, register
allocation, and other hassles inherent in generating native code, your compiler can just
dump a fairly high level intermediate code representation of the source text to a file, and
let the virtual machine emulator deal with the details. The tradeoff for using a presumably
higher level interpreted language is that the performance is unlikely to be competitive with
native code, but this issue is mitigated in the case of numerical applications whose heavy
lifting is done by the external libraries mentioned above.

Portability is an added bonus. The virtual code is binary compatible across all platforms.
Versions of avram as of 0.1.0 and later are packaged using GNU autotools and should be
possible to build on any platform supporting them. In particular, the package is known to
have built successfully on MacOS, FreeBSD, Solaris (thanks to the compile farm at Source-
forge.net) Digital Unix, and Debian GNU/Linux for i386 and Alpha platforms, although
it has not been extensively tested on all of them. Earlier versions were compiled and run
successfully on Irix and even Windows-NT (with gcc).

This document is divided into three main parts, with possibly three different audiences,
but they all depend on a basic familiarity with Unix or GNU/Linux systems.

Chapter 1 [User Manual], page 3
essentially reproduces the information found in the manpage that is distributed
with avram with a few extra examples and longer explanations. Properly de-
ployed, avram should be almost entirely hidden from end users by wrapper
scripts, so the “users” to whom this part is relevant would be those involved in
preparing these scripts (a matter of choosing the right command line options).
Depending on the extent to which this task is automated by a compiler, that
may include the compiler writer or the developers of applications.

Chapter 2 [Virtual Machine Specification], page 19
documents much of what one would need to know in order to write a compiler
that generates code executable by avram. That includes the complete virtual
machine code semantics and file formats. It would also be possible to implement
a compatible replacement for avram from scratch based on the information in
this chapter, in case anyone has anything against C, my coding style, or the
GPL. (A few patches to make it lint cleanly or a new implementation in good
pedagogical Java without pointers would both be instructive exercises. ;-))

Chapter 3 [Library Reference], page 65
includes documentation on the application program interface and recommended
entry points for the C library distributed with avram. This information would
be of use to those wishing to develop applications incorporating similar features,
or to reuse the code for unrelated purposes. It might also be useful to anyone
wishing to develop C or C++ applications that read or write data files in the
format used by avram.

Chapter 1: User Manual 3

1 User Manual

This chapter provides the basic information on how to use avram to execute virtual
machine code applications.

avram is invoked by typing a command at a shell prompt in one of these three forms.

avram [general options]
avram [filter mode options] codefile[.avm]
avram [parameter mode options] codefile[.avm] [parameters]

In the second case, avram reads from standard input, and may of course appear as part of
commands such as

avram [filter mode options] codefile[.avm] < inputfile
anothercommand | avram [filter mode options] codefile[.avm]

When avram is invoked with the name of an input file (with a default extension .avm), it
reads virtual machine code from the file and executes it on the host machine.

The virtual code format used by avram is designed to support the features of functional
or applicative programming languages. Although this chapter documents only the usage
of avram and not the internals, it will be helpful to keep in mind that the virtual machine
code expresses a mathematical function rather than a program in the conventional sense.
As such, it performs no action directly, but may be applied in a choice of ways by the user
of avram according to the precise operation required.

The following sections provide information in greater detail about usage and diagnostics.

1.1 General Options

Regardless of whatever other command line parameters are given, avram accepts the
following parameters:

-h, --help

Show a summary of options and exit.

-V,-v, --version

Show the version of program and a short copyleft message and exit.

--emulation=version

Be backward compatible with an older version of avram. This option should in-
clude a valid version number, for example 0.13.0, which is the version of avram
to be emulated. It can make virtual code applications future proof, assuming
that future versions of avram correctly support backward compatibility. It may
be used in conjunction with any other option in any mode of operation. This
copy of the user manual has not been updated since version 0.13.0 of avram, so
it is unable to document incompatibilities with later versions. The latest version
of the manual may be found at http://www.lsbu.ac.uk/~fureyd/avram.

-e, --external-libraries

Show a list of libraries with which avram has been linked and whose functions
therefore could be called from virtual machine programs. This growing list
currently includes selected functions from fftw, glpk, gsl, kinsol, lapack,
minpack, mpfr, lpsolve, Rmath and ufsparse (see [Preface], page 1) which are
documented further in Appendix D [External Libraries], page 135.

4 avram - a virtual machine code interpreter

-j, --jail

This option disables execution of shell commands by virtual code applications,
which is normally possible by default even for nominally non-interactive ap-
plications (see Section 1.4 [Parameter Mode Options], page 7). A virtual code
application attempting to spawn a shell (using the interact combinator) when
this option is selected will encounter an exception rather than successful comple-
tion of the operation. This option is provided as a security feature for running
untrusted code (see Section 1.7 [Security], page 14), and is incompatible with
‘-i’, ‘-t’, and ‘-s’.

-f, --force-text-input

Normally avram will try to guess by looking at a file whether it is an ordinary
text file or one that has been written in the virtual code file format, and choose
a different internal representation accordingly. An application may require one
representation or the other. This option tells avram to treat all input files
other than the virtual code file (named in the first command line parameter)
as text files regardless of whether or not it would be possible to interpret them
otherwise. This option may be used in combination with any other option.

1.2 Modes of Operation

Apart from to the capability to print brief help messages and exit, there are two main
modes of operation, depending on which options are specified on the command line before
the virtual code file name.

For the purpose of choosing the mode of operation, the virtual code filename is taken
to be the first command line argument not beginning with a dash. Other conventions rele-
vant to application specific parameters are detailed in Section 1.5 [Command Line Syntax],
page 8.

1.2.1 Filter Mode

In filter mode, the argument to the function given by the virtual code is taken from
standard input, and the result is written to standard output, except for error messages
resulting from a failure to evaluate the function, which are written to standard error. See
Section 1.6 [Diagnostics], page 9. Filter mode is indicated whenever these three conditions
are all met.

• Either at least one of the filter mode options appears on the command line preceding
the first filename parameter, or there are no options at all. See Section 1.3 [Filter Mode
Options], page 6.

• Exactly one filename parameter appears on the command line, which is the name of
the virtual machine code file.

• Either the filename comes last on the command line, or the ‘--unparameterized’
option precedes it, causing everything following it to be ignored.

Examples:

avram mynewapp < inputfilename

In this example, filter mode is recognized by default because there are no op-
tions or input files on the command line to indicate otherwise. (The input file

Chapter 1: User Manual 5

redirected into standard input is not treated by the shell as a command line
argument.)

cat somefile | avram -r coolprog > outputfile

In this example, the ‘-r’ option gives it away, being one of the filter mode
options, in addition to the fact that there are no input file parameters or
application-specific options.

avram -u devilmaycare.avm --bogusoption ignoredparameter

In this case, filter mode is forced by the ‘-u’ option despite indications to the
contrary.

1.2.2 Parameter Mode

In parameter mode, the argument to the function given by the virtual code is a data
structure containing environment variables and command line parameters including files,
application specific options, and possibly standard input. The result obtained by evaluating
the function is either a data structure representing a set of files to be written, which may
include standard output, or a sequence of shell commands to be executed, or a combination
of both. Parameter mode is indicated whenever either of these conditions is met.

• Any of the parameter mode options appears on the command line preceding the first
filename parameter. See Section 1.4 [Parameter Mode Options], page 7.

• At least one additional filename parameter or option follows the first filename param-
eter, and the option ‘--unparameterized’ does not precede it.

Examples:

avram --map-to-each-file prettyprinter.avm *.c *.h --extra-pretty

In this example, parameter mode is indicated both by the parameter mode
option ‘--map-to-each-file’ and by the presence of input file names and
the ‘--extra-pretty’ option. The latter is specific to the hypothetical
prettyprinter.avm virtual code application, as indicated by its position on
the command line, and is therefore passed to it by avram.

cat ~/specfile | avram reportgenerator -v - /var/log/syslog

In this example, a hypothetical parameter mode application reportgenerator

is able to read ‘~/specfile’ from standard input because of the - used as a
parameter.

avram --parameterized grepenv

In this example, a hypothetical application that searches shell variables is in-
voked in parameter mode even with no input files or application specific options,
because of the ‘--parameterized’ option. Parameter mode invocation is re-
quired by the application to give it access to the environment.

avram grepenv --search-targets=PATH,MANPATH

This example shows an application specific option with both a keyword and a
parameter list. They suffice to indicate parameter mode without an explicit
‘--parameterized’ option.

6 avram - a virtual machine code interpreter

1.3 Filter Mode Options

The options available in filter mode are listed below. Except as otherwise noted, all
options are mutually exclusive. Ordinarily a given application will require certain fixed
settings of these options and will not work properly if they are set inappropriately.

-r, --raw-output

Normally the result obtained by evaluating the function in the virtual code file
must be a list of character strings, which is written as such to standard output.
However, if this option is selected, the form of the result is unconstrained, and
it will be written in a data file format that is not human readable but can be
used by other applications. This option is incompatible with any other options
except ‘-u’.

-c, --choice-of-output

When this option is used, the evaluation of the function given by the virtual
machine code will be expected to yield a data structure from which avram will
ascertain whether standard output should be written in text or raw data format.
This option should be used only if application is aware of it. It is incompatible
with any other options except ‘-u’.

-l, --line-map

Normally the entire contents of standard input up to EOF are loaded into mem-
ory and used as the argument to the function in the virtual code file. However,
this option causes standard input to be read a line at a time, with the function
applied individually to each line, and its result in each case written immedi-
ately to standard output. A given application either requires this option or
does not, and will not work properly in the alternative. This option implies
‘--force-text-input’ and is incompatible with any other option except ‘-u’.

-b, --byte-transducer

This option causes standard input to be read one character at a time, evaluating
the function given by the virtual code file each time. The function is used as
a state transition function that takes a state and input to a next state and
output. The output is written concurrently with the input operations. A given
application will not work properly with an inappropriate setting of this option.
This option implies ‘--force-text-input’ and is incompatible with any other
option except ‘-u’.

-u, --unparameterized

Normally avram guesses whether to use filter mode or parameter mode de-
pending on whether there are any parameters. Selecting this option forces it
to operate in filter mode regardless. Any parameters that may appear on the
command line after the virtual code file name are ignored. This option may be
used in conjunction with any other filter mode option.

Chapter 1: User Manual 7

1.4 Parameter Mode Options

The parameter mode options are listed below. Except as otherwise noted, any combina-
tion of parameter mode options may be selected together, and except as noted, the settings
of these options can be varied without breaking the application.

-q, --quiet

avram normally informs the user when writing an output file with a short mes-
sage to standard output. This option suppresses such messages. This option is
compatible with any application and any other parameter mode option except
‘-a’.

-a, --ask-to-overwrite

Selecting this option will cause avram to ask permission interactively before
overwriting an existing file, and to refrain from overwriting it without permis-
sion, in which case the contents that were to be written will be lost. This
option overrides ‘-q’ and is compatible with any other parameter mode option
or application.

-.EXT An option beginning with a dash followed by a period specifies a default exten-
sion for input file names. If avram doesn’t find a file named on the command
line, and the filename doesn’t already contain a period, avram will try to find
a file having a similar name but with the default extension appended. The
default extension given by this option takes precedence over the hard coded
default extensions of .fun and .avm. At most one default extension can be
supplied. This option is compatible with any other parameter mode option and
compatible with any application.

-d, --default-to-stdin

If no filename parameter appears on the command line (other than the name of
the virtual code file), this option directs avram to read the contents of standard
input as if it were specified as a command line parameter. (Standard input
can also be specified explicitly as a dash. See Section 1.5 [Command Line
Syntax], page 8.) This option is compatible with any application and any other
parameter mode option except ‘-m’.

-m, --map-to-each-file

Normally avram loads the entire contents of all files named on the command
line into memory so as to evaluate the virtual machine code application on
all of them together. This option can be used to save memory in the case of
applications that operate on multiple files independently. It causes avram to
load only one file at a time and to perform the relevant evaluation and output
before loading the next one. Application specific options and standard input
(if specified) are read only once and reused. This option is incompatible with
‘-d’, and not necessarily compatible with all applications, although some may
work both with and without it.

-i, --interactive

This option is used in the case of applications that interact with other programs
through shell commands. An application that is meant to be invoked in this

8 avram - a virtual machine code interpreter

way requires this option and will not work without it, nor will applications that
are not of this type work with it. This option is implied by ‘-t’ and ‘-s’, and
is compatible with any other parameter mode option.

-s, --step

This option is used in the case of applications that interact with other programs
through shell commands, similarly to ‘-i’, and can substitute for it (see above).
The option has the additional effect of causing shell commands issued by avram

on behalf of the application to be written with their results to standard output,
and to cause avram to pause after displaying each shell command until a key is
pressed. This capability may be useful for debugging or auditing purposes but
does not otherwise alter the effects of the application. This option is compatible
with any other parameter mode option.

-t, --trace

This option is used in the case of applications that interact with other pro-
grams through shell commands, but only by way of the interact combinator,
for which it provides developers a means of low level debugging, particularly
deadlock detection. When this option is selected, a verbose trace of all charac-
ters exchanged between the functional transducer and the external application
are written to standard output, along with some additional control flow diag-
nostics. This option is compatible with any other parameter mode option.

-p, --parameterized

Normally avram tries to guess whether to operate in filter mode or parameter
mode based on the options used and the parameters. If there are no parameters
and no options, it will default to filter mode, and try to read standard input.
However, if this option is selected, it will use parameter mode (and therefore
not try to read standard input unless required).

1.5 Command Line Syntax

The command line parameters that follow the virtual code file name when avram is used
in parameter mode (Section 1.2.2 [Parameter Mode], page 5) are dependent on the specific
application. However, all supported applications are constrained for implementation reasons
to observe certain uniform conventions regarding their command line parameters, which are
documented here to avoid needless duplication.

The shell divides the command line into "arguments" separated by white space. Ar-
guments containing white space or special characters used by the shell must be quoted or
protected as usual. File names with wild cards in them are expanded by the shell before
avram sees them.

avram then extracts from the sequence of arguments a sequence of filenames and a
sequence of options. Each option consists of a keyword and an optional parameter list.
Filenames, keywords, and parameter lists are distinguished according to the following cri-
teria.

1. An argument is treated as a keyword iff it meets these three conditions.

a. It starts with a dash.

Chapter 1: User Manual 9

b. It doesn’t contain an equals sign.

c. It doesn’t consist solely of a dash.

2. An argument is treated as a parameter list iff it meets these four conditions.

a. It doesn’t begin with a dash.

b. It either begins with an equals sign or doesn’t contain one.

c. It immediately follows an argument beginning with a dash, not containing an
equals sign and not consisting solely of a dash.

d. At least one of the following is true.

1. It doesn’t contain a period, tilde, or path separator.

2. It contains a comma.

3. It can be interpreted as a C formatted floating point number.

3. An argument is treated as an input file name iff it meets these four conditions.

a. It doesn’t begin with a dash.

b. It doesn’t contain an equals sign.

c. It doesn’t contain a comma.

d. At least one of the following is true.

1. It contains a period, tilde, or path separator.

2. It doesn’t immediately follow an argument beginning with a dash, not con-
sisting solely of a dash, and not containing an equals sign.

4. If an argument contains an equals sign but doesn’t begin with one, the part on the left
of the first equals sign is treated as a keyword and the part on the right is treated as
a parameter list.

5. An argument consisting solely of a dash is taken to represent the standard input file.

6. An argument not fitting any of the above classifications is an error.

These conventions are needed for avram to detect input file names in a general, position
independent way, so that it can preload the files on behalf of the application. Many stan-
dard Unix utilities follow these conventions to a large extent, the exceptions being those
that employ non-filename arguments without distinguishing syntax, and use positional or
other ad hoc methods of command line interpretation. A drop-in replacement for such an
application could nevertheless be implemented using avram with an appropriate wrapper
script, similar to the approach recommended in Section 1.8 [Example Script], page 15, but
with suitable keywords inserted prior to the ambiguous arguments.

1.6 Diagnostics

The means exists for virtual code applications to have run time error messages written to
standard error on their behalf by avram. Any error messages not documented here originate
with an application and should be documented by it.

Most error messages originating from avram are prefaced by the application name (i.e.,
the name of the file containing the virtual machine code), but will be prefaced by avram:

if the error is caused by a problem loading this file itself. Error messages originating from

10 avram - a virtual machine code interpreter

virtual code applications are the responsibility of their respective authors and might not be
prefaced by the application name.

The run time errors not specifically raised by the application can be classified as internal
errors, i/o errors, overflow errors, file format errors, application programming errors, and
configuration related errors.

Some error messages include a code number. The number identifies the specific point in
the source code where the condition was detected, for the benefit of the person maintaining
it.

1.6.1 Internal Errors

Internal errors should never occur unless the avram source code has been carelessly
modified, except as noted in Section 1.11 [Bugs], page 16. There are two kinds.

application-name: virtual machine internal error (code nn)

Most internal errors would be reported by a message of this form if they were
to occur. It indicates that some required invariant was not maintained. In such
cases, the program terminates immediately, and any results already produced
are suspect.

application-name: nn unreclaimed struct-names

A message of this form could be printed at the end of an otherwise successful
run. avram maintains a count of the number of units allocated for various data
structures, and checks that they are all reclaimed eventually as a safeguard
against memory leaks. This message indicates that some memory remains un-
accounted for.

If a repeatable internal error is discovered, please email a bug report and a small rep-
resentative test case to the author at avram-support@basis.uklinux.net. Include the
version number of avram, which you can get by running avram --version.

1.6.2 i/o Errors

These error messages are prefaced with the name of the application. A further explana-
tion as to the reason, obtained from the standard strerror() utility, is appended to the
messages below if possible.

application-name: can’t read filename

A file was not able to be opened for reading, typically because it was not found
or because the user does not have permission. The file name is displayed with
special characters expanded but without any default extensions or search paths
that may have been tried. If you think a file exists and should have been
found, there may be a problem with your AVMINPUTS environment variable
(Section 1.10 [Environment], page 16).

application-name: can’t write filename

A file was not able to be opened for writing.

application-name: can’t write to filename

A file was successfully opened for writing but became impossible to write there-
after.

Chapter 1: User Manual 11

application-name: can’t spawn command

An attempt to execute a shell command on behalf of an interactive application
failed during the exp_popen() call to the libexpect library.

application-name: can’t close filename

A call to the standard C procedure fclose() failed due to unforeseen circum-
stances. The error is non-fatal but the file should be checked for missing data.

1.6.3 Overflow Errors

These errors are reported by the application name prefacing one of the following mes-
sages, except as noted below.

application-name: counter overflow (code nn)

An overflow occurred in an unsigned long integer being used as a reference
counter or something similar. This situation is very unlikely.

application-name: memory overflow (code nn)

There wasn’t enough memory to build an internal data structure. The most
likely cause is an attempt to operate on input files that are too large. Standard
remedies apply.

The memory overflow or counter overflow messages can also be reported without the
application name preface or a code number. In these cases, they arise in the course of
evaluating the function given by the application, rather than by loading the input files.

A counter overflow in this case is possible if the application attempts to compute the
size of a very large, shared structure using native integer arithmetic.

Memory overflows are possible due to insufficient memory for a valid purpose, but may
also occur due to a non-terminating recursion in the virtual machine code. To prevent
thrashing or other bad effects from runaway code, the ulimit shell command is your friend.

1.6.4 File Format Errors

Certain application crashes result from an application not adhering to the required con-
ventions about data and file formats, or because the application was invoked in the wrong
mode (Section 1.2 [Modes of Operation], page 4). These are the following.

application-name: invalid text format (code nn)

An application that was expected to return a string of characters to be written
to a text file returned data that did not correspond to any valid character
representation.

application-name: null character in prompt

An interactive application (invoked rightly or wrongly with ‘-i’, ‘-t’, or ‘-s’) is
required to exchange strings of non-null characters internally with avram, and
used a null.

application-name: invalid file name (code nn)

The data structure representing a file obtained from an application has a name
consisting of something other than character strings. This error could be the
result of a filter mode application (Section 1.2.1 [Filter Mode], page 4) being
invoked in parameter mode. (Section 1.2.2 [Parameter Mode], page 5)

12 avram - a virtual machine code interpreter

application-name: null character in file name

Similar to the above errors.

application-name: bad character in file name

Slashes, backslashes, and unprintable characters other than spaces are also pro-
hibited in file names.

application-name: invalid output preamble format

According the format used by avram for data files, a data file may contain an
optional text portion, known as the preamble. This error occurs when a data
file obtained from an application can not be written because the preamble is
something other than a list of character strings.

application-name: invalid file specification

This error occurs in situations where the data structure for a file obtained by
evaluating the application is too broken to permit any more specific diagnosis.

avram: invalid raw file format in application-name

The file containing the virtual machine code was not able to be loaded, because
the code was not in a recognizable format. Either the file has become corrupted,
the compiler that generated it has a bug in it, or the wrong file was used as a
virtual code file.

1.6.5 Application Programming Errors

A further class of application crashes results from miscellaneous bugs in the applica-
tion. These require the application to be debugged and have no user level explanation or
workaround, but are listed here for reference. These messages are not normally prefaced by
the application name when reported unless the application elects to do so, except for the
invalid profile identifier message.

• invalid recursion

• invalid comparison

• invalid deconstruction

• invalid transpose

• invalid membership

• invalid distribution

• invalid concatenation

• invalid assignment

• unrecognized combinator (code nn)

• application-name: invalid profile identifier

• unsupported hook

1.6.6 Configuration Related Errors

The source code distribution of avram incorporates a flexible configuration script allowing
it to be installed on a variety of platforms. Not all platforms allow support for all features.
It is also anticipated that new features may be added to avram from time to time. Some

Chapter 1: User Manual 13

problems may therefore occur due to features not being supported at your site for either of
these reasons. The following error messages are relevant to these situations.

unsupported hook

If it’s not simply due to an application programming error (Section 1.6.5 [Ap-
plication Programming Errors], page 12) this message may be the result of
trying to use an application that requires a newer version of avram than the
one installed, even though applications should avoid this problem by checking
the version number at run time. If this is the reason, the solution would be to
install the latest version.

application-name: I need avram linked with foo, bar and baz.

A message of the this form indicates that a new installation may be needed.
At this writing (11/11/1), avram may report this message with respect to
libexpect5.32, tcl8.3, and libutil if any of the ‘-i’, ‘-t’, or ‘-s’ options
is used on a system where not all of these libraries were detected when avram

was installed from a source distribution. (See Section 1.4 [Parameter Mode Op-
tions], page 7.) Because avram is useful even without interactive applications,
these libraries are not considered absolute prerequisites by the configuration
script.

avram: can’t emulate version version

The ‘--emulation=version’ option obviously won’t work if the requested ver-
sion is newer than the installed version, or if it is not a valid version number
(Section 1.1 [General Options], page 3). When that happens, this message is
printed instead and avram terminates.

avram: multiple version specifications

The ‘--emulation=version’ option can be used at most once on a command
line. This message is printed if it is used more than once. If you only typed
it once and got this message, check your aliases and wrapper scripts before
reporting a bug.

avram: unrecognized option: option-name

may mean that a command line option has been misspelled, or may be another
sign of an obsolete version of avram. This message will be followed by a usage
summary similar to that of the ‘--help’ option. (Section 1.1 [General Options],
page 3).

application-name: warning: search paths not supported

If the ‘argz.h’ header file was not detected during configuration, avram will
not be able to support search paths in the AVMINPUTS environment variable
(Section 1.10 [Environment], page 16). This message is a warning that the
environment variable is being ignored. If the warning is followed by an i/o
error (Section 1.6.2 [i/o Errors], page 10), the latter may be due to a file being
in a path that was not searched for this reason. A workaround is to specify
the full path names of all input files outside the current working directory. If
you don’t need search paths, you can get rid of this message by undefining
AVMINPUTS.

14 avram - a virtual machine code interpreter

1.6.7 Other Diagnostics and Warnings

avram: multiple -.EXT options; all but last ignored

This message is written when more than one default extension is given as a
command line parameter. At most one default extension is allowed. If more
than one is given, only the last one is used. The error is non-fatal and avram

will try to continue. If you need more than one default extension, consider
using the hard coded default extensions of ‘.fun’ and ‘.avm’, or hacking the
shell script in which the avram command line appears.

application name: empty operator

This message probably means that the virtual code file is corrupt or invalid.

usage summary
For any errors in usage not covered by other diagnostics, such as incompatible
combinations of options, avram prints a message to standard error giving a brief
summary of options, similar to the output from avram --help. (See Section 1.1
[General Options], page 3.)

1.7 Security

A few obvious security considerations are relevant to running untrusted virtual code
applications. These points are only as reliable as the assumption that the avram executable
has not been modified to the contrary.

• The applications with the best protection from malicious code are those that run in
filter mode, because they have no access to any information not presented to them in
standard input, nor the ability to affect anything other than the contents of standard
output (provided that the --jail command line option is used). The worst they can
do is use up a lot of memory, which can be prevented with the ulimit command.
Unfortunately, not all applications are usable in this mode.

• Parameter mode applications that do not involve the ‘-i’, ‘-t’ or ‘-s’ options are almost
as safe (also assuming --jail). They have (read-only) access to environment variables,
and to the files that are indicated explicitly on the command line. If standard input is
one of the files (as indicated by the use of - as a parameter), the virtual code application
may infer the current date and time. However, a parameter mode application may write
any file that the user has permission to write. The ‘--ask-to-overwrite’ option should
be used for better security, or at least the ‘--quiet’ option should not be used. The
virtual code can neither override nor detect the use of these options.

• Interactive parameter mode applications (those that use either the ‘-i’, ‘-t’ or ‘-s’
options) are the least secure because they can execute arbitrary shell commands on
behalf of the user. This statement also applies to filter mode and parameter mode
applications where the ‘--jail’ option is not used. Use of ‘--step’ is preferable to ‘-i’
for making an audit trail of all commands executed, but the application could probably
subvert it. The ‘--step’ option may be slightly better because it can allow the user
to inspect each command and interrupt it if appropriate. However, in most cases a
command will not be displayed until it is already executed. Commands executed by

Chapter 1: User Manual 15

non-interactive applications normally will display no output to that effect. A chroot

environment may be the only secure way of running untrusted interactive applications.

1.8 Example Script

It is recommended that the application developer (or the compiler) package virtual ma-
chine code applications as shell scripts with the avram command line embedded in them.
This style relieves the user of the need to remember the appropriate virtual machine options
for invoking the application, which are always the same for a given application, or even to
be aware of the virtual machine at all.

Here is a script that performs a similar operation to the standard Unix cat utility.

#!/bin/sh
#\
exec avram --force-text-input --default-to-stdin "$0" "$@"
sKYQNTP\

That is, it copies the contents of a file whose name is given on the command line to standard
output, or copies standard input to standard output if no file name is given. This script can
be marked executable (with chmod) and run by any user with the directory of the avram

executable in his or her PATH environment variable, even if avram had to be installed in a
non-standard directory such as ‘~/bin’.

The idea for this script is blatantly lifted from the wish manpage. The first line of the
script invokes a shell to process what follows. The shell treats the second line as a comment
and ignores it. Based on the third line, the shell invokes avram with the indicated options,
the script itself as the next argument, and whatever command line parameters were initially
supplied by the user as the remaining arguments. The rest of the script after that line is
never processed by the shell.

When avram attempts to load the shell script as a virtual machine code file, which
happens as a result of it being executed by the shell, it treats the first line as a comment
and ignores it. It also treats the second line as a comment, but takes heed of the trailing
backslash, which is interpreted as a comment continuation character. It therefore also treats
the third line as a comment and ignores it. Starting with the fourth line, it reads the virtual
code, which is in a binary data format encoded with printable characters, and evaluates it.

1.9 Files

./profile.txt

This file is written automatically by avram on behalf of applications that include
profile annotations. It lists the number of invocations for each annotated part
of the application, the total amount of time spent on it (in relative units), the
average amount of time for each invocation, and the percentage of time relative
to the remainder of the application. The exact format is undocumented and
subject to change.

16 avram - a virtual machine code interpreter

1.10 Environment

An environment variable AVMINPUTS can be made to store a list of directories (using the
set or export commands) that avram will search for input files. The directories should be
separated by colons, similarly to the PATH environment variable.

The search paths in AVMINPUTS apply only to the names of input files given on the
command line (Section 1.5 [Command Line Syntax], page 8) when avram is invoked in
parameter mode (Section 1.2.2 [Parameter Mode], page 5). They do not apply to the name
of the virtual code file, which is always assumed to be either absolute or relative to the
current working directory (this assumption being preferable in the case of a script like that
of Section 1.8 [Example Script], page 15).

Starting in the first directory in the list of AVMINPUTS, avram searches for a file exactly
as its name appears on the command line (subject to the expansion of special characters by
the shell). If it is not found and the name does not contain a period, but a command line
option of ‘-.EXT’ has been used, avram will then search for a file with that name combined
with the extension .EXT. If ‘-.EXT’ has not been used or if no matching file is found with
it, avram tries the extensions of .avm and .fun in that order, provided the given file name
contained no periods. If no match is found for any of those cases, avram proceeds to search
the next directory in the list obtained from AVMINPUTS, and so on. It stops searching when
the first match is found. For subsequent input files, the search begins again at the first
directory.

If AVMINPUTS is defined, the current working directory is not searched for input files
unless it is listed. If it is empty or not defined, a default list of search paths is used,
currently

.:/usr/local/lib/avm:/usr/lib/avm:/lib/avm:/opt/avm:/opt/lib/avm\
:/usr/local/share/avm:/usr/share/avm:/share/avm:/opt/avm:/opt/share/avm

These paths are defined in avram.c and can be changed by recompiling it.

1.11 Bugs

There are no known bugs outstanding, except for any that may be inherent in the
external library functions. However, avram has been used most extensively on GNU/Linux
systems, and the prospect of portability issues with new or lesser used features on other
systems can’t be excluded.

Though not observed in practice, it’s theoretically possible to blow the stack by passing
enough functions as arguments to library functions that pass more functions to library
functions (e.g., by using nested calls to the gsl integration functions meant for a single
variable to evaluate a very high dimensional multiple integral). In all other cases only
dynamic heap storage or a constant amount of stack space is used. In particular, this issue
is not relevant to virtual code applications that don’t use external libraries, or that don’t
pass functions to them as arguments.

avram is designed to recover gracefully from memory overflows by always checking for
NULL results from malloc() or otherwise trapping functions that allocate memory. In the
event of an overflow, it conveys an appropriate error message to the virtual code application
to be handled by the usual exception handling mechanisms. However, there is currently

Chapter 1: User Manual 17

no way for a virtual code application to detect in advance whether sufficient memory is
available, nor for it to resume normal operation once an exception occurs. Furthermore,
it has been observed on some systems including Irix and 2.4 series Linux kernels that the
avram process is killed automatically for attempting to allocate too much memory rather
than given the chance to recover.

Please send bug reports to avram-support@basis.uklinux.net.

18 avram - a virtual machine code interpreter

Chapter 2: Virtual Machine Specification 19

2 Virtual Machine Specification

This chapter contains a description of the virtual machine implemented by avram, from
the point of view of a person wishing to write a compiler that generates code for it. Before
reading this chapter, readers should at least skim Chapter 1 [User Manual], page 3 in order
to see the big picture. Topics covered in this chapter include data representations, virtual
code semantics, and file formats. A toy programming language is introduced for illustrative
purposes. The sections in this chapter might not make sense if read out of order the first
time through.

2.1 Raw Material

The purpose of this section is to instill some basic concepts about the way informa-
tion is stored or communicated by the virtual machine, which may be necessary for an
understanding of subsequent sections.

The virtual machine represents both programs and data as members of a semantic do-
main that is straightforward to describe. Lisp users and functional programmers may
recognize familiar concepts of atoms and lists in this description. However, these terms are
avoided for the moment, in order to keep this presentation self contained and to prevent
knowledgeable readers from inferring any unintended meanings.

As a rule, it is preferable to avoid overspecifying any theoretical artifact. In this spirit,
the set of entities with which the virtual machine is concerned can be defined purely in
terms of the properties we need it to have.

A distinguished element

A particular element of the set is designated, arbitrarily or otherwise, as a
distinguished element. Given any element of the set, it is always possible to
decide whether or not it is the distinguished element. The set is non-empty and
such an element exists.

A binary operator

A map from pairs of elements of the set to elements of the set exists and meets
these conditions.

• It associates a unique element of the set with any given ordered pair of
elements from the set.

• It does not associate the distinguished element with any pair of elements.

For the sake of concreteness, an additional constraint is needed: the set has no proper

subset satisfying the above conditions. Any number of constructions remain within these
criteria, but there is no need to restrict them further, because they are all equivalent for
our purposes.

To see that these properties provide all the structure we need for general purpose com-
putation, we may suppose some given set S and an operator cons having them are fixed,
and infer the following points.

• S contains at least one element, the distinguished element. Call it nil.

• The pair (nil,nil) is a pair of elements of S, so there must be an element of S that
cons associates with it. We can denote this element cons(nil,nil).

20 avram - a virtual machine code interpreter

• As no pair of elements is associated with the distinguished element, cons(nil,nil)
must differ from nil, so S contains at least two distinct elements.

• The pair (nil,cons(nil,nil)) therefore differs from (nil,nil), but because it is yet
another pair of elements from S, there must be an element associated with it by the
operator. We can denote this element as cons(nil,cons(nil,nil)).

• Inasmuch as the operator associates every pair of elements with a unique element,
cons(nil,cons(nil,nil)) must differ from the element associated with any other
pair of elements, so it must differ from cons(nil,nil), and we conclude that nil,
cons(nil,nil) and cons(nil,cons(nil,nil)) constitute three distinct elements of
the set S.

• By defining cons(cons(nil,nil),nil) and cons(cons(nil,nil),cons(nil,nil))

analogously and following a similar line of reasoning, one may establish the existence
of two more distinct elements of S.

It is not difficult to see that an argument in more general terms could show that the
inclusion of infinitely many elements in S is mandated by the properties of the cons operator.
Furthermore, every element of S other than nil owes its inclusion to being associated with
some other pair of elements by cons, because if it were not, its exclusion would permit a
proper subset of S to meet all of the above conditions. We can conclude that S contains
exactly nil and the countable infinitude of elements of the form cons(x,y), where x and
y are either nil or something of the form cons(...) themselves.

Some specific examples of sets and operators that have the required properties are as
follows.

• the set of natural numbers, with 0 as the distinguished element, and the cons operator
defined by cons(x,y) = ((x+y)(x+y+1))/2 + y + 1

• a set of balanced strings of parentheses, with () as the distinguished element, and cons

defined as string concatenation followed by enclosure in parentheses

• a set of ordered binary trees, with the empty tree as the distinguished element, and
the cons operator as that which takes an ordered pair of trees to the tree having them
as its descendents

• a set containing only its own Cartesian product and an arbitrary but fixed element
nil, with cons being the identity function

Each of these models may suggest a different implementation, some of which are more
practical than others. The remainder of this document is phrased somewhat imprecisely in
terms of a combination of the latter two. The nature of the set in question is not considered
further, and elements of the set are described as “trees” or “lists”. The distinguished element
is denoted by nil and the operator by cons. Where no ambiguity results, cons(x,y)
may be written simply as (x,y). These terms should not be seen as constraints on the
implementation.

2.2 Concrete Syntax

The previous section has developed a basic vocabulary for statements such as “the vir-
tual machine code for the identity function is (nil,(nil,nil))”, which are elaborated

Chapter 2: Virtual Machine Specification 21

extensively in the subsequent sections on code and data formats. However, a descrip-
tion in this style would be inadequate without an explanation of how such an entity as
(nil,(nil,nil)) is communicated to avram in a virtual machine code file. The purpose of
this section is to fill the gap by explaining exactly how any given tree would be transformed
to its concrete representation.

The syntax is based on a conversion of the trees to bit strings, followed by grouping the
bits into blocks of six, which are then encoded by printable characters. Although anyone
is free to modify avram, it is recommended that the concrete syntax described here be
maintained for the sake of portability of virtual machine code applications.

Building a tree by reading the data from a file requires a more difficult algorithm than
the one presented in this section, and is not considered because it’s not strictly necessary
for a compiler. Procedures for both reading and writing are available to C and C++ users
as part of the avram library, and are also easily invoked on the virtual code level.

2.2.1 Bit String Encoding

The conversion from trees to bit strings might have been done in several ways, perhaps
the most obvious being based on a preorder traversal with each vertex printed as it is
traversed. By this method, the entire encoding of the left descendent would precede that
of the right in the bit string. This alternative is therefore rejected because it imposes
unnecessary serialization on communication.

It is preferable for the encodings of both descendents of a tree to be interleaved to allow
concurrent transmission. Although there is presently no distributed implementation of the
virtual machine and hence none that takes advantage of this possibility, it is better to plan
ahead than to be faced with backward compatibility problems later.

The preferred algorithm for encoding a tree as a bit string employs a queue. The queue
contains trees and allows them to be processed in a first-in first-out order. Intuitively, the
algorithm works by traversing the tree in level order. To print a tree T as a string of 1s and
0s, it performs the following steps.

Initialize the queue to contain only T
while the queue is not empty do

if the front element of the queue is nil then
print 0

else if the front element of the queue is of the form cons(x,y) then
print 1
append x to the back of the queue
append y to the back of the queue

end if
remove the front element of the queue

end while

This algorithm presupposes that any given tree cons(x,y) can be “deconstructed” to
obtain x and y. The computability of such an operation is assured in theory by the unique-
ness property of the cons operator, regardless of the representation chosen. If the trees
are implemented with pointers in the obvious way, their deconstruction is a trivial constant
time operation.

22 avram - a virtual machine code interpreter

As an example, running the following tree through the above algorithm results in the
bit string 111111101011110010001001100010100010100100100.

cons(
cons(

cons(nil,cons(nil,cons(nil,nil))),
cons(nil,cons(nil,nil))),

cons(
cons(

cons(nil,cons(nil,cons(nil,cons(nil,nil)))),
cons(nil,nil)),

cons(
cons(

cons(nil,cons(nil,cons(cons(nil,cons(nil,nil)),nil))),
cons(nil,nil)),

nil)))

2.2.2 Blocking

After the bit string is obtained as described above, it is grouped into blocks of six.
Continuing with the example, the string

111111101011110010001001100010100010100100100

would be grouped as

111111 101011 110010 001001 100010 100010 100100 100

Because the number of bits isn’t a multiple of six, the last group has to be padded with
zeros, to give

111111 101011 110010 001001 100010 100010 100100 100000

Each of these six bit substrings is then treated as a binary number, with the most significant
bit on the left. The numbers expressed in decimal are

63 43 50 9 34 34 36 32

The character codes for the characters to be written are obtained by adding sixty to each
of these numbers, so as to ensure that they will be printable characters. The resulting
character codes are

123 103 110 69 94 94 96 92

which implies that the tree in the example could be written to a file as {gnE^^‘\.

2.3 File Format

A virtual code file consists of an optional text preamble, followed by the concrete rep-
resentation for a tree. The latter uses the syntax described in the previous section. The
purpose of this section is to specify the remaining details of the file format.

The format for virtual code files may also be used for other purposes by virtual code
applications, as it is automatically detected and parsed by avram when used in an input
file, and can be automatically written to output files at the discretion of the application.

Chapter 2: Virtual Machine Specification 23

Other than virtual code files, input files not conforming to this format are not an error
as far as avram is concerned, because they are assumed to be text files. Applications can
detect in virtual code the assumption that is made and report an error if appropriate.

Although the data file format includes no checksums or other explicit methods of error
detection, the concrete syntax itself provides a good measure of protection against unde-
tected errors. The probability is vanishingly small that a random alteration to any valid
encoding leaves it intact, because every bit in the sequence either mandates or prohibits the
occurrence of two more bits somewhere after it. Errors in different parts of the file would
have to be consistent with one another to go unnoticed.

2.3.1 Preamble Section

• A file may contain at most one preamble.

• The preamble, if any, is a consecutive sequence of lines beginning with the first line in
the file.

• The first line of the preamble must begin with a hash (#) character.

• Subsequent lines of the preamble must either begin with a hash, or immediately follow
a line that ends with a backslash (\) character (or both).

2.3.2 Data Section

• The data or virtual code section of the file begins on the first line of the file that isn’t
part of the preamble.

• The data section may not contain any hashes, white space, or other extraneous char-
acters other than line breaks.

• If line breaks are ignored, the data section contains a sequence of characters expressing
a single tree in the concrete syntax described in Section 2.2 [Concrete Syntax], page 20.

2.4 Representation of Numeric and Textual Data

As noted already, virtual code applications are specified by functions operating on ele-
ments of a set having the properties described in Section 2.1 [Raw Material], page 19, which
are convenient to envision as ordered binary trees or pairs of nil. However, virtual code
applications normally deal with numeric or textual data, for example when they refer to the
contents of a text file. It is therefore necessary for the application and the virtual machine
emulator to agree on a way of describing textual or numeric data with these trees.

The purpose of this section is to explain the basic data structures used in the exchange
of information between avram and a virtual code application. For example, an explanation
is needed for statements like “an application invoked with the ‘--baz’ option is expected to
return a pair (foo,bar), where foo is a list of character strings . . .”, that are made subse-
quently in this document. Such statements should be understood as referring to the trees
representing the pairs, lists, character strings, etc., according to the conventions explained
below.

Characters

An arbitrarily chosen set of 256 trees is used to represent the character set. They
are listed in Appendix A [Character Table], page 123. For example, the letter A

24 avram - a virtual machine code interpreter

is represented by (nil,(((nil,(nil,(nil,nil))),nil),(nil,nil))). That
means that when an application wants the letter A written to a text file, it
returns something with this tree in it.

Booleans The value of false is represented by nil, and the value of true is represented
by (nil,nil).

Pairs Given any two items of data x1 and x2, having the respective representations
r1 and r2, the pair (x1,x2) has the representation cons(r1,r2).

Lists A list of the items x1, x2 . . . xn with respective representations r1 through rn

is represented by the tree cons(r1,cons(r2...cons(rn,nil)...)). In other
words, lists are represented as pairs whose left sides are the heads and whose
right sides are the tails. The empty list is identified with nil. Lists of arbitrary
finite length can be accommodated.

Naturals A number of the form b0 + 2b1 + 4b2 + ... + 2^n bn, where each bi is 0 or 1,
is represented by a tree of the form cons(t0,cons(t1...cons(tn,nil)...))

where each ti is nil if the corresponding bi is 0, and (nil,nil) otherwise.
Note that the numbers bi are exactly the bits written in the binary expansion
of the number, with b0 being the least significant bit.

Strings are represented as lists of characters.

avram imposes no more of a “type discipline” than necessary to a workable interface
between it and an application. This selection of types and constructors should not be seen
as constraining what a compiler writer may wish to have in a source language.

2.5 Filter Mode Interface

From the point of view of the application developer or compiler writer, there are pa-
rameter mode applications, which are discussed in Section 2.6 [Parameter Mode Interface],
page 27, and filter mode applications, which are discussed in this section. Of the latter,
there are mainly three kinds: those that read one character at a time, those that read a
line at a time, and those that read the whole standard input file at once. Each of them
is invoked with different options and expected to follow different calling conventions. This
section summarizes these conventions.

2.5.1 Loading All of Standard Input at Once

Unless ‘--line-map’ or ‘--byte-transducer’ is used as a command line option when
the application is invoked, the contents of standard input are loaded entirely into memory
by avram before evaluation of the virtual code begins. This interface is obviously not
appropriate for infinite streams.

The virtual code application in this mode of operation is treated as a single function tak-
ing the entire contents of standard input as its argument, and returning the entire contents
of standard output as its result. Hence, this interface is one of the simplest available.

Chapter 2: Virtual Machine Specification 25

2.5.1.1 Standard Input Representation

The representation for the standard input file used as the argument to the function de-
pends both on the file format and on the command line options specified when the applica-
tion is invoked. The ‘--unparameterized’ and ‘--raw-output’ options make no difference
to the input representation, and the ‘--line-map’ and ‘--byte-transducer’ options are
not relevant to this mode of operation. That leaves four possible combined settings of the
‘--choice-of-output’ and ‘--force-text-input’ options. If standard input conforms to
the data file format specification Section 2.3 [File Format], page 22, the following effects are
possible.

• If neither ‘--choice-of-output’ nor ‘--force-text-input’ is used, the argument to
the function will be given directly by the tree encoded in the data section of the file.
The preamble of the file will be ignored.

• If the ‘--choice-of-output’ option is used and the ‘--force-text-input’ option is
not used, the argument to the function will be a pair (preamble,contents), where
preamble is a list of character strings taken from the preamble of the file (with leading
hashes stripped), and contents is the tree represented in the data section of the file.

• If the ‘--choice-of-output’ option is not used and the ‘--force-text-input’ option
is used, the argument to the function will be the whole file as a list of character strings.
I.e., both the preamble and the data sections are included, hashes are not stripped from
the preamble, and the data section is not converted to the tree it represents.

• If the ‘--choice-of-output’ option is used and the ‘--force-text-input’ option is
also used, the argument to the the function will be a pair (nil,contents), where the
contents are the list of character strings as in the previous case.

If standard input does not conform to the data file format specification in Section 2.3
[File Format], page 22, then it is assumed to be a text file. The ‘--force-text-input’
option makes no difference, and there are only two possible effects, depending on whether
‘--choice-of-output’ is used. They correspond to the latter two cases above, where
‘--force-text-input’ is used.

The idea of the ‘--choice-of-output’ option is that it is used only for applications
that are smart enough to be aware of the (preamble,contents) convention. A non-empty
preamble implies a data file whose contents could be any type, but an empty preamble
implies a text file whose contents can only be a list of character strings. (In the case of a
data file with no preamble, the list of the empty string is used for the preamble to distinguish
it from a text file.)

Dumb applications that never want to deal with anything but text files should be invoked
with ‘--force-text-input’. Otherwise, they have to be prepared for either text or data
as arguments.

The use of both options at once is unproductive as far as the input format is concerned,
but may be justified when the output is to be a data file and the input is text only.

2.5.1.2 Standard Output Representation

As in the case of standard input, the representation for standard output that the function
is expected to return depends on the command line options with which the application is

26 avram - a virtual machine code interpreter

invoked. The only relevant options are ‘--raw-output’ and ‘--choice-of-output’, which
are mutually exclusive.

• If neither option is selected, the result returned by the function must be a list of
character strings.

• If ‘--raw-output’ is used, the result returned by the function is unconstrained, and
it will be written as a data file with no preamble, following the format specified in
Section 2.3 [File Format], page 22.

• If ‘--choice-of-output’ is used, the result returned by the function must be a pair
(preamble,contents).

In the last case, the preamble determines how the file will be written. If it is meant to
be a text file, the preamble should be nil, and the contents should be a list of character
strings. If it is meant to be a data file, the preamble should be a non-empty list of character
strings, and the format of the contents is unconstrained. To express a data file with no
preamble, the preamble should be the list containing the empty string, rather than being
empty.

In the result returned by the function, the preamble lines should not include leading hash
characters, because they are automatically added to the output to enforce consistency with
the data file format. However, they should include trailing backslashes as continuation char-
acters where appropriate. The hashes that are automatically added will be automatically
stripped by avram on behalf of whatever application uses the file.

Any file can be written as a list of character strings, even “text” files that are full of
unprintable characters, and even “text” files that happen to conform to the format used for
data files. However, if the application intends to write a data file in the standard format
used by other virtual code applications, it can do so more quickly and easily by having the
virtual machine do the formatting automatically with the ‘--choice-of-output’ option
than by implementing the algorithm in Section 2.2 [Concrete Syntax], page 20, from scratch
in virtual code.

2.5.2 Line Maps

Virtual code applications invoked with the ‘--line-map’ option (with or without the
‘--unparameterized’ option) adhere to a very simple interface.

• The argument to the function is a character string, and the result must also be a
character string.

• The function is applied to each line of the standard input file and the result in each
case is written to standard output followed by a line break.

This kind of application may be used on finite or infinite streams, provided that the
lengths of the lines are finite, but preserves no state information from one line to the next.

2.5.3 Byte Transducers

The interface used when the --byte-transducer option is selected allows an application
to serve as a persistent stream processor suitable for finite or infinite streams. The interface
can be summarized by the following points.

Chapter 2: Virtual Machine Specification 27

• When it is first invoked, the function in the virtual code file is applied to an argu-
ment of nil, and is expected to return a pair (state,output). The state format is
unconstrained. The output must be a character string that will be written to standard
output, but it may be the empty string.

• For each byte read from standard input, avram applies the function to the pair
(state,character), using the state obtained from previous evaluation, and the charac-
ter whose code is the byte. The purpose of the state field is therefore to provide a way
for the application to remember something from one invocation to the next.

• The function is usually expected to return a pair (state,output) for each input byte,
so that the state can be used on the next iteration, and the output can be written to
standard output as a character string.

• If the function ever returns a value of nil, the computation terminates.

• If standard input comes to an end before the computation terminates, the function will
be applied to a pair of the form (state,nil) thereafter, but may continue to return
(state,output) pairs for arbitrarily many more iterations. The EOF character is not
explicitly passed to the function, but the end is detectable insofar as nil is not a
representation for any character.

Unlike the situation with line maps, the output character strings do not have line breaks
automatically appended, and the application must include them explicitly if required. The
convention for line breaks is system dependent. On Unix and GNU/Linux systems, character
code 10 indicates a line break, but other systems may use character code 13 followed by
character code 10. See Appendix A [Character Table], page 123 for the representations of
characters having these codes.

2.6 Parameter Mode Interface

The virtual code file for a parameter mode application contains a tree representing a
single function, which takes as its argument a data structure in the format described below.
The format of the result returned by the function depends on the virtual machine options
used on the command line, and the various alternatives are explained subsequently.

2.6.1 Input Data Structure

The data structure that is used as the argument to the parameter mode application
incorporates all the information about the command line and the environment variables. It
is in the form of a triple ((files,options),environs). The fields have these interpretations.

files is a list of quadruples ((date,path),(preamble,contents)), with one quadruple
for each input file named on the command line (but not the virtual code file or
the avram executable). The list will be in the same order as the filenames on
the command line, and is not affected by options interspersed with them. The
fields in each item have the following interpretations.

date is the time stamp of the file in as a character string in the usual
Unix format, for example, Fri Jan 19 14:34:44 GMT 2001. If the
file corresponds to standard input, the current system time and
date are used.

28 avram - a virtual machine code interpreter

path is the full path of the file, expressed as a list of strings. If the
file corresponds to standard input, the list is empty. Otherwise,
the first string in the list is the file name. The next is the name
of the file’s parent directory, if any. The next is the parent of the
parent, and so on. The root directory is indicated by the empty
string, so that any path ending with the empty string is an absolute
path, while any path ending with a non-empty string is relative to
the current working directory. Path separators (i.e., slashes) are
omitted.

preamble In the case of a text file, or any file not conforming to the format in
Section 2.3 [File Format], page 22, this field is nil. Otherwise, this
field contains the preamble of the file expressed as a list of strings,
or contains just the empty string if the file has no preamble. Any
leading hashes in the preamble of the file are stripped.

contents In the case of a text file (as indicated by the preamble field), this
field will contain a list of character strings, with each line of the file
contained in a character string. Otherwise, it can contain data in
any format, which are obtained by converting the data section of
the file to a tree.

options is a list of quadruples of the form ((position,longform),(keyword,params))

with one quadruple for each option appearing on the command line after the
name of the virtual code file.

position is a natural number indicating the position of the option on the
command line. The position numbers of all the options will form
an ascending sequence, but not necessarily consecutive nor starting
with zero. The missing numbers in the sequence will correspond
to the positions of the file names on the command line, allowing
their positions to be inferred by applications for which the position
matters.

longform is a boolean value which is true if the option starts with two or
more dashes but false otherwise.

keyword is the key word of the option expressed as a character string. For
example in the case of a command line option --foo=bar,baz, the
keyword is foo. Leading dashes are stripped.

params is a list of character strings identifying the parameters for the com-
mand line option in question. In the case of an option of the form
--foo=bar,baz, the first character string in the list will be bar

and the next will be baz. The same applies if the option is writ-
ten --foo bar,baz or --foo =bar,baz. If there are no parameters
associated with the option, the list is empty.

environs is a list of pairs of character strings, with one pair in the list for each environment
variable. The identifier is the left string in the pair, and the value is the right.
For example, if the environment contains the definition OSTYPE=linux-gnu,

Chapter 2: Virtual Machine Specification 29

there will be a pair in the list whose left side is the string OSTYPE and whose
right side is the string linux-gnu.

2.6.2 Input for Mapped Applications

Applications invoked using the ‘--map-to-each-file’ option benefit from a slightly
different interface than the one described above. As the purpose of this option is to save
memory by loading only one file at a time, the application does not have access to all input
files named on the command line simultaneously within the same data structure. Although
the data structure is of the type already described, the files field is not a list of arbitrary
length. Instead, it is a list containing exactly one item for an input file. If - is used as
a command line parameter, indicating standard input, then files will have another item
pertaining to standard input. In no event will it have other than one or two items.

The mapped application is expected to work by being applied individually to each of any
number of separately constructed data structures, doing the same in each case as it would
if that case were the only one. To make that possible, copies of the environment variables,
the contents of standard input, and the list of application specific options are contained in
the data structure used for every invocation.

The position numbers in the options are adjusted for each invocation to reflect the posi-
tion of the particular input file associated with it. For example, in the following command

avram --map-to-each-file mapster.avm fa.txt --data fb.dat --code fc.o

the function in the virtual code file ‘mapster.avm’ would be applied to each of three data
structures, corresponding to the commands

avram mapster.avm fa.txt --data --code
avram mapster.avm --data fb.dat --code
avram mapster.avm --data --code fc.o

If the relative positions of the options and filenames were important to the application, they
could be reliably inferred from the position numbers. In the first case, they would be 1 and
2, implying that the file is in position 0. In the second case they would be 0 and 2, implying
that the file is in position 1, and in the third case they would be 0 and 1, implying that the
file is in position 2. (Of course, nothing compels an application to concern itself with the
positions of its parameters, and the alternative might be preferable.)

For the most part, any application that can operate on one file at a time with-
out needing information from any others can be executed more economically with the
‘--map-to-each-file’ option and few if any changes to the code. The effect will normally
be analogous to the above example, subject to a few possible differences.

• If an application is supposed to do something by default when there are no file param-
eters or only standard input, it won’t work as a mapped application, because if there
are no file parameters it won’t be executed at all.

• If a mapped application causes any output files to be generated, they may be written
before other input files are read, possibly causing the input files to be overwritten if
they have the same names, and causing subsequent invocations to use the overwritten
versions. This behavior differs from that of loading all input files at the outset, which
ensures the application seeing all of the original versions. The latter may be more
convenient for maintaining a group of files in some sort of consistent state.

30 avram - a virtual machine code interpreter

• If an application causes standard output to be written along with output files, normally
standard output is written last as a security measure against malicious code altering
the ‘--ask-to-overwrite’ prompts by subtly clobbering the console. In a mapped
application, standard output isn’t always last because there may be more invocations
to come.

2.6.3 Output From Non-interactive Applications

If a parameter mode application is not invoked with either of the ‘--interactive’ or
‘--step’ options, then it is deemed to be non-interactive, and therefore does not concern
itself with executing shell commands. Instead, it simply specifies a list of output files to be
created or updated on its behalf by avram.

The files are described by a list of quadruples ((overwrite,path),(preamble,contents)),
with one quadruple for each file.

In each quadruple, the path, preamble, and contents fields have the same interpretations
as in the list of files in the input data structure described in Section 2.6.1 [Input Data
Structure], page 27, except that a nil path refers to standard output rather than to standard
input.

The overwrite field in each quadruple tells whether the file should be overwritten or
appended. If the overwrite field is nil (i.e., the representation for the Boolean value of
false) and a file already exists at the given path, the new contents will be appended to it.
If the overwrite field is anything other than nil and/or no file exists with the given path, a
new file is written or the extant one is overwritten. Note that the data file format specified
in Section 2.3 [File Format], page 22 precludes appending anything to it, but the format of
existing output files is not checked and nothing prevents data or text from being appended
to one.

2.6.4 Output From Interactive Applications

Parameter mode applications invoked with either of the ‘--interactive’ or ‘--step’
options are required to take the data structure described in Section 2.6.1 [Input Data
Structure], page 27 as an argument but to return the virtual code for a function that will
observe a certain protocol allowing shell commands to be executed on its behalf. The intent
is that the virtual code file doesn’t contain the real application per se, but only something
that builds the real one on the fly using configuration information from the input files and
command line options.

The format of the result returned by an interactive application, being a virtual code
application itself, requires a full exposition of the virtual machine code semantics. This
subject is deferred to Section 2.7 [Virtual Code Semantics], page 33. The remainder of
this section describes the protocol followed by the function returned by the interactive
application rather than the application itself.

Similarly to the case of a byte transducer described in Section 2.5.3 [Byte Transducers],
page 26, the basic pattern of interaction between avram and the function is a cycle of
invocations. In general terms, the function is applied to a nil argument initially, and
expected to return an initial state and initial output. Thereafter, the function is applied to
a pair of the state returned on the previous iteration, and the next installment of input. The

Chapter 2: Virtual Machine Specification 31

function returns further output and a new state, and the cycle continues until the function
returns a value of nil, at which time the computation terminates.

2.6.4.1 Line Oriented Interaction

Within this general pattern, more specific styles of interaction are possible. In the
simplest one to explain first, the result returned by the function is always a data structure of
the form (state,(command lines,prompts)), wherein the fields have these interpretations.

state is a tree incorporating any data in any format that the application needs to
remember from one invocation to the next.

command lines

is a list of character strings that are piped to the standard input stream of a
separately spawned process. The process may persist from one invocation of
the function to the next, or may be spawned each time.

prompts is a non-empty list of character strings containing a suffix of the text expected
from the standard output stream of the process as a result of sending the
command lines to it.

On each iteration, avram sends the command line character strings to a separately
spawned process, with line breaks between them if there are more than one command.
If a process remains from the previous iteration that has not terminated itself, the list of
command lines is sent to the same process. If no such process already exists, the first string
in the list of command lines is treated as a shell command and used to spawn the process
(using the exp_popen library function), and the remaining strings are sent to the newly
spawned process.

Normally processes spawned with commands that invoke interactive command line inter-
preters of their own, such as bash, ftp or bc, will persist indefinitely unless the command
causing them to exit is issued or some other event kills them. Processes spawned with
non-interactive commands, such as ls or pwd, will terminate when the last of their initial
output has been received.

In the case of processes that persist after being spawned, avram needs some way of
knowing when to stop waiting for more output from them so that it doesn’t get stuck
waiting forever. This purpose is served by the prompts field. This field could contain a
single string holding the last thing the process will send before becoming quiescent, such as
the strings bash$ or ftp> in the above examples. Alternatively, a sequence of more than
one prompt string can be used to indicate that the corresponding sequence of lines must
be detected. An empty string followed by ftp> would indicate that the ftp> prompt is
expected to be immediately preceded by a line break. There is also the option of using
prompt strings to indicate a pattern that does not necessarily imply quiescence, but is a
more convenient point at which to stop reading the output from the process.

For processes spawned with commands that do not start their own interactive command
line interpreters, such as ls or pwd, it may be preferable to read all the output from them
until they terminate. To achieve this effect, the list of prompt strings should contain only
the single string containing only the single EOF character (usually code 4) or any other
character that is certain not to occur in the output of the process. This technique is based

32 avram - a virtual machine code interpreter

on the assumption that the process was spawned originally with the command in question,
not that such a command is sent to an existing shell process.

In any case, when enough output has been received from the process, it is collected into
a list of received strings including the prompt strings at the end (if they were received), and
the function is applied to the pair (state,received strings). If the cycle is to continue, the
result returned by the function will include a new state, a new list of command lines, and
a new list of prompt strings. A result of nil will cause the computation to terminate.

There are some unusual situations that could occur in the course of line oriented inter-
action, and are summarized as follows.

• If the process terminates before any pattern matching the prompt strings is received
from it, all of the output from the process up to the point where it terminated is
collected into the received strings list and passed to the function. This situation includes
cases where the process terminates immediately upon being spawned, but not abnormal
completion of the exp_popen library function, which is a fatal error. This feature of
the interface is what allows EOF to be used for collecting all the output at once from a
non-interactive command.

• If the list of command lines is empty, and no process currently exists due to a previ-
ous iteration, the effect is the same as if the process terminates unexpectedly before
outputting anything. I.e., the function is applied to a pair containing an empty list of
received strings. There is no good reason for an application to get into this situation.

• If the list of command lines is empty but a process persists from a previous iteration,
no output is sent to it, but receiving from it proceeds normally. This feature of the
interface could be used effectively by applications intended to process the received data
in parts, but will cause deadlock if the process is already quiescent.

• All character strings have to consist of lists of valid representations of non-null charac-
ters according to Appendix A [Character Table], page 123, or else there will be some
fatal error messages.

• If the list of prompt strings contains only the empty string, avramwill not wait to receive
anything from the process, but will proceed with the next iteration immediately. If this
effect is intended, care must be taken not to confuse the empty list of prompt strings

with the list containing the empty string. The former indicates character oriented
interaction, which is explained next.

2.6.4.2 Character Oriented Interaction

A character oriented style of interaction involves the function always returning a data
structure of the form (state,(command lines,nil)). The state and command lines fields
serve exactly the same purposes respectively as they do in the case of line oriented interac-
tion. The field that would be occupied by the prompt strings list in the case of line oriented
interaction is identically nil in this style.

When this style is used, avram spawns a process and/or sends command lines to it as
in the case of line oriented interaction, but attempts to read only a single character from
it per iteration. When the character is received, avram applies the function to the pair
(state,character) in order to obtain the next state and the next list of command lines. If
the process has terminated, a nil value is used in place of the character. If the process is
quiescent, deadlock ensues.

Chapter 2: Virtual Machine Specification 33

The character oriented style is a lower level protocol that shifts more of the burden
of analyzing the process’s output to the virtual code application. It can do anything line
oriented interaction can do except proceeding immediately without waiting to receive any
output from the process. It may also allow more general criteria (in effect) than the matching
of a fixed prompt string to delimit the received data, for those pathological processes that
may require such things.

Applications using character oriented interaction need to deal with line breaks explicitly
among the received characters, unlike the case with line oriented interaction, where the line
breaks are implicit in the list of received strings. Contrary to the convention for Unix text
files, line breaks in the output of a process are indicated by character code 13 followed by
character code 10.

2.6.4.3 Mixed Modes of Interaction

An application is not confined exclusively to line oriented or character oriented interac-
tion, but may switch from one style to the other between iterations, and signal its choice
simply by the format of the data structure it returns. If the prompt strings field is non-
empty, the interaction is line oriented, and if the field is empty, the interaction is character
oriented. A function using both styles has to be prepared for whichever type of data it
indicates, either a character or a list of character strings as the case may be.

Another alternative is possible if the function returns a data structure in the form
(files,nil). This structure includes neither a list of command lines nor a list of prompt
strings, empty or otherwise, but does include a list of quadruples in the files field. The
quadruples are of the form ((overwrite,path),(preamble,contents)). The fields have the
same interpretations as in the output from a non-interactive parameter mode application,
as described in Section 2.6.3 [Output From Non-interactive Applications], page 30, and will
cause a list of files to be written in the same way.

As an interactive application is able cause the execution of arbitrary shell commands, it
doesn’t need avram to write files for it the way a non-interactive application does, so this
feature does not provide any additional capabilities. However, it may be helpful as a matter
of convenience.

After the files are written, the function will be applied to the same result it returned,
(files,nil). There is no direct means of preserving unconstrained state information from
previous iterations in this style of interaction. A likely scenario might therefore be that the
function returns a file list after finishing its other business, and then returns nil on the
next iteration to terminate.

2.7 Virtual Code Semantics

As the previous sections explain, virtual code applications are defined in terms of math-
ematical functions. Up until this point, the discussion has focused on the interface between
the function and the virtual machine interpreter, by detailing the arguments passed to the
functions under various circumstances and the results they are expected to return in order
to achieve various effects.

The purpose of this section is to complete the picture by explaining how a given com-
putable function can be expressed in virtual code, considering only functions operating on

34 avram - a virtual machine code interpreter

the trees described in Section 2.1 [Raw Material], page 19. Functions manipulating trees of
nil are undoubtedly a frivolous and abstract subject in themselves. One is obliged to refer
back to the previous sections if in need of motivation.

2.7.1 A New Operator

With regard to a set of trees as described in Section 2.1 [Raw Material], page 19, we
can define a new binary operator. Unlike the cons operator, this one is not required to
associate an element of the set with every possible pair of elements. For very many pairs
of operands we will have nothing to say about its result. In fact, we require nothing of it
beyond a few simple properties to be described presently.

Because this is the only other operator than cons, there is no need to have a special
notation for it, so it will be denoted by empty space. The tree associated by the operator
with a pair of trees x and y , if any, will be expressed in the infix notation x y . For
convenience, the operator is regarded as being right associative, so that a b c can be written
for a (b c).

2.7.2 On Equality

One example of a property this operator should have, for reasons that will not be im-
mediately clear, is that for any trees x and k, the equality cons(cons(nil,k),nil) x = k

always holds. Even though the present exposition opts for readability over formality, state-
ments like these demand clarification of the notion of equality. Some of the more pedantic
points in Section 2.1 [Raw Material], page 19 may be needed for the following ideas to hold
water.

• As originally stipulated, it is always possible to distinguish nil from any member of
the set. We can therefore decide on this basis whether a = b whenever at least one of
them is nil.

• Where neither a nor b is nil in an expression a = b, but rather something of the form
cons(x,y), the equality holds if and only if both pairs of corresponding subexpressions
are equal. If at least one member of each pair of corresponding subexpressions is nil,
the question is settled, but otherwise there is recourse to their respective subexpressions,
and so on. This condition follows from the uniqueness property of the cons operator.

• If one side of an equality is of the form x y , or is defined in terms of such an expression,
but (x,y) is one of those pairs with which the operator associates no result, then the
equality holds if and only if the other side is similarly ill defined.

• Statements involving universal quantification (i.e., beginning with words similar to
“for any tree x . . . ”) obviously do not apply to instances of a variable (x) outside the
indicated set (trees). Hence, they are not refuted by any consequence of identifying a
variable with an undefined expression.

Readers who are aware of such issues as pointer equality or intensional versus extensional
equality of functions are urged to forget all about them in the context of this document,
and abide only by what is stated. Other readers should ignore this paragraph.

Chapter 2: Virtual Machine Specification 35

2.7.3 A Minimal Set of Properties

For any trees x, y , and k, and any non-nil trees p, f , and g, the new invisible operator
satisfies these conditions. In these expressions and hereafter, increasing abuse of notation
is perpetrated by not writing the cons in expressions of the form cons(x,y).

P0 (nil,(nil,nil)) x = x

P1 (nil,((nil,nil),nil)) (x,y) = x

P2 (nil,(nil,(nil,nil))) (x,y) = y

P3 ((nil,k),nil) x = k

P4 (((nil,(nil,nil)),nil),nil) (f,x) = f (f,x)

P5 ((f,g),nil) x = f g x

P6 ((f,nil),g) x = (f x,g x)

P7 ((p,f),g) x = f x if p x is a non-nil tree, but g x if p x = nil

Although other properties remain to be described, it is worth pausing at this point
because there is ample food for thought in the ones already given. An obvious question
would be that of their origin. The short answer is that they have been chosen arbitrarily
to be true by definition of the operator. At best, the completion of the construction may
lead to a more satisfactory answer based on aesthetic or engineering grounds.

A more important question would be that of the relevance of the mystery operator and
its properties to the stated purpose of this section, which is to specify the virtual machine
code semantics. The answer lies in that the operator induces a function for any given tree
t, such that the value returned by the function when given an argument x is t x. This
function is the one that is implemented by the virtual code t, which is to say the way an
application will behave if we put t in its virtual code file. An equivalent way of looking
at the situation is that the virtual machine does nothing but compute the result of this
operator, taking the tree in the virtual code file as its left operand and the input data as
the right operand. By knowing what the operator will do with a given pair of operands, we
know what to put into the virtual code file to get the function we want.

It is worthwhile to note that properties P0 to P7 are sufficient for universality in the sense
of Turing equivalence. That means that any computable function could be implemented by
the suitable choice of a tree t without recourse to any other properties of the operator. A
compiler writer who finds this material boring could therefore stop reading at this point and
carry out the task of targeting any general purpose programming language to the virtual
machine based on the specifications already given. However, such an implementation would
not take advantage of the features for list processing, exception handling, or profiling that
are also built into the virtual machine and have yet to be described.

2.7.4 A Simple Lisp Like Language

With a universal computational model already at our disposal, it will be easier to use
the virtual machine to specify itself than to define all of it from scratch. For this purpose,
we use the silly programming language, whose name is an acronym for SImple Lisp-like
Language (Yeah right). The language serves essentially as a thin layer of symbolic names

36 avram - a virtual machine code interpreter

on top of the virtual machine code. Due to its poor support for modularity and abstraction,
silly is not recommended for serious application development, but at least it has a shallow
learning curve.1

2.7.4.1 Syntax

silly has no reserved words, but it has equals signs, commas and parentheses built in.
A concise but ambiguous grammar for it can be given as follows.

program ::= declaration*

declaration ::= identifier = expression

expression ::= () | identifier | (expression) | (expression,expression)
| expression expression | expression(expression)
| expression(expression,expression)

The real grammar is consistent with this one but enforces right associativity for binary
operations and higher precedence for juxtaposition without intervening white space.

The declaration of any identifier must be unique and must precede its occurrence in any
expression. Hence, cyclic dependences between declarations and “recursive” declarations
are not allowed.

2.7.4.2 Semantics

Declarations in silly should be understood in the obvious way as preprocessor direc-
tives to perform parenthetic textual substitutions (similar to #define id (exp) in C). All
identifiers in expressions are thereby eliminated during the preprocessing phase.

The overall meaning of the program is the meaning of the expression in the last decla-
ration. A denotational semantics for expressions is given by the following equations, where
[[x]] should be read as “the meaning of x”, and x, y and z are metavariables. (That is, they
stand for any source code fragment that could fit there subject to the constraint, informally
speaking, that it has to correspond to a connected subtree of the parse tree as enforced by
the unambiguous grammar in the context of the rest of the program.)

[[()]] = nil

[[(x)]] = [[x]]

[[(x,y)]] = cons([[x]],[[y]])

[[x y]] = [[x(y)]] = [[x]] [[y]]

1 Previous releases of avram included a working silly compiler, but this has now been
superseded by the Ursala programming language. Ursala includes silly as a subset for
the most part, and the examples in this manual should compile and execute with very
little modification.

Chapter 2: Virtual Machine Specification 37

[[x (y,z)]] = [[x(y,z)]] = [[x]] [[(y,z)]]

Toy languages like this are among the few situations a denotational semantics stands a
chance of clarifying more than it obfuscates, so the reader is invited to take a moment to
savor it.

2.7.4.3 Standard Library

silly programs may be linked with library modules, which consist of silly source
text to be concatenated with the user program prior to the preprocessing phase. Most
silly programs are linked with the standard silly prelude, which contains the following
declarations among others.

nil = ()
identity = (nil,(nil,nil))
left = (nil,((nil,nil),nil))
right = (nil,(nil,(nil,nil)))
meta = (((nil,(nil,nil)),nil),nil)
constant_nil = ((nil,nil),nil)
couple = ((((left,nil),constant_nil),nil),right)
compose = couple(identity,constant_nil)
constant = couple(couple(constant_nil,identity),constant_nil)
conditional =

couple(couple(left,compose(left,right)),compose(right,right))

There is a close correspondence between these declarations and the properties described
in Section 2.7.3 [A Minimal Set of Properties], page 35. A fitting analogy would be that
the properties of the operator specify the virtual machine instruction set in a language
independent way, and the silly library defines the instruction mnemonics for a virtual
assembly language. The relationship of some mnemonics to their corresponding instructions
may be less clear than that of others, so they are all discussed next.

2.7.5 How avram Thinks

The definitions in the standard silly library pertaining to the basic properties of the
operator can provide a good intuitive illustration of how computations are performed by
avram. This task is approached in the guise of a few trivial correctness proofs about them.
Conveniently, as an infeasibly small language, silly is an ideal candidate for analysis by
formal methods.

Technically the semantic function [[. . .]] has not been defined on identifiers, but we can
easily extend it to them by stipulating that the meaning of an identifier x is the meaning
of the program main = x when linked with a library containing the declaration of x, where
main is an identifier not appearing elsewhere in the library.

With this idea in mind, the following “theorems” can be stated, all of which have a
similar proof. The variables x and y stand for any tree, and the variable f stands for any
tree other than nil.

38 avram - a virtual machine code interpreter

T0 [[identity]] x = x

T1 [[left]] (x,y) = x

T2 [[right]] (x,y) = y

T4 [[meta]] (f,x) = f (f,x)

T5 [[constant_nil]] x = nil

Replacing each identifier with its defining expression directly demonstrates a logical equiv-
alence between the relevant theorem and one of the basic operator properties postulated in
Section 2.7.3 [A Minimal Set of Properties], page 35.

For more of a challenge, it is possible to prove the next theorem.

T6 For non-nil f and g, ([[couple]] (f,g)) x = (f x,g x)

The proof is a routine calculation. Beware of the distinction between the mathematical nil
and the silly identifier nil.

([[couple]] (f,g)) x = ([[((((left,nil),constant_nil),nil),right)]] (f,g)) x

by substitution of couple with its definition in the standard library

= ((((([[left]],[[nil]]),[[constant_nil]]),[[nil]]),[[right]]) (f,g)) x

by definition of the semantic function [[. . .]] regarding pairs

= ((((([[left]],[[()]]),[[constant_nil]]),[[()]]),[[right]]) (f,g)) x

by substitution of nil from its definition in the standard library

= ((((([[left]],nil),[[constant_nil]]),nil),[[right]]) (f,g)) x

by definition of the semantic function in the case of [[()]]

= (([[left]] (f,g),[[constant_nil]] (f,g)),[[right]] (f,g)) x

by property P6 (twice)

= ((f,nil),g) x

by theorems T1, T2, and T5

= (f x,g x)

by property P6 again.

Something to observe about this proof is that it might just as well have been done
automatically. Every step is either the substitution of an identifier or a pattern match
against existing theorems and properties of the operator. Another thing to note is that
the use of identifiers and previously established theorems helps to make the proof human
readable, but is not a logical necessity. An equivalent proof could have been expressed

Chapter 2: Virtual Machine Specification 39

entirely in terms of the properties of the operator. If one envisions a proof like this being
performed blindly and mechanically, without the running commentary or other amenities,
that would not be a bad way of thinking about what takes place when avram executes
virtual code.

Three more theorems have similar proofs. For non-nil trees p, f and g, and any trees
x and k:

T7 ([[compose]] (f,g)) x = f g x

T8 ([[constant]] k) x = k

T9 ([[conditional]] (p,(f,g)) x = f x if p x is non-nil, but g x if p x = nil

The proofs of these theorems are routine calculations analogous to the proof of T6. Here is
a proof of theorem T7 for good measure.

([[compose]] (f,g)) x = ([[couple(identity,constant_nil)]] (f,g)) x

by substitution of compose with its definition in the standard library

= (([[couple]] ([[identity]],[[constant_nil]]))(f,g)) x

by definition of the semantic function

= ([[identity]] (f,g),[[constant_nil]] (f,g)) x

by theorem T6

= ((f,g),nil) x

by theorems T0 and T5

= f g x

by property P5 of the operator.

2.7.6 Variable Freedom

The virtual code semantics is easier to specify using the silly language than it would
be without it, but still awkward in some cases. An example is the following declaration
from the standard library,

hired = compose(
compose,
couple(

constant compose,
compose(couple,couple(constant,constant couple))))

which is constructed in such a way as to imply the following theorem, provable by routine
computation.

T9 ([[hired]] h) (f,g) = [[compose]](h,[[couple]](f,g))

40 avram - a virtual machine code interpreter

Intuitively, hired represents a function that takes a given function to a higher order func-
tion. For example, if f were a function that adds two real numbers, hired f would be a
function that takes two real valued functions to their pointwise sum.

Apart from its cleverness, such an opaque way of defining a function has little to rec-
ommend it. The statement of the theorem about the function is more readable than the
function definition itself, probably because the theorem liberally employs mathematical vari-
ables, whereas the silly language is variable free. On the other hand, it is not worthwhile
to linger over further enhancements to the language, such as adding variables to it. The
solution will be to indicate informally a general method of inferring a variable free function
definition from an expression containing variables, and hereafter omit the more cumbersome
definitions.

An algorithm called isolate does the job. The input to isolate is a pair (e,x), where
e is a syntactically correct silly expression in which the identifier x may occur, but no
other identifiers dependent on x may occur (or else it’s garbage-in/garbage-out). Output
is a syntactically correct silly expression f in which the identifier x does not occur, such
that [[e]] = [[f x]]. The algorithm is as follows,

if e = x then
return identity

else if e is of the form (u,v)
return couple(isolate(u,x),isolate(v,x))

else if e is of the form u v
return (hired apply)(isolate(u,x),isolate(v,x))

else
return constant e

where equality is by literal comparison of expressions, and the definition of apply is

apply = (hired meta)((hired compose)(left,constant right),right)

which represents a function that does the same thing as the invisible operator.

T10 [[apply]] (f,x) = f x

The isolate algorithm can be generalized to functions of arbitrarily many variables,
but in this document we will need only a unary and a binary version. The latter takes an
expression e and a pair of identifiers (x,y) as input, and returns an expression f such that
[[e]] = [[f (x,y)]].

if e = x then
return left

else if e = y then
return right

else if e is of the form (u,v)
return couple(isolate(u,(x,y)),isolate(v,(x,y)))

else if e is of the form u v
return (hired apply)(isolate(u,(x,y)),isolate(v,(x,y)))

else
return constant e

Chapter 2: Virtual Machine Specification 41

It might be noted in passing that something similar to these algorithms would be needed
in a compiler targeted to avram if the source were a functional language with variables.

2.7.7 Metrics and Maintenance

Certain features of the virtual machine pertain to software development and maintenance
more than to implementing any particular function. The operations with the mnemonics
version, note, profile, and weight are in this category.

2.7.7.1 Version

A virtual code application with exactly the following definition implements a function
that returns a constant character string regardless of its argument.

version = ((nil,nil),((nil,nil),(nil,((nil,nil),nil))))

The character string encodes the version number of the installed avram executable, for
example 0.13.0, using the standard representation for characters.

Although such an application is useless by itself, the intended use for this feature is to
cope with the possibility that future versions of avram may include enhancements. Ideally,
the maintainer of avram will update the version number when new enhancements are added.
Applications can then detect whether they are available in the installed version by using
this feature. If a needed enhancement is not available, the application can either make
allowances or at least terminate gracefully.

2.7.7.2 Note

This operation allows arbitrary information or comments to be embedded in a virtual
code application in such a way that it will be ignored by avram when executing it. For
the silly language, a note function is defined in the standard prelude so as to imply the
following theorem.

T11 [[note]] (f,c) = ((nil,nil),((nil,nil),(nil,(nil,(f,c)))))

Intuitively, the argument f represents a function, and the argument c represents the com-
ment, annotation, or whatever, that will be embedded but ignored in the virtual code.

Semantically, a function with a note attached is the same as the function by itself, as
the following property stipulates for any non-nil f .

P8 ([[note]] (f,c)) x = f x

A possible reason for using this feature might be to support a language that performs
run-time type checking by hanging type tags on everything. Another possible use would be
to include symbolic information needed by a debugger.

2.7.7.3 Profile

The virtual machine supports a profiling capability by way of this feature. Profiling
an application causes run time statistics about it to be written to a file ‘./profile.txt’.
Profiled applications are of the form indicated in the following theorem

T12 [[profile]] (f,s) = ((nil,nil),((nil,nil),(nil,((f,s),nil))))

42 avram - a virtual machine code interpreter

where f stands for the virtual code of the application, and s stands for the name of it to be
written to the file. The semantics of a profiled function is identical to the unprofiled form
for any non-nil f .

P9 ([[profile]] (f,s)) x = f x

Unlike the situation with note, the annotation s of used in profiled code is not in an
unrestricted format but must be a character string in the standard representation (as in
Section 2.4 [Representation of Numeric and Textual Data], page 23), because this string
needs to be written by avram to the file ‘./profile.txt’. Ordinarily this string will be the
source code identifier of the function being profiled.

When profiles are used in many parts of an application, an informative table is generated
showing the time spent in each part.

2.7.7.4 Weight

The following virtual code implements a function that returns the weight of its argument
in the standard representation for natural numbers.

weight = ((nil,nil),((nil,nil),(nil,(nil,nil))))

The weight of a tree is zero if the tree is nil, and otherwise the sum of the weights of the
two subtrees plus one.

An algorithm to compute the weight of a tree would be trivial to implement without
being built in to the virtual machine. The built in capability could also be used for purposes
unrelated to code maintenance. Nevertheless, it is built in for the following reasons.

• Computing weights happened to be a bottleneck for a particular aspect of code gener-
ation that was of interest to the author, namely the compression of generated code.

• A built in implementation in C runs at least an order of magnitude faster than the
equivalent implementation in virtual code.

• It runs even faster when repeated on the same data, by retrieving previously calculated
weights rather than recalculating them.

The only disadvantage of using this feature instead of implementing a function in virtual
code to compute weights is that it relies on native integer arithmetic and could overflow,
causing a fatal error. It has never occurred in practice, but is possible due to sharing,
whereby the nominal weight of a tree could be exponentially larger than the actual amount
of memory occupied by it.

2.7.8 Deconstruction

Much of the time required for evaluating a function is devoted to performing deconstruc-
tion operations, e.g., taking the left side of a pair, the tail of a list, the right side of the
head of the tail, etc.. Because these operations are so frequent, there are some features of
the virtual machine to make them as efficient as possible.

2.7.8.1 Field

The virtual machine supports a generalization of the left and right deconstruction
operations that is applicable to deeply nested structures. Use of this feature is conducive

Chapter 2: Virtual Machine Specification 43

to code that is faster and more compact than is possible by relying on the primitive decon-
structors alone. It may also be easier for a code optimizer to recognize and transform.

The general form of a virtual code application to perform deconstruction is that it is a
pair with a nil left side, and a non-nil right side. The right side indicates the nature of
the deconstruction to be performed when the function is evaluated on an argument.

To make the expression of deconstruction functions more readable in silly, the standard
library contains the declaration

field = couple(constant nil,identity)

which implies the following theorem.

T13 [[field]] w = (nil,w)

The virtual machine recognizes an application in this form and evaluates it according to
the following properties, where u and v are other than nil, but x, y , and z are unrestricted.

P10 ([[field]] (u,nil)) (x,y) = ([[field]] u) x

P11 ([[field]] (nil,v)) (x,y) = ([[field]] v) y

P12 ([[field]] (u,v)) z = (([[field]] u) z,([[field]] v) z)

One might also add that ([[field]] (nil,nil)) z = z, but this statement would be equivalent
to P0.

A suitable choice of the field operand permits the implementation of any deconstruction
function expressible in terms of compose, couple, identity, left and right. For example,
the application couple(compose(right,right),left) has an equivalent representation in
field((nil,(nil,(nil,nil))),((nil,nil),nil)). The latter looks longer in silly but
is smaller and faster in virtual code.

2.7.8.2 Fan

In cases where a deconstructions would be needed to apply the same function to both
sides of a pair, the overhead can be avoided by means of a property of the virtual machine
intended for that purpose.

A silly definition of fan implying the following theorem is helpful in expressing such
an application.

T14 [[fan]] f = ((nil,nil),((nil,f),(nil,nil)))

The virtual machine recognizes when an application has the form shown above, and uses f
as a function to be applied to both sides of the argument.

P13 ([[fan]] f) (x,y) = (f x,f y)

2.7.9 Recursion

Defining functions or programs self referentially is sometimes informally known as re-
cursion. In functional languages, the clever use of “combinators” is often preferred to this
practice, and is in fact well supported by the virtual machine. However, some computations
may be inexpressible without an explicitly “recursive” formulation, so there is some support
for that as well.

44 avram - a virtual machine code interpreter

2.7.9.1 Recur

A generalization of the form denoted by meta in silly is recognized by the virtual ma-
chine and allows a slightly more efficient encoding of recursive applications. An expression
recur p has the representation indicated by this theorem,

T15 [[recur]] p = (((nil,p),nil),nil)

which implies that [[meta]] = [[recur]] (nil,nil).

If p is non-nil, a tree of the form [[recur]] p is interpreted as follows. Note that P4 is
equivalent to the special case of this property for which p is (nil,nil).

P14 ([[recur]] p) x = [[meta]] ([[field]] p) x

The rationale is that meta would very frequently be composed with a deconstruction
field p, so the virtual machine saves some time and space by allowing the two of them to
be encoded in a smaller tree with the combined meaning.

2.7.9.2 Refer

In the style of recursive programming compelled by the available meta primitive, a
function effectively requires a copy of its own machine code as its left argument. Bringing
about that state of affairs is an interesting party trick.

If we had a definition of bu in the standard library implying

T16 ([[bu]] (f,k)) x = f (k,x)

which for the sake of concreteness can be done like this,

bu = (hired compose)(
left,
(hired couple)(compose(constant,right),constant identity))

then a definition of refer as

refer = (hired bu)(identity,identity)

would be consistent with the following property of the operator.

P15 ([[refer]] f) x = f (f,x)

The proof, as always, is a matter of routine calculation in the manner of the section on how
avram thinks.

However, this pattern would occur so frequently in recursively defined functions as to
be a significant waste of space and time. Therefore, rather than requiring it to be defined
in terms of other operations, the virtual machine specification recognizes a pattern of the
form below with respect to property P15,

T17 [[refer]] f = (((f,nil),nil),nil)

and takes the property to be true by definition of the operator. A definition of refer
consistent with T17 is therefore to be found in the standard library, not the definition
proposed above.

Chapter 2: Virtual Machine Specification 45

2.7.10 Assignment

In an imperative programming paradigm, a machine consists partly of an ensemble of
addressable storage locations, whose contents are changed over time by assignment state-
ments. An assignment statement includes some computable function of the global machine
state, and the address of the location whose contents will be overwritten with the value
computed from the function when it is evaluated.

Compiling a language containing assignment statements into virtual machine code suit-
able for avram might be facilitated by exploiting the following property.

P16 ([[assign]] (p,f)) x = [[replace]] ((p,f x),x)

The identifier assign is used in silly to express a virtual code fragment having the form
shown below, and replace corresponds to a further operation to be explained presently.

T18 [[assign]] (p,f) = (((p,f),nil),nil)

This feature simulates assignment statements in the following way. The variable x in
P16 corresponds intuitively to the set of addressable locations in the machine. The variable
f corresponds to the function whose value will be stored in the location addressed by p.
The result of a function expressed using assign is a new store similar to the argument x,
but with the part of it in location p replaced by f x. A source text with a sequence of
assignment statements could therefore be translated directly into a functional composition
of trees in this form.

The way storage locations are modeled in virtual code using this feature would be as
nested pairs, and the address p of a location is a tree interpreted similarly to the trees used
as operands to the field operator described in Section 2.7.8.1 [Field], page 42, to specify
deconstructions. In fact, replace can be defined as a minimal solution to the following
equation.

E0 ([[field]] p) [[replace]] ((p,y),x) = y

This equation regrettably does not lend itself to inferring the silly source for replace
using the isolate algorithm in Section 2.7.6 [Variable Freedom], page 39, so an explicit
construction is given in Section B.3 [Replace], page 130. This construction need not concern
a reader who considers the equation a sufficiently precise specification in itself.

In view of the way addresses for deconstruction are represented as trees, it would be
entirely correct to infer from this equation that a tuple of values computed together can
be assigned to a tuple of locations. The locations don’t even have to be “contiguous”, but
could be anywhere in the tree representing the store, and the function is computed from
the contents of all of them prior to the update. Hence, this simulation of assignment fails
to capture the full inconvenience of imperative programming except in the special case of
a single value assigned to a single location, but fortunately this case is the only one most
languages allow.

There is another benefit to this feature besides running languages with assignment state-
ments in them, which is the support of abstract or opaque data structures. A function that
takes an abstract data structure as an argument and returns something of the same type
can be coded in a way that is independent of the fields it doesn’t use. For example, a data
structure with three fields having the field identifiers foo, bar, and baz in some source

46 avram - a virtual machine code interpreter

language might be represented as a tuple ((foo contents,bar contents),baz contents) on
the virtual code level. Compile time constants like bar = ((nil,(nil,nil)),nil) could
be defined in an effort to hide the details of the representation, so that the virtual code
field bar is used instead of compose(right,left). Using field identifiers appropriately,
a function that transforms such a structure by operating on the bar field could have the
virtual code couple(couple(field foo,compose(f,field bar)),field baz). However,
this code does not avoid depending on the representation of the data structure, because it
relies on the assumption of the foo field being on the left of the left, and the baz field being
on the right. On the other hand, the code assign(bar,compose(f,field bar)) does the
same job without depending on anything but the position of the bar field. Furthermore, if
this position were to change relative to the others, the code maintenance would be limited
to a recompilation.

2.7.11 Predicates

A couple of operations are built into the virtual machine for performing tests efficiently.
These functions return either nil for false or (nil,nil) for true, and are useful for example
as a predicate p in programs of the form conditional(p,(f,g)) among other things. In
this example, the predicate is applied to the argument, a result of (nil,nil) causes f to
be applied to it, and a result of nil causes g to be applied to it.

2.7.11.1 Compare

A function that performs comparison has a the following very simple virtual code rep-
resentation.

T19 [[compare]] = (nil,nil)

The proof of theorem T19 is that the standard silly prelude contains the declaration
compare = (nil,nil). Code in this form has the following semantics.

P17 For distinct trees x and y , [[compare]] (x,y) = nil

P18 [[compare]] (x,x) = (nil,nil)

In other words, the virtual code (nil,nil) implements a function that takes a pair of trees
and returns true if and only if they are equal.

It would be fairly simple to write an equivalent virtual code application that implements
this function if it were not realizable in this form by definition of the operator. However,
this method is preferable because it saves space in virtual code and has a highly optimized
implementation in C.

2.7.11.2 Member

Another built in predicate function has the virtual code shown below.

T20 [[member]] = ((nil,nil),((nil,nil),nil))

As the mnemonic suggests, the function implemented by this code detects whether a given
item is a member of a list. The left side of its argument is the item to be detected, and the
right side is the list that may or may not contain it. Lists are represented as explained in
Section 2.4 [Representation of Numeric and Textual Data], page 23.

Chapter 2: Virtual Machine Specification 47

The virtual code semantics can be specified by these three properties of the operator.

P19 [[member]] (x,nil) = nil

P20 [[member]] (x,(x,y)) = (nil,nil)

P21 For distinct trees x and y , [[member]] (x,(y,z)) = [[member]] (x,z)

As in the case of compare, the implementation of member is well optimized in C, so this
form is to be preferred over an ad hoc construction of a membership testing function in
virtual code.

2.7.12 Iteration

One of many alternatives to recursion provided by the virtual machine is iteration,
which allows an operation to be repeated until a condition is met. If the source language
is imperative, this feature provides an easy means of translating loop statements to virtual
code. In languages that allow functions to be treated as data, iteration can be regarded as
a function that takes a predicate and a function as arguments, and returns a function that
applies the given function repeatedly to its argument until the predicate is refuted.

Iterative applications are expressed in virtual code by the pattern shown below.

T21 [[iterate]] (p,f) = ((nil,nil),(nil,(p,f)))

In the silly language, the iterate mnemonic plays the role of the function that takes the
virtual code for a predicate p and a function f as arguments, and returns the virtual code
for an iterating function.

The code for an iterating function is recognized as such by the virtual machine emulator
only if the subtrees f and p are other than nil. The resulting function tests the argument
x with p and returns x if the predicate is false.

P22 ([[iterate]] (p,f)) x = x if p x = nil

If the predicate turns out to be true, f is applied to x, and then another iteration is
performed.

P23 ([[iterate]] (p,f)) x = ([[iterate]] (p,f)) f x if p x is a non-nil tree

2.7.13 List Combinators

There is extensive support for operations on lists in the virtual code format. Use of these
features is encouraged because they are conducive to tight code with explicit concurrency.
Within an imperative programming paradigm, these features might perhaps have to be
understood as design patterns or algorithmic skeletons. The present exposition takes a
functional view, describing them in terms of operators that take functions as their arguments
and return functions as their result.

2.7.13.1 Map

A virtual code application in the following form causes a function with non-nil virtual
code f to be applied to every item in a list.

T22 [[map]] f = ((nil,nil),((nil,f),nil))

48 avram - a virtual machine code interpreter

The map mnemonic is used in silly to express applications in this form as map f . This
operation is also well known to lisp users and functional programmers. The semantics is
determined by these two operator properties (for non-nil f).

P24 ([[map]] f) nil = nil

P25 ([[map]] f) (x,y) = (f x,([[map]] f) y)

Note that the representation of lists described in Section 2.4 [Representation of Numeric
and Textual Data], page 23, is assumed.

2.7.13.2 Filter

Another well known list operation is that which applies a predicate to every item of a
list, and deletes those for which the predicate is false. For a predicate with virtual code p,
such an application can be coded conveniently in this form,

T23 [[filter]] p = ((nil,nil),(nil,(p,nil)))

which is to say that writing ((nil,nil),(nil,(p,nil))) in silly is the same as writing
filter p.

The virtual machine detects code of this form provided that p is other than nil, and
evaluates it consistently with the following properties, causing it to have the meaning that
it does.

P26 ([[filter]] p) nil = nil

P27 ([[filter]] p) (x,y) = ([[filter]] p) y if p x = nil

P28 ([[filter]] p) (x,y) = (x,([[filter]] p) y) if p x is a non-nil tree

2.7.13.3 Reduce

In the virtual code fragment shown below, f should be regarded as the virtual code for
a binary operator, and k is a constant.

T24 [[reduce]] (f,k) = ((nil,nil),((f,k),nil))

By constructing a tree in the form shown, the sillymnemonic reduce effectively constructs
the code for a function operating on lists in a particular way.

The effect of evaluating an application in this form with an argument representing a list
can be broken down into several cases.

• If the list is empty, then the value of k is the result.

• If the list has only one item, then that item is the result.

• if the list has exactly two items, the first being x and the second being y , then the
result is f (x,y).

• If the list has more than two items and an even number of them, the result is that of
evaluating the application with the list of values obtained by partitioning the list into
pairs of adjacent items, and evaluating f with each pair.

• If the list has more than two items and an odd number of them, the result is that of
evaluating the application with the list of values obtained by partitioning the list into
pairs of adjacent items excluding the last one, evaluating f with each pair, and then
appending the last item to the list of values.

Chapter 2: Virtual Machine Specification 49

In the last two cases, evaluation of the application is not necessarily finished after just one
traversal of the list, because it has to carry on until the list is reduced to a single item.

Some care has been taken to describe this operation in detail because it differs from
comparable operations common to functional programming languages, variously known as
fold or reduce. All of these operations could be used, for example, to compute the summation
of a list of numbers. The crucial differences are as follows.

• Whereas a fold or a reduce is conventionally either of the left or right variety, this
reduce is neither.

• The vacuous case result k is never used at all unless the argument is the empty list.

• This reduce is not very useful if the operator f is not associative.

The reason for defining the semantics of reduce in this way instead of the normal way
is that a distributed implementation of this one could work in logarithmic time, so it’s
worth making it easy for a language processor to detect the pattern in case the virtual
code is ever going to be targeted to such an implementation. Of course, nothing prevents
the conventional left or right reduction semantics from being translated to virtual code by
explicit recursion.

The precise semantics of this operation are as follows, where f is not nil, k is uncon-
strained, and pairwise represents a function to be explained presently.

P29 ([[reduce]] (f,k)) nil = k

P30 ([[reduce]] (f,k)) (x,y) =
[[left]] ([[bu(iterate,right)]] [[pairwise]] f) (x,y)

The latter property leverages off some virtual machine features and silly code that has
been defined already. The function implemented by [[pairwise]] f is the one that partitions
its argument into pairs and evaluates f with each pair as described above. The combina-
tion of that with bu(iterate,right) results in an application that repeatedly performs
[[pairwise]] f while the resulting list still has a tail (i.e., a right side), and stops when the
list has only a single item (i.e., when right is false). The left operation then extracts the
item.

For the sake of completeness, it is tedious but straightforward to give an exact defini-
tion for pairwise. The short version is that it can be anything that satisfies these three
equations.

E1 ([[pairwise]] f) nil = nil

E2 ([[pairwise]] f) (x,nil) = (x,nil)

E3 ([[pairwise]] f) (x,(y,z)) = (f (x,y),([[pairwise]] f) z)

For the long version, see Section B.1 [Pairwise], page 129.

2.7.13.4 Sort

Sorting is a frequently used operation that has the following standard representation in
virtual code.

T25 [[sort]] p = ((nil,nil),((p,nil),(nil,nil)))

50 avram - a virtual machine code interpreter

When an application in this form is evaluated with an operand representing a list, the result
is a sorted version of the list.

The way a list is sorted depends on what order is of interest. For example, numbers
could be sorted in ascending or descending order, character strings could be sorted lexically
or by length, etc.. The value of p is therefore needed in sorting applications to specify the
order. It contains the virtual code for a partial order relational operator. This operator can
be evaluated with any pair of items selected from a list, and should have a value of true if
the left one should precede the right under the ordering. For example, if numbers were to
be sorted in ascending order, then p would compute the “less or equal” relation, returning
true if its operand were a pair of numbers in which the left is less or equal to the right.

The virtual code semantics for sorting applications is given by these two properties,
wherein p is a non-nil tree, and insert is a silly mnemonic to be defined next.

P31 ([[sort]] p) nil = nil

P32 ([[sort]] p) (x,y) = ([[insert]] p) (x,([[sort]] p) y)

These properties say that the empty list is already sorted, and a non-empty list is sorted
if its tail is sorted and the head is then inserted in the proper place. This specification of
sorting has nothing to do with the sorting algorithm that avram really uses.

The meaning of insertion is convenient to specify in virtual code itself. It should satisfy
these three equations.

E4 ([[insert]] p) (x,nil) = (x,nil)

E5 ([[insert]] p) (x,(y,z)) = (y,([[insert]] p) (x,z)) if p(x,y) = nil

E6 ([[insert]] p) (x,(y,z)) = (x,(y,z)) if p(x,y) is a non-nil tree

Intuitively, the right argument, whether nil or (y,z), represents a list that is already
sorted. The left argument x therefore only needs to be compared to the head element, y to
ascertain whether or not it belongs at the beginning. If not, it should be inserted into the
tail.

A possible implementation of insert in silly is given in Section B.2 [Insert], page 130.

2.7.13.5 Transfer

A particular interpretation is given to virtual code in the following form.

T26 [[transfer]] f = ((nil,nil),(nil,(nil,f)))

When code in this form is evaluated with an argument, the tree f is used as a state transition
function, and the argument is used as a list to be traversed. The traversal begins with f

being evaluated on nil to get the initial state and the initial output. Thereafter, each
item of the list is paired with the current state to be evaluated with f , resulting in a
list of output and the next state. The output resulting from the entire application is
the cumulative concatenation of all outputs obtained in the course of evaluating f . The
computation terminates when f yields a nil result. If the list of inputs runs out before the
computation terminates, nil values are used as inputs.

This behavior is specified more precisely in the following property of the operator, which
applies in the case of non-nil f .

Chapter 2: Virtual Machine Specification 51

P33 ([[transfer]] f) x = ([[transition]] f) (nil,(f nil,x))

Much of the transfer semantics is implicit in the meaning of transition. For any given
application f , [[transition]] f is the virtual code for a function that takes the list traversal
from one configuration to the next. A configuration is represented as a tuple, usually in the
form (previous outputs,((state,output),(next input,subsequent inputs))). A terminal
configuration has the form (previous outputs,(nil,(next input,subsequent inputs))). A
configuration may also have nil in place of the pair (next input,subsequent inputs) if no
more input remains.

In the non-degenerate case, the meaning of [[transition]] f is consistent with the fol-
lowing equation.

E7 ([[transition]] f) (y,((s,o),(i,x))) =
([[transition]] f) ((o,y),(f (s,i),x))

That is, the current output o is stored with previous outputs y , the next input i is removed
from the configuration, and the next state and output are obtained from the evaluation of
f with the state s and the next input i.

In the case where no input remains, the transition function is consistent with the follow-
ing equation.

E8 ([[transition]] f) (y,((s,o),nil)) =
([[transition]] f) ((o,y),(f (s,nil),nil))

This case is similar to the previous one except that the nil value is used in place of the
next input. Note that in either case, nothing about f depends on the particular way
configurations are represented, except that it should have a state as its left argument and
an input as its right argument.

Finally, in the case of a terminal configuration, the transition function returns the cu-
mulative output.

E9 ([[transition]] f) (y,(nil,x)) = [[reduce(cat,nil)]] [[reverse]] y

The silly code reduce(cat,nil) has the effect of flattening a list of lists into one long
list, which is necessary insofar as the transition function will have generated not necessarily
a single output but a list of outputs on each iteration. The cat mnemonic stands for list
concatenation and is explained in Section 2.7.14.1 [Cat], page 52. The reversal is necessary
to cause the first generated output to be at the head of the list. List reversal is a built in
operation of the virtual machine and is described in Section 2.7.14.2 [Reverse], page 52.

If such a function as transition seems implausible, its implementation in silly can be
found in Section B.4 [Transition], page 132.

It is usually more awkward to express a function in terms of a transfer than to code
it directly using recursion or other list operations. However, this feature is provided by the
virtual machine for several reasons.

• Functions in this form may be an easier translation target if the source is an imperative
language.

• Translating from virtual code to asynchronous circuits or process networks has been a
research interest of the author, and code in this form lends itself to easy recognition
and mapping onto discrete components.

52 avram - a virtual machine code interpreter

• The ‘--byte-transducer’ and ‘--interactive’ command line options to avram cause
an application to be invoked in a similar manner to the transition function in a
transfer function, so this feature allows for easy simulation and troubleshooting of
these applications without actually deploying them.

2.7.13.6 Mapcur

An alternative form of recursive definition is the following.

T27 [[mapcur]] p = ((nil,nil),((nil,nil),(p,nil)))

This form is convenient for applications that cause themselves to be applied recursively to
a list of arguments. It has this semantics.

P34 ([[mapcur]] p) x = [[map meta]] [[distribute]] ([[field]] p) x

2.7.14 List Functions

In addition to the foregoing list operations, the virtual machine provides a number
of canned functions operating on lists, namely concatenation, reversal, distribution, and
transposition. These functions could be coded by other means if they were not built in, but
the built in versions are faster and smaller.

2.7.14.1 Cat

The list concatenation operation has this representation in virtual code.

T28 [[cat]] = ((nil,nil),(nil,nil))

This function takes a pair of lists as an argument, an returns the list obtained by appending
the right one to the left. The semantics of concatenation is what one would expect.

P35 [[cat]] (nil,z) = z

P36 [[cat]] ((x,y),z) = (x,[[cat]] (y,z))

2.7.14.2 Reverse

The function that reverses a list has the following representation in virtual code.

T29 [[reverse]] = ((nil,nil),(nil,(nil,nil)))

This function takes a list as an argument, and returns a the list consisting of the same items
in the reverse order. The semantics is given by the following properties.

P37 [[reverse]] nil = nil

P38 [[reverse]] (x,y) = [[cat]] ([[reverse]] y,(x,nil))

Chapter 2: Virtual Machine Specification 53

2.7.14.3 Distribute

The function with the following virtual code representation is frequently useful for ma-
nipulating lists.

T30 distribute = (((nil,nil),nil),nil)

This function takes a pair whose right side represents a list, and returns a list of pairs, with
one pair for each item in the list. The left side of each pair is the left side of the original
argument, and the right side is the corresponding item of the list. A semantics for this
operation is specified by the following properties.

P39 [[distribute]] (x,nil) = nil

P40 [[distribute]] (x,(y,z)) = ((x,y),[[distribute]] (x,z))

2.7.14.4 Transpose

The transpose operation has the following representation in virtual code.

T31 [[transpose]] = ((nil,nil),((nil,nil),(nil,nil)))

This function takes a list of equal length lists as an argument, and returns a list of lists as a
result. In the resulting list, the first item is the list of all first items of lists in the argument.
The next item is the list of all second items, and so on.

In the specification of the semantics, the silly mnemonic flat is defined by flat =

reduce(cat,nil) in the standard silly prelude, which means that it flattens a list of lists
into one long list.

P41 [[transpose]] x = nil if [[flat]] x = nil

P42 [[transpose]] x = ([[map left]] x,[[transpose]] [[map right]] x)
if [[flat]] x is a non-nil tree

2.7.15 Exception Handling

In quite a few cases, the properties given for the operator up to this point do not imply
any particular result. A good example would be an expression such as [[left]] nil, which
appears to represent the left side of an empty pair. It can be argued that expressions like
this have no sensible interpretation and should never be used, so it would be appropriate
to leave them undefined. On the other hand, attempts to evaluate such expressions occur
frequently by mistake, and in any case, the virtual machine emulator should be designed to
do something reasonable about them if only for the sake of reporting the error. The chosen
remedy for this situation addresses the need for error reporting, and also turns out to be
useful in other ways.

2.7.15.1 A Hierarchy of Sets

As indicated already, the virtual machine represents all functions and data as members of
a set satisfying the properties in Section 2.1 [Raw Material], page 19, namely a nil element
and a cons operator for constructing trees or nested pairs of nil. However, it will be
necessary to distinguish the results of computations that go wrong for exceptional reasons

54 avram - a virtual machine code interpreter

from normal results. Because any tree in the set could conceivably represent a normal
result, we need to go outside the set to find an unambiguous representation of exceptional
results.

Because there may be many possible exceptional conditions, it will be helpful to have
a large set of possible ways to encode them, and in fact there is no need to refrain from
choosing a countably infinite set. Furthermore, it will be useful to distinguish between
different levels of severity among exceptional conditions, so for this purpose a countably
infinite hierarchy of mutually disjoint sets is used.

In order to build on the theory already developed, the set that has been used up to this
point will form the bottom level of the hierarchy, and its members will represent normal
computational results. The members of sets on the higher levels in the hierarchy represent
exceptional results. To avoid ambiguity, the term “trees” is reserved for members of the
bottom set, as in “for any tree x . . . ”. Unless otherwise stated, variables like x and y are
universally quantified over the bottom set only.

Because each set in the hierarchy is countably infinite, it is isomorphic to the bottom set.
With respect to an arbitrary but fixed bijection between them, let x_n denote the image
in the nth level set of a tree x in the bottom set. The level numbers in this notation start
with zero, and we take x_0 to be synonymous with x. For good measure, let (x_n)_m =
x_(n+m).

2.7.15.2 Operator Generalization

Each set in the hierarchy induces a structure preserving cons operator, denoted cons_n

for the nth level set, and satisfying this equation.

E10 cons_n(x_n,y_n) = (cons(x,y))_n

It will be convenient to generalize all of these cons operators to be defined on members of
other sets than their own.

E11 For m greater than n, cons_n(x_m,y_p) = x_m

In this equation, p is unrestricted. The intuition is that if the left operand of a cons is the
result of a computation that went wrong due to an exceptional condition (more exceptional
than n, the level already in effect), then the exceptional result becomes the whole result.

It is tempting to hazard a slightly stronger statement, which is that this equation holds
even if y_p is equal to some expression f x that is undefined according to the operator
semantics. This stipulation would correspond to an implementation in which the right
operand isn’t evaluated after an error is detected in the left, but there are two problems
with it.

• This semantics might unreasonably complicate a concurrent implementation of the
virtual machine. If evaluation leads to non-termination in some cases where the result
is undefined (as it certainly would in any possible implementation consistent with cases
where it’s defined), then the mechanism that evaluates the right side of a pair must be
interruptible in case an exception is detected in the left.

• It is beyond the expressive power of the present mathematical framework to make
such a statement, because it entails universal quantification over non-members of the
constructed sets, which includes almost everything.

Chapter 2: Virtual Machine Specification 55

Nevertheless, the implementation in avram is sequential and does indeed behave as pro-
posed, with no practical difficulty. As for any deficiency in the theory, it could be banished
by recasting the semantics in terms of a calculus of expressions with formal rules of ma-
nipulation. An operand to the cons operator would be identified not with a member of a
semantic domain, but with the expression used to write it down, and then even “undefined-
ness” could be defined. However, the present author’s preference in computing as in life is
to let some things remain a mystery rather than to abandon the quest for meaning entirely.

A comparable condition applies in cases where the right side of a pair represents an
exceptional result.

E12 For m greater than n, cons_n(x_n,y_m) = y_m

Whereas an infinitude of cons operators has been needed, it will be possible to get
by with only one invisible operator, as before, by generalizing it in the following way to
operands on any level of the hierarchy.

P43 f _n x_n = (f x)_n

P44 For distinct n and m, f _n x_m = x_m

That is, the result of evaluating two operands on the same level is the image relative to that
level of the result of their respective images on the bottom level, but the result of evaluating
two operands on different levels is the same as the right operand.

2.7.15.3 Error Messages

The basic strategy for representing the results of exceptional conditions arising from the
evaluation of operands on a given level of the hierarchy will be to use an error message
corresponding to the image of a list of character strings on the level above.

Unfortunately, the official silly standard does not define character constants, but they
are available as a vendor specific extension in silly-me (millennium edition), where char-
acter strings may be enclosed in single quotes. The value of the semantic function [[. . .]]
in the case of a character string is the list of representations of the characters, based on
Appendix A [Character Table], page 123 and Section 2.4 [Representation of Numeric and
Textual Data], page 23.

For the sake of consistency, each standard error message is a list of character strings,
even though the list has only one string in it. If any exceptional condition is the result of
a computation, it is written to standard error by avram as the list of character strings it
represents.

P45 ([[compare]] nil)_n = [[(’invalid comparison’,nil)]]_(n+1)

P46 ([[left]] nil)_n = [[(’invalid deconstruction’,nil)]]_(n+1)

P47 ([[right]] nil)_n = [[(’invalid deconstruction’,nil)]]_(n+1)

P48 (([[fan]] f) nil)_n = [[(’invalid deconstruction’,nil)]]_(n+1)

P49 ([[member]] nil)_n = [[(’invalid membership’,nil)]]_(n+1)

P50 ([[distribute]] nil)_n = [[(’invalid distribution’,nil)]]_(n+1)

P51 ([[cat]] nil)_n = [[(’invalid concatenation’,nil)]]_(n+1)

56 avram - a virtual machine code interpreter

P52 ([[meta]] nil)_n = [[(’invalid recursion’,nil)]]_(n+1)

Note that by virtue of property P44, there is no need for an application to make ex-
plicit checks for exceptional results at any point, because the exceptional result propagates
through to the output of any function composed with the one that incurred it. For example,
an application of the form h = compose(f,right), which will cause an invalid deconstruc-
tion error if applied in filter mode to an empty file, imposes no requirement that f be
written to accommodate that possibility (i.e., by checking for it) in order for the error to
be reported properly. The following proof demonstrates that the meaning of f is irrelevant
to the result.

[[compose(f,right)]]_0 nil_0

= [[f]]_0 [[right]]_0 nil_0

= [[f]]_0 [[(’invalid deconstruction’,nil)]]_1

= [[(’invalid deconstruction’,nil)]]_1

In an application h = compose(f,g), the input validation therefore may be confined to the
“front end”, g.

It will be recalled from the discussions of recur (Section 2.7.9.1 [Recur], page 44)
and transpose (Section 2.7.14.4 [Transpose], page 53) that the semantics of virtual code
involving these forms is defined in terms of the field format for deconstruction functions
(Section 2.7.8.1 [Field], page 42), which depends implicitly on the semantics of left and
right, being a generalization of them. An invalid deconstruction message could therefore
result from applications incorporating any of the forms of recur, transpose, or field.
Invalid deconstructions could also arise from the replace operation (Section B.3 [Replace],
page 130), which is used for assignment (Section 2.7.10 [Assignment], page 45), because
replace is defined by virtual code, except as noted next.

2.7.15.4 Expedient Error Messages

Because there are so many ways to cause an invalid deconstruction, this message is the
most common in practice and therefore the least informative. As a matter of convenience,
avram takes the liberty of a slight departure from the virtual machine specification as
written hitherto, and employs the following messages when invalid deconstructions occur
respectively in the cases of recursion, transposition, and assignment.

• invalid recursion

• invalid transpose

• invalid assignment

That is, this section contradicts and supersedes what is stated at the end of Section 2.7.15.3
[Error Messages], page 55 and implied by the operator properties P14, P16, and P42. It is
also possible that user applications may modify the error messages by methods described
in Section 2.7.15.5 [Computable Error Messages], page 57.

Whereas these three cases constitute an expedient variation on the semantics, there is
another sense in which no possible implementation could conform faithfully to the specifi-
cation. When an evaluation can not be carried out because of insufficient space on the host
machine, one of the following error messages may be the result.

Chapter 2: Virtual Machine Specification 57

• memory overflow

• counter overflow

These messages are treated in the same way as those that are caused by programming
errors, and propagate to the final result written to standard error without any specific
consideration by the application developer. The latter occurs only in connection with
the built in weight function (Section 2.7.7.4 [Weight], page 42). Other messages listed in
Section 1.6.5 [Application Programming Errors], page 12 are also of this ilk.

2.7.15.5 Computable Error Messages

The automatic generation and reporting of error messages provides a reasonable de-
fault behavior for applications that do not consider exceptional conditions. All applications
and their input data are ordinarily members of the bottom level set in the hierarchy (Sec-
tion 2.7.15.1 [A Hierarchy of Sets], page 53). The error messages caused by invalid oper-
ations on this level are on the first level above the bottom, which are recognized as such
and written to standard error without intervention from the application. However, there
are two drawbacks to this style of dealing with exceptions.

• An application developer may wish to translate error messages into terms that are
meaningful to the user, not only by literally translating them from English to the local
vernacular, but perhaps by relating the particular exceptional condition to application
specific causes. While it is convenient for the “back end” code not to be required to
intervene in the error reporting, it would be most inconvenient for it not to be able to
do so.

• Some application specific errors might not correspond directly to any of the particular
conditions detected automatically due to invalid operations, for example a semantic
error in a syntactically correct input file. It might be convenient in such cases for an
application to be able to define its own error messages but still have them reported
automatically like the built in messages.

These situations suggest a need for some ability on the part of an application to operate
on error messages themselves. Based on the operator semantics given so far, such an
application is inexpressible, because for any application f _0 and error message x_1, property
P44 stipulates f _0 x_1 = x_1, meaning that the resulting error message is unchanged.
Therefore, we need to define another basic property of the operator.

The following form of virtual code is used in applications that may need to operate on
error messages.

T32 [[guard]] (f,g) = ((nil,f),g)

Code in this form has the following semantics.

P53 ([[guard]] (f,g))_n x_p = g_(n+1) f _n x_p

The intuitive explanation is that f is the main part of the application, and g is the part of
the application that operates on the error message that comes from f if an exception occurs
while it is being evaluated (i.e., the “exception handler”). Typically the exception handler
code implements a function that takes an error message as an argument and returns an
error message as a result.

58 avram - a virtual machine code interpreter

Where there is no exception, the exception handler g_(n+1) is never used, because its
argument will be on level n, and therefore unaffected by an application on level n+1.

Exception handlers may have their own exception handlers, which will be invoked if
the evaluation of the exception handler causes a further exception. Such an exception
corresponds semantically to a value on the next level of the hierarchy of sets.

2.7.15.6 Exception Handler Usage

One way for this feature of the virtual machine to be used is to intercept and translate
error messages to a more meaningful form. An application guarded as shown below causes
messages of invalid deconstruction to be changed to ’syntax error’.

main = guard(
application,
conditional(

bu(compare,(’invalid deconstruction’,nil)),
(constant (’syntax error’,nil),identity)))

The conditional compares its argument to the error message for an invalid deconstruction,
and if it matches, the syntax error message is returned, but otherwise the original message
is returned. Note that an error message must be in the form of a list of character strings,
so that it can be printed. Although the message of ’syntax error’ might not be very
informative, at least it looks less like a crash. A real application should of course strive to
do better than that.

Exception handling features of the virtual machine can also be adapted by applications
to raise their own exceptions with customized messages.

error_messenger =
guard(compose(compare,constant nil),constant (’syntax error’,nil))

This code fragment implements a function that causes a message of ’syntax error’ to be
reported for any possible input. This code works by first causing an invalid comparison
and then substituting its own error message. A function that always causes an error is not
useful in itself, but might be used as part of an application in the following form.

main = conditional(validation,(application,error_messenger))

In this case, the application checks the validity of the input with a predicate, and invokes
the error messenger if it is invalid.

Although the previous examples return a fixed error message for each possible kind of
error, it is also possible to have error messages that depend on the input data, as the next
example shows.

main = (hired apply)(
compose(

bu(guard,some_application),
(hired constant)(constant ’invalid input was:’,identity)),

identity)

If the application causes an exception for any reason, the error message returned will include
a complete listing of the input, prefaced by the words ’invalid input was:’. This partic-
ular example works only if the input is a list of character strings, but could be adapted for
other types of data by substituting an appropriate formatting function for the first identity.

Chapter 2: Virtual Machine Specification 59

The formatting function would take the relevant data type to a list of character strings.
Another possible variation would be to concatenate the invalid input listing with the error
message that was generated, rather than just replacing it.

As the last example may suggest, exception handlers turn out to be an essential debug-
ging tool for functional programs, making them as easy to debug as imperative programs if
not more so. This example forms the basis for a higher order function that wraps any given
function with an exception handler that prints the argument causing it to crash. For argu-
ments not causing a crash, the behavior is unchanged. Alternatively, code implementing a
function that unconditionally reports its argument in an error message can be inserted at a
strategic point in the application code similarly to a print statement. Finally, inspired use of
exception handlers that concatenate their messages with previously generated messages can
show something like a parameter stack dump when a recursively defined function crashes.
These are all matters for a language designer and are not pursued further in this document.

2.7.16 Interfaces to External Code

A few other combinators have been incorporated into the virtual machine as alternatives
to the style of interactive applications described in Section 2.6.4 [Output From Interactive
Applications], page 30. These make it possible to interface with external libraries and
applications either by a simple function call, or by executing a run-time generated transducer
as described previously. In either case, there is no need for any particular command line
options to specify interactive invocation, nor for the application to be designed that way
from the outset. Existing virtual code applications may therefore be enhanced to make use
of these features without radical changes.

To account for these additional capabilities, it is not entirely adequate to continue defin-
ing the virtual machine semantics in terms of a mathematical function, but it is done
nevertheless due to the lack of any appealing alternative. Although most library functions
are in fact functions in the sense that their outputs are determined by their arguments, they
defy a concise specification within the present mathematical framework, especially insofar
as they may involve finite precision floating point numbers. More problematically, the effect
of interaction with a shell is neither well defined nor deterministic. The descriptions that
follow presuppose a computational procedure associated with the following definitions but
leave its exact nature unspecified.

2.7.16.1 Library combinator

The simplest and fastest method of interfacing to an external library is by way of a
virtual machine combinator called library. It takes two non-empty character strings as
arguments to a virtual code program of the form implied by the following property.

T33 [[library]] (x,y) = ((nil,nil),((x,y),(nil,nil)))

Intuitively, x is the name of a library and y is the name of a function within the library.
For example, if x is ’math’ and y is ’sqrt’, then library(x,y) represents the function
that computes the square root of a floating point number as defined by the host machine’s
native C implementation, normally in IEEE double precision format. Different functions and
libraries may involve other argument and result types, such as complex numbers, arrays,
sparse matrices, or arbitrary precision numbers. A list of currently supported external

60 avram - a virtual machine code interpreter

library names with their functions and calling conventions is given in Appendix D [External
Libraries], page 135.

On the virtual code side, all function arguments and results regardless of their types are
encoded as nested pairs of nil, as always, and may be manipulated or stored as any other
data, including storage and retrieval from files in ‘.avm’ virtual code format (Section 2.3
[File Format], page 22). However, on the C side, various memory management and caching
techniques are employed to maintain this facade while allowing the libraries to operate on
data in their native format. The details are given more fully in the API documentation,
particularly in Section 3.1.4 [Type Conversions], page 72 and Section 3.9 [External Library
Maintenance], page 110.

While this style is fast and convenient, it is limited either to libraries that have already
been built into the virtual machine, or to those for which the user is prepared to implement a
new interface module in C as described in Section 3.9.2 [Implementing new library functions],
page 112.

2.7.16.2 Have combinator

As virtual machine interfaces to external libraries accumulate faster than they can be
documented and may vary from one installation to another, it is helpful to have a way
of interrogating the virtual machine for an up to date list of the installed libraries and
functions. A combinator called have can be used to test for the availability of a library
function. It takes the form

T34 [[have]] (x,y) = ((nil,nil),((nil,x),(nil,y)))

where x is the name of a library and y is the name of a function within the library encoded as
character strings. For example, if x is ’mtwist’ and y is ’u_disc’ (for the natural random
number generator function in the Mersenne twistor library) then have(x,y) is a function
that returns a non-empty value if an only if that library is installed and that function is
available within it. The actual argument to the function is ignored as the result depends
only on the installed virtual machine configuration. In this sense, it acts like a constant

combinator.

One way for this combinator to be used is in code of the form

portable_rng =

conditional(
have(’mtwist’,’u_disc’),
library(’mtwist’,’u_disc’),
some_replacement_function)

which will use the library function if available but otherwise use a replacement function.
Code in this form makes the decision at run time, but it is also possible to express the
function such that the check for library presence is made at compile time, as the following
example shows, which will imply a slight improvement in performance.

non_portable_rng =

apply(
conditional(

Chapter 2: Virtual Machine Specification 61

have(’mtwist’,’u_disc’),
constant library(’mtwist’,’u_disc’),
constant some_replacement_function),

0)

This program would be non-portable in the sense that it would need to be recompiled for
each installation if there were a chance that some of them might have the mtwist library
and some might not, whereas the previous example would be binary compatible across all
of them.2

The actual value returned by a function have(foo,bar) is the list of pairs of strings
<(foo,bar)> if the function is available, or the empty list otherwise. A non-empty list is
represented as a pair (head,tail), and an empty list as nil. The angle bracket notation
<a,b,c...> used here is an abbreviation for (a,(b,(c...nil))).

Either or both arguments to the have combinator can be a wildcard, which is the string
containing a single asterisk, ’*’. In that case, the list of all available matching library
names and function names will be returned. This feature can be used to find out what
library functions are available without already knowing their names.

If a library had a function named ’*’, which clashes with the wild card string, the
interpretation as a wild card would take precedence.

2.7.16.3 Interaction combinator

A further combinator allows virtual code applications to interact directly with any in-
teractive console application using the expect library. The mechanism is similar to that
of interactive applications documented in the Section 2.6.4 [Output From Interactive Ap-
plications], page 30, but attempts to be more convenient. Instead of being designed as an
interactive application, any virtual code application may use this combinator to spawn a
shell and interact with it in order to compute some desired result.

The advantage of this combinator over the library combinator is that it requires no
modification of the virtual machine to support new applications. It can also interact with
applications that may reside on remote servers, that are implemented languages other than
C, or whose source code is unavailable. For example, the GNU R statistical package provides
an interactive command to evaluate multivariate normal distribution functions with an
arbitrary covariance matrix, but the corresponding function is not provided by the Rmath C
library (or any other free library, to the author’s knowledge) because it is implemented in
interpreted code. This combinator makes it callable by an avram virtual code application
nevertheless. The disadvantage compared to the library combinator is that there is more
overhead in spawning a process than simply making a call to a built in function, and the
programming interface is more complicated.

The combinator takes the form

T35 [[interact]] f = ((nil,nil),(((nil,nil),nil),((nil,f),nil)))

where f is the virtual code for a function that follows the same protocol described in
Section 2.6.4 [Output From Interactive Applications], page 30, except that it does not allow

2 In practice both examples are equally portable because the mtwist source is distributed
with avram so all installations will have it. Most libraries are distributed separately.

62 avram - a virtual machine code interpreter

file output as described in Section 2.6.4.3 [Mixed Modes of Interaction], page 33. The
argument x is ignored when the expression (interact f) x is evaluated, similarly to the
way the argument is ignored in an expression like (constant k) x. The result returned is
a transcript of the dialogue that took place between f and the externally spawned shell,
represented as a list of lists of strings for line oriented interaction, or a list of characters
alternating with lists of strings in the case of character oriented interaction.

The following example demonstrates a trivial use of the interact combinator to spawn
an ftp client, do an ls command, and then terminate the session.

eof = <(nil,(nil,(((nil,nil),nil),(nil,nil))))>

demo =

interact conditional(
conditional(identity,constant false,constant true),
constant(0,<’ftp’>,<’ftp> ’>),
conditional(

conditional(left,constant false,constant true),
constant(1,<’ls’,’’>,<’’,’ftp> ’>),
conditional(

compose(compare,couple(left,constant 1)),
constant(2,<’bye’,’’>,<eof>),
constant nil)))

Some liberties are taken with silly syntax in this example, in the way of using angle
brackets to denote lists, and numbers to represent states.

• The interacting transducer works by checking whether its argument is empty (via the
identity function used as a predicate in the conditional, which is then negated). In
that case it returns the triple containing the initial state of 0, the ftp shell command to
spawn the client, and the ’ftp> ’ prompt expected when the client has been spawned,
both of the latter being lists of strings.

• If the argument is non-empty, then next it checks whether it is in the initial state of
0, (via the left function used as a predicate, referring to the state variable expected
on the left of any given (state,input) pair, also negated). If so, it returns the triple
containing the next state of 1, the ls command followed by an empty string to indicate
a line break, and the expected prompt preceded by an empty string to match it only
at the beginning of a line.

• Finally, it checks for state 1, in which case it issues the bye command to close the
session, eof rather than a prompt to wait for termination of the client, and a state of
2.

• In the remaining state of 2, which needn’t be explicitly tested because it is the only
remaining possibility, the program returns a nil value to indicate that the computation
has terminated.

Deadlock would be possible at any point if either party did not follow this protocol, but
for this example it is not an issue. If an expression of the form demo x were to be evaluated,
then regardless of the value of x, the value of the result would be as shown below.

Chapter 2: Virtual Machine Specification 63

<
<’ftp’>,
<’ftp> ’>,
<’ls’,’’>,
<’ls’,’Not connected.’,’ftp> ’>,
<’bye’,’’>,
<’bye’,’’>>

That is, it would be a list of lists of strings, alternating between the output of the interactor
and the output of the ftp client. If the spawned application had been something non-trivial
such as a computer algebra system or a command line web search utility, then it is easy to
see how functions using this combinator can leverage off a wealth of available resources.

2.7.17 Vacant Address Space

Not every possible pattern has been used by the virtual machine as a way of encoding
a function. The following patterns, where a, b, and c are non-nil trees, do not represent
anything useful.

unary forms
((nil,nil),((nil,nil),(nil,((nil,a),nil))))

((nil,nil),((nil,nil),(nil,(nil,(nil,a)))))

binary forms
((nil,nil),((nil,nil),(a,b)))

((nil,nil),((a,nil),(b,nil)))

((nil,nil),((a,nil),(nil,b)))

ternary forms
((nil,nil),((a,b),(c,nil)))

((nil,nil),((a,b),(nil,c)))

((nil,nil),((a,nil),(b,c)))

((nil,nil),((nil,a),(b,c)))

These patterns are detected by the virtual machine simply to avoid blowing it up, but they
always cause an error message to be reported.

P55 For f matching any of the first three trees in the above list,
f _n x_n = [[(’unsupported hook’,nil)]]_(n+1)

P56 For the remaining trees f in the above list,
f _n x_n = [[(’unrecognized combinator (code m)’,nil)]]_(n+1)

Here, m is a numeric constant dependent on which tree f was used. The unsupported
hook message is meant to be more informative than the unrecognized combinator message,
suggesting that a feature intended for future use is not yet available.

This list has been assembled for the benefit of readers considering the addition of back-
ward compatible extensions to the virtual code semantics, who are undeterred by the facts
that

• the computational model is already universal

• virtual code applications are already interoperable with all kinds of high performance
software having a text based or console interface by way of the interact combinator

64 avram - a virtual machine code interpreter

• an unlimited number of built in library functions can be added by way of the library
combinator as described in Section 3.9.2 [Implementing new library functions], page 112

• the C code in avram makes fairly intricate use of pointers with a careful policy of
reference counting and storage reclamation

• there is also a performance penalty incurred by further extensions to the semantics,
even for applications that don’t use them, because a pattern recognition algorithm in
the interpreter has more cases to consider.

Nevertheless, a new functional form combining a pair of functions to be interpreted in
a new way by the virtual machine could be defined using any of the binary forms above,
for example, with a as the virtual code for one of the functions and b as that of the other.
Such a form would not conflict with any existing applications, provided that both a and b

are not nil, which is true of any valid representation for a function.

Virtual machine architects, take note. There are infinitely many trees fitting these
patterns, but it would be possible to use them up by assigning them without adequate
foresight. For example, if interpretations were assigned to the four ternary forms, the three
binary forms, and one of the remaining unary forms, then the only unassigned pattern could
be of the form

((nil,nil),((nil,nil),(nil,(nil,(nil,a)))))

Assigning an interpretation to it would leave no further room for backward compatible
expansion. On the other hand, any tree of the following form also fits the above pattern,

((nil,nil),((nil,nil),(nil,(nil,(nil,(b,c))))))

with any values for b and c. Different meanings could be chosen for the case where both are
nil, both are non-nil, or one is nil and the other non-nil, allowing two unary forms, one
binary, and one constant. If at least one of these patterns is reserved for future enhance-
ments, then a potentially inexhaustible supply of address space remains and there will be
no need for incompatible changes later.

Chapter 3: Library Reference 65

3 Library Reference

Much of the code developed for avram may be reusable in other projects, so it has been
packaged into a library and documented in this chapter. For ease of reference, this chapter
is organized with a separate section for each source file. For the most part, each source
file encapsulates an abstract type and a number of related functions, except for a few cases
where C makes such a design awkward. An attempt has been made to present the sections
in a readable order as far as possible.

The documentation in this chapter is confined to the application program interface
(API), and does not delve unnecessarily into any details of the implementation. A reader
wishing to extend, modify, or troubleshoot the library itself can find additional information
in the source code comments. These are more likely to be in sync with the code than this
document may be, and are more readily accessible to someone working with the code.

Some general points pertaining to the library are the following.

• Unlike the previous chapter, this chapter uses the word “function” in the C sense rather
than the mathematical sense of the word.

• Internal errors are internal from the user’s point of view, not the developer’s (Sec-
tion 1.6.1 [Internal Errors], page 10). Invoking these functions in ways that are contrary
to their specifications can certainly cause internal errors (not to mention segfaults).

• The library is definitely not thread safe, and thread safety is not a planned enhance-
ment. The amount of locking required to make it thread safe would probably incur an
objectionable performance penalty due to the complexity of the shared data structures
involved, in addition to being very difficult to get right. If you need these facilities in
a concurrent application, consider spawning a process for each client of the library so
as to keep their address spaces separate.

• The library files are built from the standard source distribution using GNU libtool.
In the default directory hierarchy, they will be found either in ‘/usr/lib/libavram.*’
or in ‘/usr/local/lib/libavram.*’. These directories will differ in a non-standard
installation.

• The header files will probably be located in either ‘/usr/include/avm/*.h’ or
‘/usr/local/include/avm/*.h’ for a standard installation.

• All exported functions, macros and constants are preceded with avm_, so as to reduce
the chance of name clashes with other libraries. Not all type declarations or field
identifiers follow this convention, because that would be far too tedious.

• The library header files are designed to be compatible with C++ but have been tested
only with C. Please refer to platform specific documentation for further information on
how to link library modules with your own code.

3.1 Lists

The basic data structure used for representing virtual code and data in the avram library
is declared as a list. The list type is a pointer to a structure having a head field and a
tail field, which are also lists. The empty tree, nil, is represented by the C constant NULL.
A tree of the form cons(a,b) is represented in C as a list whose head is the representation
of a and whose tail is the representation of b.

66 avram - a virtual machine code interpreter

A number of other fields in the structure are maintained automatically and should not
be touched. For that matter, even the head and tail fields should be considered read-only.
Because of sharing, it is almost never valid to modify a list “in place”, except for cases that
are already covered by library functions.

3.1.1 Simple Operations

These functions are declared in the header file lists.h, which should be included in any
C source file that uses them with a directive such as #include <avm/lists.h>. All of these
functions except the first three have the potential cause a memory overflow. In that event,
a brief message is written to standard error and the process is killed rather than returning
to the caller. It is possible for client programs requiring more robust behavior to do their
own error handling by using the alternative versions of these operations described in the
next section.

Functionvoid avm initialize lists ()
The function avm_initialize_lists should be called before any of the other ones
in this section is called, because it sets up some internal data structures. Otherwise,
the behavior of the other functions is undefined.

Functionvoid avm dispose (list front)
This function deallocates the memory associated with a given list, either by consigning
it to a cache maintained internally by the library, or by the standard free function if
the cache is full. Shared lists are taken into account and handled properly according
to a reference counting scheme. Lists should be freed only by this function, not by
using free directly.

Functionvoid avm count lists ()
If a client program aims to do its own storage reclamation, this function can be called
optionally at the end of a run when it is believed that all lists have been freed. If
any allocated lists remain at large, a warning will be printed to standard error. This
function therefore provides a useful check for memory leaks. Overhead is small enough
that it is not infeasible to leave this check in the production code.

Functionlist avm copied (list operand)
A copy of the argument list is returned by this function. The copy remains intact
after the original is reclaimed. A typical use might be for retaining part of a list
after the rest of it is no longer needed. In this example, a list x is traversed by a
hypothetical visit function to each item, which is then immediately reclaimed.

while(x){
visit(x->head);
old_x = x;
x = avm_copied(x->tail); /* the right way */
avm_dispose(old_x);

}

This example allows each item in the list to be visited even as previously visited items
are reclaimed, because x is copied at each iteration. This example contrasts with the
next one, which will probably cause a segmentation fault.

Chapter 3: Library Reference 67

while(x){
visit(x->head);
old_x = x;
x = x->tail; /* the wrong way */
avm_dispose(old_x);

}

In the second example, a reference is made to a part of a list which no longer exists
because it has been deallocated.

In fact, the avm_copied function does nothing but increment a reference count, so
it is a fast, constant time operation that requires no additional memory allocation.
Semantically this action is equivalent to creating a fresh copy of the list, because all
list operations in the library deal with reference counts properly.

Functionlist avm join (list left, list right)
This function takes a pair of lists to a list in which the left is the head and the right
is the tail. It may need to use malloc to allocate additional memory. If there is
insufficient memory, an error message is written to standard error and the program
exits. When the list returned by avm_join is eventually deallocated, the lists from
which it was built are taken with it and must not be referenced again. For example,
the following code is an error.

z = avm_join(x,y);
...
avm_dispose(z);
avm_print_list(x); /* error here */

To accomplish something similar to this without an error, a copy of x should be made,
as in the next example.

z = avm_join(avm_copied(x),y);
...
avm_dispose(z);
avm_print_list(x); /* original x still intact */

Functionvoid avm enqueue (list *front, list *back, list operand)
A fast simple way of building a list head first is provided by the enqueue function.
The front is a pointer to the beginning of the list being built, and the back is a
pointer to the last item. The recommended way to use it would be something like
this.

front = back = NULL;
avm_enqueue(&front,&back,item);
avm_enqueue(&front,&back,next_item);
avm_enqueue(&front,&back,another_item);
...

It might be more typical for the calls to avm_enqueue to appear within a loop. In
any case, after the above code is executed, the following postconditions will hold.

front->head == item
front->tail->head == next_item
front->tail->tail->head == another_item

68 avram - a virtual machine code interpreter

back->head == another_item
back->tail == NULL

The avm_enqueue function must never be used on a shared list, because it modifies its
arguments in place. The only practical way to guarantee that a list is not shared is to
initialize the front and back to NULL as shown before the first call to avm_enqueue,
and to make no copies of front or back until after the last call to avm_enqueue.

Because a list built with avm_enqueue is not shared, it is one of the few instances of
a list that can have something harmlessly appended to it in place. For example, if
the next line of code were

back->tail = rest_of_list;

that would be acceptable assuming rest_of_list is not shared and does not conceal
a dangling or cyclic reference, and if nothing further were enqueued.

The items that are enqueued into a list are not copied and will be deallocated when
the list is deallocated, so they must not be referenced thereafter. A non-obvious
violation of this convention is implicit in the following code.

...
avm_enqueue(&front,&back,x->head);
...
avm_dispose(front);
avm_print_list(x); /* error here */

This code might cause a segmentation fault because of the reference to x after its
head has been deallocated. The following code is subject to the same problem,

...
avm_enqueue(&front,&back,x->head);
...
avm_dispose(x);
avm_print_list(front); /* error here */

as is the following.

...
avm_enqueue(&front,&back,x->head);
...
avm_dispose(x); /* front is now impossible to reclaim */
avm_dispose(front);

The problem with the last example is that it is not valid even to dispose of the same
list more than once, albeit indirectly.

If part of a list is intended to be enqueued temporarily or independently of its parent,
the list should be copied explicitly, as the following code demonstrates.

...
avm_enqueue(&front,&back,avm_copied(x->head)); /* correct */
...
avm_dispose(front);
avm_print_list(x);

Functioncounter avm length (list operand)
A counter is meant to be the longest unsigned integer available on the host machine,
and is defined in common.h, which is automatically included whenever lists.h is

Chapter 3: Library Reference 69

included. The avm_length function returns the number of items in a list. If a list is
NULL, a value of zero is returned. There is a possibility of a counter overflow error
from this function (Section 1.6.3 [Overflow Errors], page 11), but only on a platform
where the counter type is shorter than the address length.

Functioncounter avm area (list operand)
This function is similar to avm_length, but it treats its argument as a list of lists and
returns the summation of their lengths.

Functionlist avm natural (counter number)
This function takes a counter to its representation as a list, as described in Section 2.4
[Representation of Numeric and Textual Data], page 23. That is, the number is
represented as a list of bits, least significant bit first, with each zero bit represented
by NULL and each one bit represented by a list whose head and tail are NULL.

Functionvoid avm print list (list operand)
The avm_print_list function is not used in any production code but retained in the
library for debugging purposes. It prints a list to standard output using an expression
involving only commas and parentheses, as per the silly syntax (Section 2.7.4 [A
Simple Lisp Like Language], page 35). The results quickly become unintelligible for
lists of any significant size. The function is recursively defined and will crash in the
event of a stack overflow, which will occur in the case of very large or cyclic lists.

Functionlist avm position (list key, list table, int *fault)
This function searches for a key in a short table where each item is a possible key.

If it’s not found, a NULL value is returned. If it’s found, a list representing a character
encoding according to Appendix A [Character Table], page 123 is returned.

The ascii code of the character corresponding to the returned list is the position of
the key in the table, assuming position numbers start with 1.

The table should have a length of 255 or less. If it’s longer and the key is found
beyond that range, the higher order bits of the position number are ignored.

The integer referenced by fault is set to a non-zero value in the event of a memory
overflow, which could happen in the course of the list comparisons necessary for the
search.

3.1.2 Recoverable Operations

The functions in this section are similar to the ones in the previous section except with
regard to error handling. Whereas the other ones cause an error message to be printed and
the process to exit in the event of an overflow, these return to the caller, whose responsibility
it is to take appropriate action. The functions in both sections are declared in ‘lists.h’,
and should be preceded by a call to avm_initialize_lists.

Functionlist avm recoverable join (list left, list right)
This function is similar to avm_join, but will return a NULL pointer if memory that
was needed can not be allocated. A NULL pointer would never be the result of a join

70 avram - a virtual machine code interpreter

under normal circumstances, so the overflow can be detected by the caller. Regardless
of whether overflow occurs, the arguments are deallocated by this function and should
not be referenced thereafter.

Functionvoid avm recoverable enqueue (list *front, list *back, list

operand, int *fault)
This version of the enqueue function will dispose of the operand if there isn’t room
to append another item and set *fault to a non-zero value. Other than that, it does
the same as avm_enqueue.

Functioncounter avm recoverable length (list operand)
This function checks for arithmetic overflow when calculating the length of a list, and
returns a zero value if overflow occurs. The caller can detect the error by noting that
zero is not the length of any list other than NULL. This kind of overflow is impossible
unless the host does not have long enough integers for its address space.

Functioncounter avm recoverable area (list operand, int *fault)
This function is similar to avm_area, except that it reacts differently to arithmetic
overflow. The fault parameter should be the address of an integer known to the
caller, which will be set to a non-zero value if overflow occurs. In that event, the
value of zero will also be returned for the area. Note that it is possible for non-empty
lists to have an area of zero, so this condition alone is not indicative of an error.

Functionlist avm recoverable natural (counter number)
This function returns the list representation of a native unsigned long integer, pro-
vided that there is enough memory, similarly to the avm_natural function. Unlike
that function, this one will return a value of NULL rather than exiting the program in
the event of a memory overflow. The overflow can be detected by the caller insofar
as a NULL list does not represent any number other than zero.

3.1.3 List Transformations

Some functions declared in ‘listfuns.h’ are used to implement the operations described
in Section 2.7.14 [List Functions], page 52. These functions are able to report error messages
in the event of overflow or other exceptional conditions, as described in Section 2.7.15.3
[Error Messages], page 55. The error messages are represented as lists and returned to the
caller. The occurrence of an error can be detected by the *fault flag being set to a non-zero
value. None of these functions ever causes a program exit except in the event of an internal
error.

Functionvoid avm initialize listfuns ()
This has to be called before any of the other functions in this section is called. It
initializes the error message lists, among other things.

Functionvoid avm count listfuns ()
At the end of a run, a call to this function can verify that no unreclaimed storage
attributable to these functions persists. If it does, a warning is printed to standard
error. If avm_count_lists is also used, it must be called after this function.

Chapter 3: Library Reference 71

Functionlist avm reversal (list operand, int *fault)
The reversal of the list is returned by this function if no overflow occurs. A non-zero
*fault and an error message are returned otherwise. The original operand still exists
in its original order after this function is called. The amount of additional storage
allocated is proportional only to the length of the list, not the size of its contents.

Functionlist avm distribution (list operand, int *fault)
This function performs the operation described in Section 2.7.14.3 [Distribute],
page 53. The invalid distribution message is returned in the event of a NULL operand.
Otherwise, the returned value is the distributed list. In any event, the operand is
unaffected.

Functionlist avm concatenation (list operand, int *fault)
The operand is treated as a pair of lists to be concatenated, with the left one in the
head field and the right one in the tail field. The invalid concatenation message
is returned in the event of a NULL operand. The result returned otherwise is the
concatenation of the lists, but the given operand still exists unchanged.

Functionlist avm transposition (list operand, int *fault)
The operation performed by this function corresponds to that of Section 2.7.14.4
[Transpose], page 53. Unlike other functions in this section, the operand passed to
this function is deallocated, and must not be referenced thereafter. The transposed
list is accessible as the returned value of this function. If the original operand is still
needed after a call to avm_transposition, only a copy of it should be passed to it,
obtained from avm_copied. The invalid transpose error message is the result if the
operand does not represent a list of equal length lists.

Functionlist avm membership (list operand, int *fault)
This function computes the membership predicate described in Section 2.7.11.2 [Mem-
ber], page 46. The operand is a list in which the tail field is a list that will be searched
for the item in the head. If the item is not found, a NULL list is returned, but otherwise
a list with NULL head and tail fields is returned. If the operand is NULL, an error
message of invalid membership is returned and *fault is set to a non-zero value.

The avm_membership function calls avm_binary_comparison in order to compare
lists, so the same efficiency and side-effect considerations are relevant to both (Sec-
tion 3.1.5 [Comparison], page 80). It is not necessary to #include the header file
compare.h or to call avm_initialize_compare in order to use avm_membership,
because they will be done automatically.

Functionlist avm binary membership (list operand, list members, int

*fault);
This function is the same as avm_membership except that it allows the element and
the set of members to be passed as separate lists instead of being the head and the
tail of the same list.

72 avram - a virtual machine code interpreter

Functionlist avm measurement (list operand, int *fault)
This function implements the operation described in Section 2.7.7.4 [Weight], page 42,
which pertains to the weight of a tree. The returned value of this function is a list
encoding the weight as a binary number, unless a counter overflow occurs, in which
case it’s an error message. As noted previously, the weight of a tree can easily be
exponentially larger than the amount of memory it occupies, but this function uses
native integer arithmetic for performance reasons. Hence, a counter overflow is a real
possibility.

3.1.4 Type Conversions

External library functions accessed by the library combinator as explained in Sec-
tion 2.7.16.1 [Library combinator], page 59 may operate on data other than the list type
usually used by avram, such as floating point numbers and arrays, but a virtual code ap-
plication must be able to represent the arguments and results of these functions in order to
use them. As a matter of convention, a data structure occupying size bytes of contiguous
storage on the host machine appears as a list of length size to a virtual code application,
in which each item corresponds to a byte, and is represented according to Appendix A
[Character Table], page 123.

In principle, a virtual code application invoking a library function to operate on a con-
tiguous block of data, such as an IEEE double precision number, for example, would con-
struct a list of eight character representations (one for each byte in a double precision
number), and pass this list as an argument to the library function. The virtual machine
would transparently convert this representation to the native floating point format, evaluate
the function, and convert the result back to a list. In practice, high level language features
beyond the scope of this document would insulate the programmer from some of the details
on the application side as well.

To save the time of repeatedly converting between the list representation and the con-
tiguous native binary representation, the structure referenced by a list pointer contains a
value field which is a void pointer to a block of memory of unspecified type, and serves
as a persistent cache of the value represented by the list. This field normally should be
managed by the API rather than being accessed directly by client modules, but see the
code in ‘mpfr.c’ for an example of a situation in which it’s appropriate to break this rule.
(Generally these situations involve library functions operating on non-contiguous data.)

3.1.4.1 Primitive types

A pair of functions in support of this abstraction is prototyped in ‘listfuns.h’. These
functions will be of interest mainly to developers wishing to implement an interface to a new
library module and make it accessible on the virtual side by way of the library combinator
(Section 2.7.16.1 [Library combinator], page 59).

Functionvoid *avm value of list (list operand, list *message, int *fault)
This function takes an operand representing a value used by a library function in
the format described above (Section 3.1.4 [Type Conversions], page 72) and returns
a pointer to the value.

Chapter 3: Library Reference 73

The value field in the operand normally will point to the block of memory holding
the value, and the operand itself will be a list of character representations whose
binary encodings spell out the value as explained above.

The value field need not be initialized on entry but it will be initialized as a side
effect of being computed by this function. If it has been initialized due to a previous
call with the same operand, this function is a fast constant time operation.

The caller should not free the pointer returned by this function because a reference to
its value will remain in the operand. When the operand itself is freed by avm_dispose
(Section 3.1.1 [Simple Operations], page 66), the value will go with it.

If an error occurs during the evaluation of this function, the integer referenced by fault

will be set to a non-zero value, and the list referenced by message will be assigned a
representation of a list of strings describing the error. The message is freshly created
and should be freed by the caller with avm_dispose when no longer needed.

Possible error messages are <’missing value’>, in the case of an empty operand,
<’invalid value’> in the case of an operand that is not a list of character repre-
sentations, and <’memory overflow’> if there was insufficient space to allocate the
result.

Functionlist avm list of value (void *contents, size_t size, int *fault)
This function performs the inverse operation of avm_value_of_list, taking the ad-
dress of an area of contiguously stored data and its size in bytes to a list representation.
The length of the list returned is equal to the number of bytes of data, size, and each
item of the list is a character representation for the corresponding byte as given by
Appendix A [Character Table], page 123.

A copy of the memory area is made so that the original is no longer needed and
may be freed by the caller. A pointer to this copy is returned by subsequent calls to
avm_value_of_list when the result returned by this function is used as the operand
parameter.

If there is insufficient memory to allocate the result, the integer referenced by fault is
set to a non-zero value, and a copy of the message <’memory overflow’> represented
as a list is returned. This function could also cause a segmentation fault if it is passed
an invalid pointer or a size that overruns the storage area. However, it is acceptable
to specify a size that is less than the actual size of the given memory area to construct
a list representing only the first part of it. The size must always be greater than zero.

3.1.4.2 One dimensional arrays

A couple of functions declared in ‘matcon.h’ are concerned mainly with one dimensional
arrays or vectors. They have been used for vectors of double precision and complex numbers,
but are applicable to any base type that is contiguous and of a fixed size.

The motivation for these functions is to enable a developer to present an API to virtual
code applications wherein external library functions operating natively on one dimensional
arrays of numbers are seen from the virtual side to operate on lists of numbers. Lists are
the preferred container for interoperability with virtual code applications.

74 avram - a virtual machine code interpreter

Functionvoid *avm vector of list (list operand, size_t item size, list

*message, int *fault)
This function calls avm_value_of_list (Section 3.1.4.1 [Primitive types], page 72)
for each item of the operand and puts all the values together into one contiguous
block, whose address is returned.

The given item size is required to be the lengths of the items, all necessarily equal,
and is required only for validation. For example, item size is 8 for a list of double
precision numbers, because they occupy 8 bytes each and are represented as lists of
length 8.

The total number of bytes allocated is the product of item size and the length of the
operand. Unlike the case of avm_value_of_list (Section 3.1.4.1 [Primitive types],
page 72), the result returned by this function should be explicitly freed by the caller
when no longer needed.

Any errors such as insufficient memory cause the integer referenced by fault to be
assigned a non-zero value and themessage to be assigned an error message represented
as a list of strings. An error message of <’bad vector specification’> is possible
in the case of an empty operand or one whose item lengths don’t match the given
item size. Error messages caused by avm_value_of_list can also be generated by
this function. Any non-empty error message should be reclaimed by the caller using
avm_dispose (Section 3.1.1 [Simple Operations], page 66). If an error occurs, a NULL

pointer is returned.

Functionlist avm list of vector (void *vector, int num items, size_t

item size, int *fault)
This function takes it on faith that an array of dimension num items in which each
item occupies item size bytes begins at the address given by vector. A list represen-
tation of each item in the array is constructed by the function avm_list_of_value

(Section 3.1.4.1 [Primitive types], page 72), and a list of all of the lists thus obtained
in order of their position in the array is returned.

In the event of any errors caused by avm_list_of_value or errors due to insufficient
memory, the error message is returned as the function result, and the integer refer-
enced by fault is assigned a non-zero value. The error message is in the form of a list
of character string representations. A segmentation fault is possible if vector is not
a valid pointer or if the array size implied by misspecified values of num items and
item size exceeds its actual size.

3.1.4.3 Two dimensional arrays

Several other functions in ‘matcon.h’ are meant to support conversions between matrices
represented as lists of lists and arrays in a variety of representations. Dense matrices either
square or rectangular are accommodated, and symmetric square matrices can be stored
with redundant entries omitted in either upper trangular or lower triangular format.

Similarly to the vector operations (Section 3.1.4.2 [One dimensional arrays], page 73)
these functions are intended to allow a developer to present an interface to external libraries
based on lists rather than arrays.

Chapter 3: Library Reference 75

The preferred convention for virtual code applications is to represent a matrix as a list of
lists of entities (typically numbers), with one list for each row of the matrix. For example,
a 3 by 3 matrix containing a value of aij in the i-th row and the j-th column would be
represented by this list of three lists.

<
<a11,a12,a13>,
<a21,a22,a23>,
<a31,a32,a33>>

Such a representation is convenient for manipulation by virtual machine combinators, for
example transpose (Section 2.7.14.4 [Transpose], page 53), and is readily identified with
the matrix it represents.

If a matrix is symmetric (that is, with aij equal to aji for all values of i and j), only
the lower triangular portion needs to be stored because the other entries are redundant.
The list representatation would be something like this.

<
<a11>,
<a21,a22>,
<a31,a32,a33>>

Another alternative for representing a symmetric matrix is to store only the upper tri-
angular portion. In this case, a list such as the following would be used.

<
<a11,a12,a13>,
<a22,a23>,
<a33>>

The upper and lower triangular representations are distinguishable by whether or not the
row lengths form an increasing sequence.

In addition to representing symmetric matrices, these upper and lower triangular forms
are also appropriate for representing matrices whose remaining entries are zero, such as the
factors in an LU decomposition.

Functionvoid *avm matrix of list (int square, int upper triangular, int

lower triangular, int column major, list operand, size_t item size, list

*message, int *fault)
This function converts a matrix in one of the list representations above to a contiguous
array according to the given specifications. The array can contain elements of any
fixed sized type of size item size. The memory for it is allocated by this function and
it should be freed by the caller when no longer needed.

The input matrix is given by the list parameter, operand, and its format is described
by the integer parameters square, upper triangular, and lower triangular. The num-
ber of bytes occupied by each entry is given by item size.

To the extent these specifications are redundant, they are used for validation. If any
of the following conditions is not met, the integer referenced by fault is assigned a non-
zero value and a copy of the message <’bad matrix specification’> represented as
a list is assigned to the list referenced by message. Errors are also possible due to
insufficient memory.

76 avram - a virtual machine code interpreter

• The operand must be a list of lists of lists such that each item of each item is
has a length of item size, and its items consist of character representations as
required by avm_value_of_list (Section 3.1.4.1 [Primitive types], page 72).

• If the lengths of the top level lists in the operand form an increasing sequence, the
lower triangular representation is assumed and the lower triangular parameter
must have a non-zero value.

• If the lengths of the top level lists in the operand form a decreasing sequence, the
upper triangular representation is assumed and the upper triangular parameter
must have a non-zero value.

• At least one of upper triangular or lower triangular must be zero.

• If square has a non-zero value, then either all items of the operand must have
the same length as the operand, or if it’s triangular, then the longest one must
have the same length as the operand.

• If the operand is neither square nor a triangular form, all items of it are required
to have the same length.

The parameters upper triangular or lower triangular may be set to non-zero values
even if the operand is not in one of the upper or lower triangular forms discussed
above. In this case, the operand must be square or rectangular (i.e., with all items
the same length), and the following interpretations apply.

• If upper triangular is non-zero, the diagonal elements and the upper triangular
portion of the input matrix are copied to the output. The lower triangle of the
input is ignored and the lower triangle of the output is left uninitialized.

• If lower triangular is non-zero, the diagonal elements and the lower triangular
portion of the input matrix are copied to the output. The upper triangle of the
input is ignored and the upper triangle of the output is left uninitialized.

The column major parameter affects the form of the output array. If it is zero,
then each row of the input matrix is stored in a contiguous block of memory in
the output array, and if it is non-zero, each column is stored contiguously. The latter
representation is also known as Fortran order and may be required by library functions
written in Fortran.

In all cases when a triangular form is specified, part of the output matrix is left
uninitialized. The redundant entries may be assigned if required by the avm_reflect_
matrix function (Section 3.1.4.4 [Related utility functions], page 78).

Functionlist avm list of matrix (void *matrix, int rows, int cols, size_t

item size, int *fault)
This function performs an inverse operation to avm_matrix_of_list by taking the
address of a matrix stored as a contiguous array in the parameter matrix and con-
structing the list representation as discussed above. Only square and rectangular
matrices in row major order are supported, but see avm_matrix_transposition for
a way to convert between row major and column major order (Section 3.1.4.4 [Related
utility functions], page 78).

The parameters rows, cols, and item size describe the form of the matrix. The list
returned as a result will have a length of rows, and each item will be a list of length

Chapter 3: Library Reference 77

cols. Each item of the result corresponds to a row of the matrix, and each item of
the items represents the an entry of the matrix as a list of length item size. These
items could be passed to avm_value_of_list, for example, to obtain their values
(Section 3.1.4.1 [Primitive types], page 72).

Memory is allocated by this function to create the list, which can be reclaimed by
avm_dispose (Section 3.1.1 [Simple Operations], page 66). If there is insufficient
memory, the integer referenced by fault is assigned a non-zero value and the result
returned is a list representation of the message <’memory overflow’>. The error
message be reclaimed by the caller as well using avm_dispose.

A packed storage representation for symmetric square matrices and triangular matrices
is of interest because it is used by some library functions, notably those in LAPACK, to save
memory and thereby accommodate larger problems. In this representation, column major
order is assumed, and either the lower or the upper triangle of the matrix is not explicitly
stored. For example, a lower triangular matrix whose list representation corresponds to

<
<a11>,
<a21,a22>,
<a31,a32,a33>,
<a41,a42,a43,a44>>

would be stored according to the memory map

[a11 a21 a31 a41 a22 a32 a42 a33 a43 a44]

with a11 at the beginning address. An upper triangular matrix

<
<a11,a12,a13,a14>,
<a22,a23,a24>,
<a33,a34>,
<a44>>

would be stored according to the memory map

[a11 a12 a22 a13 a23 a33 a14 a24 a34 a44].

A couple of functions converting between list representations and packed array format
are provided as described below.

Functionvoid *avm packed matrix of list (int upper triangular, list

operand, int n, size_t item size, list *message, int *fault)
If the operand is a list in one of the triangular forms explained above, then the
upper triangular parameter must be consisitent with it, being non-zero if the operand
is upper triangular and zero otherwise.

If the operand is not in a triangular form, then each item of the operand must be a
list of length n. In this case, the upper triangular parameter indicates which triangle
of the operand should be copied to the result, and the other triangle is ignored.

In either case, the operand must have a length of n, and the items of its items must
be lists of length item size containing character representations as required by avm_

value_of_list (Section 3.1.4.1 [Primitive types], page 72).

78 avram - a virtual machine code interpreter

If the input parameters are inconsistent or if there is insufficient memory to allo-
cate the result, the integer referenced by fault is assigned a non-zero value, and
the list referenced by message is assigned a copy of the list representation of <’bad
matrix specification’> or <’memory overflow’>, respectively. A non-empty mes-
sage must be reclaimed by the caller using avm_dispose (Section 3.1.1 [Simple Op-
erations], page 66).

If there are no errors, the result is a pointer to a packed array representation of the
operand as explained above. The memory for this result is allocated by this function
and should be freed by the caller when no longer required. The number of bytes
allocated will be item size * (n * (n + 1))/2.

Functionlist avm list of packed matrix (int upper trianguler,void

*operand, int n, size_t item size, int *fault)
This function performs an inverse operation to that of avm_packed_matrix_of_list
given the address of a packed matrix stored according to one of the memory maps
discussed above. The operand parameter holds the address, the parameter n gives
the number of rows, and the upper triangular parameter specifies which of the two
possible memory maps to assume.

If there is sufficient memory, the result returned is a list in one of the triangular
forms described above, being upper triangular if the upper triangular parameter is
non-zero, with values of length item size taken from the array.

In the event of a memory overflow, the integer referenced by fault is assigned a non-
zero value and the result is a copy of the message <’memory overflow’> represented
as a list. A segmentation fault is possible if this function is passed an invalid pointer
or dimension.

3.1.4.4 Related utility functions

A small selection of additional functions that are likely to be of use to developers con-
cerned with matrix operations has been incorporated into the API to save the trouble of
reinventing them, although doing so would be straightforward. They are described in this
section without further motivation.

Functionvoid *avm matrix transposition (void *matrix, int rows, int

cols, size_t item size)
This function takes the address of an arbitrary rectangular matrix represented as
a contiguous array (not a list) and transposes it in place. That is, this function
transforms an m by n matrix to an n by m matrix by exchanging the i,jth element
with the j,ith element for all values of i and j.

The numbers of rows and columns in the matrix are given by the parameters rows

and cols, respectively, and the size of the entries in bytes is given by item size.

The matrix is assumed to be in row major order, but this function is applicable to
matrices in column major order if the caller passes the number of columns in rows

and the number of rows in cols.

Alternatively, this function can be seen as a conversion between the row major and
the column major representation of a matrix. An m by n matrix in row major order

Chapter 3: Library Reference 79

will be transformed to the same m by n matrix in column order, or from column order
to row order.

A notable feature of this function is that it allocates no memory so there is no possibil-
ity of a memory overflow even for very large matrices, unlike a naive implementation
which would involve making a temporary copy of the matrix. There is a possibility
of a segmentation fault if invalid pointers or dimensions are given.

Functionvoid *avm matrix reflection (int upper triangular, void *matrix,

int n, size_t item size)
This function takes a symmetric square matrix of dimension n containing entries of
item size bytes each and fills in the redundant entries.

If upper triangular is non-zero, the upper triangle of the matrix is copied to the
lower triangle. If upper triangular is zero, the lower triangular entries are copied to
the upper triangle.

These conventions assume row major order. If the matrix is in column major order,
then the caller can either transpose it in place before and after this function by avm_

matrix_transposition, or can complement the value of upper triangular.

Note that this function may be unnecessary for LAPACK library functions that ignore
the redundant entries in a symmetric matrix, because they can be left uninitialized,
but it is included for the sake of completeness.

Functionlist *avm row number array (counter m, int *fault)
A fast, memory efficient finite map from natural numbers to their list representations
can be obtained by using this function as an alternative to avm_natural or avm_

recoverable_natural when repeated evaluations of numbers within a known range
are required (Section 3.1.1 [Simple Operations], page 66 and Section 3.1.2 [Recoverable
Operations], page 69).

Given a positive integer m, this function allocates and returns an array of m lists
whose ith entry is the list representation of the number i as explained in Section 2.4
[Representation of Numeric and Textual Data], page 23.

An amount of memory proportional to m is used for the array and its contents. If
there is insufficient memory, a NULL value is returned and the integer referenced by
fault is set to a non-zero value.

Functionvoid avm dispose rows (counter m, list *row number)
This function reclaims an array row number of size m returned by avm_row_number_

array, and its contents if any. A NULL pointer is allowed as the row number parameter
and will have no effect, but an uninitialized pointer will cause a segmentation fault.

Functionvoid avm initialize matcon ();
This function initializes some static variables used by the functions declared in
‘matcon.h’ and should be called before any of them is called or they might not
perform according to specifications.

80 avram - a virtual machine code interpreter

Functionvoid avm count matcon ();
This function frees the static variables allocated by avm_initialize_matcon and is
used to verify the absence of memory leaks. It should be called after the last call to
any functions in ‘matcon.h’ but before avm_count_lists if the latter is being used
(Section 3.1.1 [Simple Operations], page 66).

3.1.5 Comparison

The file ‘compare.h’ contains a few function declarations pertaining to the computation
of the comparison predicate described in Section 2.7.11.1 [Compare], page 46. Some of the
work is done by static functions in ‘compare.c’ that are not recommended entry points to
the library.

Functionvoid avm initialize compare ()
This function should be called once before the first call to avm_comparison, as it
initializes some necessary internal data structures.

Functionvoid avm count compare ()
This function can be used to check for memory leaks, by detecting unreclaimed storage
at the end of a run. The data structures relevant to comparison that could be reported
as unreclaimed are known as “decision” nodes, but these should always be handled
properly by the library without intervention. If avm_count_lists is also being used,
the call to this function must precede it.

Functionlist avm comparison (list operand, int *fault)
This function takes a list operand representing a pair of trees and returns a list
representing the logical value of their equality. If the operand is NULL, a message of
invalid comparison is returned and the *fault is set to a non-zero value. If the head

of the operand is unequal to the tail, a NULL value is returned. If they are equal,
a list is returned whose head and tail are both NULL. The equality in question is
structural rather than pointer equality.

The list operand to this function may be modified by this function, but not in a way
that should make any difference to a client program. If two lists are found to be equal,
or if even two sublists are found to be equal in the course of the comparison, one of
them is deallocated and made to point to the other. This action saves memory and
may make subsequent comparisons faster. However, it could disrupt client programs
that happen to be holding stale list pointers.

As of avram version 0.6.0, a logical field called discontiguous has been added to the
node record type declared in lists.h, which is checked by the comparison function.
If a list node has its discontiguous field set to a non-zero value, and if it also has a
non-null value field, then it won’t be deallocated in the course of comparison even if
it is found to be equal to something else. This feature can be used by client modules
to create lists in which value fields refer to data structures that are meant to exist
independently of them. See ‘mpfr.c’ for an example.

This function is likely to have better performance and memory usage than a naive
implementation of comparison, for the above reasons and also because of optimizations

Chapter 3: Library Reference 81

pertaining to comparison of lists representing characters. Moreover, it is not subject
to stack overflow exceptions because it is not written in a recursive style.

Functionlist avm binary comparison (list left operand, list

right operand, int *fault);
This function is the same as avm_comparison except that it allows the left and right
operands to be passed as separate lists rather than taking them from the head and
the tail of a single list.

3.1.6 Deconstruction Functions

A fast native implementation of the deconstruction operation is provided by the functions
declared in ‘decons.h’.

Functionvoid avm initialize decons ()
This should be called prior to the first call to avm_deconstruction, so as to initialize
some necessary internal data structures. Results will be undefined if it is not.

Functionvoid avm count decons ()
For ecologically sound memory management, this function should be called at the end
of a run to verify that there have been no leaks due to the deconstruction functions,
which there won’t be unless the code in ‘decons.c’ has been ineptly modified. An
error message to the effect of unreclaimed “points” could be the result otherwise.

Functionlist avm deconstruction (list pointer, list operand, int *fault)
Deconstructions are performed by this function, as described in Section 2.7.8.1 [Field],
page 42. In the silly program notation (Section 2.7.4 [A Simple Lisp Like Language],
page 35), this function computes the value of ([[field]] pointer) operand.

For example, using the fixed list avm_join(NULL,NULL) as the pointer parameter will
cause a copy of the operand itself to be returned as the result. A pointer equal to
avm_join(NULL,avm_join(NULL,NULL)) will cause a copy of operand->tail to be
returned, and so on. A NULL pointer causes an internal error.

If the deconstruction is invalid, as in the case of the tail of an empty list, the invalid
deconstruction error message is returned as the result, and the *fault parameter is
set to a non-zero value. The *fault parameter is also set to a non-zero value in the
event of a memory overflow, and the memory overflow message is returned.

3.1.7 Indirection

In some cases it is necessary to build a tree from the top down rather than from the
bottom up, when it is not known in advance what’s on the bottom. Although the list

type is a pointer itself, these situations call for a type of pointers to lists, which are declared
as the branch type in ‘branches.h’. For example, if b is declared as a branch and l is
declared as a list, it would be possible to write b = &l.

Facilities are also provided for maintaining queues of branches, which are declared as
the branch_queue type. This type is a pointer to a structure with two fields, above and
following, where above is a branch and following is a branch_queue.

82 avram - a virtual machine code interpreter

These functions are used internally elsewhere in the library and might not be necessary
for most client programs to use directly.

Functionvoid avm initialize branches ()
This must be done once before any of the other branch related functions is used, and
creates some internal data structures. Results of the other functions are undefined if
this one isn’t called first.

Functionvoid avm count branches ()
This function can be used at the end of a run to detect unreclaimed storage used
for branches or branch queues. If any storage remains unreclaimed, a message about
unreclaimed branches is written to standard error.

Functionvoid avm anticipate (branch_queue *front, branch_queue *back,

branch operand)
This function provides a simple queueing facility for branches. Similarly to the case
with avm_enqueue, front and back should be initialized to NULL before the first call.
Each call to this function will enqueue one item to the back, assuming enough memory
is available, as the following example shows.

front = NULL;
back = NULL;
l = avm_join(NULL,NULL);
anticipate(&front,&back,&(l->head));
anticipate(&front,&back,&(l->tail));

After the above code is executed, these postconditions will hold.

front->above == &(l->head)
front->following->above == &(l->tail)
front->following == back
back->following == NULL

The name “anticipate” is used because ordinarily the queue contains positions in a
tree to be filled in later. As usual, only unshared trees should be modified in place.

Functionvoid avm recoverable anticipate (branch_queue *front,

branch_queue *back, branch operand, int *fault)
This function is similar to avm_anticipate, except that it will not exit with an error
message in the event of an overflow error, but will simply set *fault to a non-zero
value and return to the caller. If an overflow occurs, nothing about the queue is
changed.

Functionvoid avm enqueue branch (branch_queue *front, branch_queue

*back, int received bit)
A slightly higher level interface to the avm_anticipate function is provided by this
function, which is useful for building a tree from a string of input bits in a format
similar to the one described in Section 2.2 [Concrete Syntax], page 20.

This function should be called the first time with front and back having been ini-
tialized to represent a queue containing a single branch pointing to a list known to

Chapter 3: Library Reference 83

the caller. The list itself need not be allocated or initialized. An easy way of doing
so would be the following.

front = NULL;
back = NULL;
avm_anticipate(&front,&back,&my_list);

On each call to avm_enqueue_branch, the received bit parameter is examined. If it is
zero, nothing will be added to the queue, the list referenced by the front branch will be
assigned NULL, and the front branch will be removed from the queue. If received bit

is a non-zero value, the list referenced by the front branch will be assigned to point to
a newly created unshared list node, and two more branches will be appended to the
queue. The first branch to be appended will point to the head of the newly created
list node, and the second branch to be appended will point to the tail.

If the sequence of bits conforms to the required concrete syntax, this function can
be called for each of them in turn, and at the end of the sequence, the queue will
be empty and the list referenced by the initial branch (i.e., my_list) will be the one
specified by the bit string. If the sequence of bits does not conform to the required
concrete syntax, the error can be detected insofar as the emptying of the queue will
not coincide exactly with the last bit.

The caller should check for the queue becoming prematurely empty due to syntax
errors, because no message is reported by avm_enqueue_branch in that event, and
subsequent attempts to enqueue anything are ignored. However, in the event of a
memory overflow, an error message is reported and the process is terminated.

Functionvoid avm recoverable enqueue branch (branch_queue *front,

branch_queue *back, int received bit, int *fault)
This function is similar to avm_enqueue_branch but will leave error handling to the
caller in the event of insufficient memory to enqueue another branch. Instead of
printing an error message and exiting, it will dispose of the queue, set the fault

flag to a non-zero value, and return. Although the queue will be reclaimed, the
lists referenced by the branches in it will persist. The list nodes themselves can be
reclaimed by disposing of the list whose address was stored originally in the front
branch.

Functionvoid avm dispose branch queue (branch_queue front)
This function deallocates a branch queue by chasing the following fields in each one.
It does nothing to the lists referenced by the branches in the queue.

Rather than using free directly, client programs should use this function for deal-
locating branch queues, because it allows better performance by interacting with a
local internal cache of free memory, and because it performs necessary bookkeeping
for avm_count_branches.

Functionvoid avm dispose branch (branch_queue old)
This disposes of a single branch queue node rather than a whole queue. Otherwise,
the same comments as those above apply.

84 avram - a virtual machine code interpreter

3.1.8 The Universal Function

A function computing the result of the invisible operator used to specify the virtual code
semantics in Section 2.7 [Virtual Code Semantics], page 33, is easily available by way of a
declaration in ‘apply.h’.

Functionvoid avm initialize apply ()
This function should be called by the client program at least once prior to the first call
to avm_apply or avm_recoverable_apply. It causes certain internal data structures
and error message texts to be initialized.

Functionvoid avm count apply ()
This function should be used at the end of a run for the purpose of detecting and
reporting any unreclaimed storage associated with functions in this section. If the
function avm_count_lists() is also being used, it should be called after this one.

Functionlist avm apply (list operator, list operand)
This is the function that evaluates the operator used to describe the virtual code
semantics. For example, the value of f x can be obtained as the result returned by
avm_apply(f,x).

Both parameters to this function are deallocated unconditionally and should not be
referenced again by the caller. If the parameters are needed subsequently, then only
copies of them should be passed to avm_apply using avm_copied.

This function is not guaranteed to terminate, and may cause a memory overflow error.
In the event of an exceptional condition, the error message is written to standard error
and the program is halted. There is no externally visible distinction between different
levels of error conditions.

Functionlist avm recoverable apply (list operator, list operand, int

*fault)
This function is similar to avm_apply but leaves the responsibility of error handling
with the caller. If any overflow or exceptional condition occurs, the result returned
is a list representing the error message, and the fault flag is set to a non-zero value.
This behavior contrasts with that of avm_apply, which will display the message to
standard error and kill the process.

3.2 Characters and Strings

If a C program is to interact with a virtual code application by exchanging text, it uses
the representation for characters described in Appendix A [Character Table], page 123. This
convention would be inconvenient without a suitable API, so the functions in this section
address the need. These functions are declared in the header file ‘chrcodes.h’.

Some of these functions have two forms, with one of them having the word standard

as part of its name. The reason is to cope with multiple character encodings. Versions
of avram prior to 0.1.0 used a different character encoding than the one documented in
Appendix A [Character Table], page 123. The functions described in Section 3.5 [Version

Chapter 3: Library Reference 85

Management], page 100 can be used to select backward compatible operation with the older
character encoding. The normal forms of the functions in this section will use the older
character set if a backward compatibility mode is indicated, whereas the standard forms
will use the character encoding documented in Appendix A [Character Table], page 123
regardless.

Standard encodings should always be assumed for library and function names associated
with the library combinator (Section 3.9.1 [Calling existing library functions], page 111),
and for values of lists defined by avm_list_of_value (Section 3.1.4.1 [Primitive types],
page 72), but version dependent encodings should be used for all other purposes such as
error messages. Alternatively, the normal version dependent forms of the functions below
can be used safely in any case if backward compatibility is not an issue. This distinction
is viewed as a transitional feature of the API that will be discontinued eventually when
support for the old character set is withdrawn and the standard forms are be removed.

Functionlist avm character representation (int character)

Functionlist avm standard character representation (int character)
This function takes an integer character code and returns a copy of the list repre-
senting it, as per the table in Appendix A [Character Table], page 123. Because the
copy is shared, no memory is allocated by this function so there is no possibility of
overflow. Nevertheless, it is the responsibility of the caller dispose of the list when it
is no longer needed by avm_dispose, just as if the copy were not shared (Section 3.1.1
[Simple Operations], page 66). For performance reasons, this function is implemented
as a macro. If the argument is outside the range of zero to 255, it is masked into that
range.

Functionint avm character code (list operand)

Functionint avm standard character code (list operand)
This function takes a list as an argument and returns the corresponding character
code, as per Appendix A [Character Table], page 123. If the argument does not
represent any character, a value of -1 is returned.

Functionlist avm strung (char *string)

Functionlist avm standard strung (char *string)
This function takes a pointer to a null terminated character string and returns the
list obtained by translating each character into its list representation and enqueuing
them together. Memory needs to be allocated for the result, and if there isn’t enough
available, an error message is written to standard error and the process is terminated.
This function is useful to initialize lists from hard coded strings at the beginning of
a run, as in this example.

hello_string = avm_strung("hello");

This form initializes a single string, but to initialize a one line message suitable for
writing to a file, it would have to be a list of strings, as in this example.

86 avram - a virtual machine code interpreter

hello_message = avm_join(avm_strung("hello"),NULL);

The latter form is used internally by the library for initializing most of the various
error messages that can be returned by other functions.

Functionlist avm recoverable strung (char *string, int *fault);

Functionlist avm recoverable standard strung (char *string, int

*fault);
This function is like avm_strung except that if it runs out of memory it sets the
integer referenced by fault to a non-zero value and returns instead of terminating the
process.

Functionchar *avm unstrung (list string, list *message, int *fault)

Functionchar *avm standard unstrung (list string, list *message, int

*fault)
This function performs an inverse operation to avm_recoverable_strung, taking a
list representing a character string to the character string in ASCII null terminated
form as per the standard C representation. Memory is allocated for the result by this
function which should be freed by the caller.

In the event of an exception, the integer referenced by fault is assigned a non-zero
value and an error message represented as a list is assigned to the list referenced
by message. The error message should be reclaimed by the caller with avm_dispose

(Section 3.1.1 [Simple Operations], page 66 if it is non-empty. Possible error messages
are <’memory overflow’>, <’counter overflow’>, and <’invalid text format’>.

Functionlist avm scanned list (char *string)
An application that makes use of virtual code snippets or data that are known at
compile time can use this function to initialize them. The argument is a string in the
format described in Section 2.2 [Concrete Syntax], page 20, and the result is the list
representing it. For example, the program discussed in Section 1.8 [Example Script],
page 15 could be hard coded into a C program by pasting the data from its virtual
code file into an expression of this form.

cat_program = avm_scanned_list("sKYQNTP\\");

Note that the backslash character in the original data has to be preceded by an extra
backslash in the C source, because backslashes usually mean something in C character
constants.

The avm_scanned_list function needs to allocate memory. If there isn’t enough
memory available, it writes a message to standard error and causes the process to
exit.

Functionlist avm multiscanned (char **strings)
Sometimes it may be useful to initialize very large lists from strings, but some C
compilers impose limitations on the maximum length of a string constant, and the
ISO standard for C requires only 512 bytes. This function serves a similar purpose
to avm_scanned_list, but allows the argument to be a pointer to a null terminated

Chapter 3: Library Reference 87

array of strings instead of one long string, thereby circumventing this limitation in
the compiler.

char *code[] = {"sKYQ","NTP\\",NULL};
...
cat_program = avm_multiscanned(code);

If there is insufficient memory to allocate the list this function needs to create, it
causes an error message to be written to standard error, and then kills the process.

Functionchar* avm prompt (list prompt strings)
This function takes a list representing a list of character strings, and returns its
translation to a character string with the sequence 13 10 used as a separator. For
example, given a tree of this form

some_message = avm_join(
avm_strung("hay"),
avm_join(

avm_strung("you"),
NULL));

the result returned by prompt_strings(some_message) would be a pointer to a null
terminated character string equivalent to the C constant "hay\13\10you".

Error messages are printed and the process terminated in the event of either a memory
overflow or an invalid character representation.

This function is used by avram in the evaluation of interactive virtual code applica-
tions, whose output has to be compared to the output from a shell command in this
format. The separator is chosen to be compatible with the expect library.

Functionchar* avm recoverable prompt (list prompt strings, list

*message, int *fault)
This function performs the same operation as avm_prompt but allows the caller to
handle exceptional conditions. If an exception such as a memory overflow occurs, the
integer referenced by fault is assigned a non-zero value and a representation of the
error message as a list of strings is assigned to the list referenced by message.

This function is used to by avram to evaluate the interact combinator (Sec-
tion 2.7.16.3 [Interaction combinator], page 61), when terminating in the event
of an error would be inappropriate.

Functionvoid avm initialize chrcodes ()
This function has to be called before any of the other character conversion functions
in this section, or else their results are undefined. It performs the initialization of
various internal data structures.

Functionvoid avm count chrcodes ()
This function can be called at the end of a run, after the last call to any of the other
functions in this section, but before avm_count_lists if that function is also being
used. The purpose of this function is to detect and report memory leaks. If any
memory associated with any of these functions has not been reclaimed by the client
program, a message giving the number of unreclaimed lists will be written to standard
error.

88 avram - a virtual machine code interpreter

3.3 File Manipulation

The functions described in this section provide an interface between virtual code ap-
plications and the host file system by converting between files or file names and their
representations as lists. These conversions are necessary when passing a file to a virtual
code application, or when writing a file received in the result of one.

3.3.1 File Names

A standard representation is used by virtual code applications for the path names of files,
following the description in Section 2.6.1 [Input Data Structure], page 27. The functions
and constants declared in fnames.h provide an API for operating on file names in this form.

Functionlist avm path representation (char *path)
If a C program is to invoke a virtual code application and pass a path name to it as a
parameter, this function can be used to generate the appropriate representation from
a given character string.

conf_path = avm_path_representation("/etc/resolve.conf");

In this example, conf_path is a list. For potentially better portability, a C pro-
gram can use the character constant avm_path_separator_character in place of the
slashes in hard coded path names.

Other useful constants are avm_current_directory_prefix as a portable replace-
ment for "./", as well as avm_parent_directory_prefix instead of "../". There is
also avm_root_directory_prefix for "/". These three constants are null terminated
strings, unlike avm_path_separator_character, which is a character.

If a NULL pointer is passed as the path, a NULL list is returned, which is the path rep-
resentation for standard input or standard output. If the address of an empty string
is passed to this function as the path, the list of the empty string will be returned,
which is the path representation for the root directory. Trailing path separators are
ignored, so "/" is the same as the empty string.

Some memory needs to be allocated for the result of this function. If the memory
is not available, an error message is written to standard error and the process is
terminated.

Functionlist avm date representation (char *path)
This function is essentially a wrapper around the standard ctime_r function that
not only gets the time stamp for a file at a given path, but transforms it to a list
representation according to Appendix A [Character Table], page 123. It needs to
allocate memory for the result and will cause the program to exit with an error
message if there is not enough memory available.

The time stamp will usually be in a format like Sun Mar 4 10:56:40 GMT 2001. If for
some reason the time stamp can not be obtained, the result will be a representation
of the string unknown date.

Functionchar* avm path name (list path)
This function is the inverse of avm_path_representation, in that it takes a list
representing a path to the path name expressed as a character string. This function

Chapter 3: Library Reference 89

can be used in C programs that invoke virtual code applications returning paths as
part of their results, so that the C program can get the path into a character string
in order to open the file.

If the path parameter is NULL, a NULL pointer is returned as the result. The calling
program should check for a NULL result and interpret it as the path to standard input
or standard output.

The memory needed for the character string whose address is returned is allocated
by this function if possible. The given path is not required to be consistent with the
host file system, but it is required to consist of representations of non-null printable
characters or spaces as lists per Appendix A [Character Table], page 123. In the event
of any error or overflow, control does not return to the caller, but an error message is
printed and the program is aborted. The possible error messages from this function
are the following.

• program-name: counter overflow (code nn)

• program-name: memory overflow (code nn)

• program-name: null character in file name

• program-name: bad character in file name

• program-name: invalid file name (code nn)

Functionvoid avm initialize fnames ()
A few housekeeping operations relevant to internal data structures are performed by
this function, making it necessary to be called by the client program prior to using
any of the other ones.

Functionvoid avm count fnames ()
This function can be used after the the last call to any of the other functions in this
section during a run, and it will detect memory leaks that may be attributable to
code in these functions or misuse thereof. If any unreclaimed storage remains when
this function is called, a warning message will be written to standard error. If the
function avm_count_lists is also being used by the client, it should be called after
this one.

3.3.2 Raw Files

Some low level operations involving lists and data files are provided by these functions,
which are declared in the header file ‘rawio.h’.

Functionlist avm received list (FILE *object, char *filename)
This function is a convenient way of transferring data directly from a raw format
file into a list in memory. It might typically be used to load the virtual code for an
application that has been written to a file by a compiler.

object is the address of a file which should already be open for reading before
this function is called, and will be read from its current position.

90 avram - a virtual machine code interpreter

filename should be set by the caller to the address of a null terminated string
containing the name of the file, but is not used unless it needs to be
printed as part of an error message. If it is a null pointer, standard input
is assumed.

The result returned is a list containing data read from the file.

The file format is described in Section 2.3 [File Format], page 22. The preamble
section of the file, if any, is ignored. If the file ends prematurely or otherwise conflicts
with the format, the program is aborted with a message of

program-name: invalid raw file format in filename

written to standard error. The program will also be aborted by this function in the
event of a memory overflow.

The file is left open when this function returns, and could therefore be used to store
other data after the end of the list. The end of a list is detected automatically by
this function, and it reads no further, leaving the file position on the next character,
if any.

Functionvoid avm send list (FILE *repository, list operand, char *filename)

This function can be used to transfer data from a list in memory to a file, essentially by
implementing the printing algorithm described in Section 2.2.1 [Bit String Encoding],
page 21.

repository is the address of a file already open for writing, to which the data are
written starting from the current position.

operand is the list containing the data to be written

filename is the address of a null terminated string containing the name of the file
that will be reported in an error message if necessary.

No preamble section is written by this function, but one could be written to the file by
the caller prior to calling it. Error messages are possible either because of i/o errors
or because of insufficient memory. I/o errors are not fatal and will result only in a
warning message being printed to standard error, but a memory overflow will cause
the process to abort. An i/o error message reported by this function would be of the
form

program-name: can’t write to filename

followed by the diagnostic obtained from the standard strerror function if it exists
on the host platform. The file is left open when this function returns.

Functionvoid avm initialize rawio ()
This function initializes some necessary data structures for the functions in this sec-
tion, and should be called prior to them at the beginning of a run.

Functionvoid avm count rawio ()
This function does nothing in the present version of the library, but should be called
after the last call to all of the other functions in this section in order to maintain
compatibility with future versions of the library. Future versions may decide to use
this function to do some cleaning up of local data structures.

Chapter 3: Library Reference 91

3.3.3 Formatted Input

Some functions relating to the input of text files or data files with preambles are declared
in the header file ‘formin.h’. The usage of these functions is as follows.

Functionlist avm preamble and contents (FILE *source, char *filename)
This function loads a file of either text or data format into memory.

source should be initialized by the caller as the address of a file already open for
reading that will be read from its current position.

filename should be set by the caller to the address of a null terminated character
string giving the name of the file that will be used if an i/o error message
needs to be written about it. If it is a NULL pointer, standard input is
assumed.

The result returned by the function will be a list whose head represents the preamble
of the file and whose tail represents the contents. As a side effect, the input file will
be closed, unless the filename parameter is NULL.

If the file conforms to the format described in Section 2.3 [File Format], page 22, the
preamble is a list of character strings. In the result returned by the function, the
head field will be a list with one item for each line in the file, and each item will be
a list of character representations as in Appendix A [Character Table], page 123, but
with the leading hashes stripped. The tail will be the list specified by remainder of
the file according to Section 2.2 [Concrete Syntax], page 20. If the file has an empty
preamble but is nevertheless a data file, the head will be a list whose head and tail

are both NULL.

If the file does not conform to the format in Section 2.3 [File Format], page 22, then
the head of the result will be NULL, and the tail will be a list of lists of character
representations, with one for each line.

Whether or not the file conforms to the format is determined on the fly, so this
function is useful for situations in which the format is not known in advance. The
conventions regarding the preamble and contents maintained by this function are
the same as those used by virtual code applications as described in Section 2.5.1.2
[Standard Output Representation], page 25 and Section 2.6.1 [Input Data Structure],
page 27.

The characters used for line breaks are not explicitly represented in the result. De-
pending on the host system, line breaks in text files may be represented either by
the character code 10, or by the sequence 13 10. However, in order for the library to
deal with binary files in a portable way, a line break always corresponds to a 10 as
far as this function is concerned regardless of the host, and a 13 is treated like any
other character. Hence, if this function were used on binary files that happened to
have some 10s in them, the exact contents of a file could be reconstructed easily by
appending a 10 to all but the last line and flattening the list.

A considerable amount of memory may need to be allocated by this function in order
to store the file as a list. If not enough memory is available, the function prints
an error message to standard error and aborts rather than returning to the caller.

92 avram - a virtual machine code interpreter

However, i/o errors are not fatal, and will cause the function to print a warning but
attempt to continue.

Functionlist avm load (FILE *source, char *filename, int raw)
Similarly to avm_preamble_and_contents, this function also loads a file into memory,
but the format is specified in advance.

source should be set by the caller to the address of an already open file for
reading, which will be read from its current position.

filename should be initialized by the caller as a pointer to a null terminated string
containing the name of the file that will be reported to the user in the
event of an error reading from it. If it is a NULL pointer, standard input
is assumed.

raw is set to a non-zero value by the caller to indicate that the file is expected
to conform to the format in Section 2.3 [File Format], page 22. If the file
is an ordinary text file, then it should be set to zero.

In the case of a data file, which is when raw is non-zero, the result returned by
this function will be a list representing the data section of the file and ignoring the
preamble. In the case of a text file, the result will be a list of lists of character
representations as per Appendix A [Character Table], page 123, with one such list for
each line in the file. Similar comments about line breaks to those mentioned under
avm_preamble_and_contents are applicable.

As a side effect of this function, the source file will be closed, unless the filename is
a NULL pointer.

This function is useful when the type of file is known in advance. If a data file
is indicated by the raw parameter but the format is incorrect, an error message is
reported and the process terminates. The error message will be of the form

program-name: invalid raw file format in filename

Alternatively, if a text file is indicated by the raw parameter, then no attempt is made
to test whether it could be interpreted as data, even if it could be. This behavior
differs from that of avm_preamble_and_contents, where a bad data file format causes
the file to be treated as text, and a valid data file format, even in a “text” file, causes
it to be treated as data.

Memory requirements for this function are significant and will cause the process to
abort with an error message in the event of insufficient free memory. Messages per-
taining to i/o errors are also possible and are not fatal.

Functionvoid avm initialize formin ()
This function should be called before either of the other functions in this section is
called, as it initializes some necessary static data structures. Results of the other
functions are undefined if this one is not called first.

Functionvoid avm count formin ()
This function should be called after the last call to any of the other functions in this
section, as it is necessary for cleaning up and reclaiming some internal data. If any

Chapter 3: Library Reference 93

storage remains unreclaimed due to memory leaks in these functions or to misuse of
them, a warning message is written to standard error. If the function avm_count_

lists is also being used by the client program, it should be called after this one.

3.3.4 Formatted Output

The following functions pertaining to the output of text files or data files with preambles
are declared in the header file ‘formout.h’.

Functionvoid avm output (FILE *repository, char *filename, list preamble,

list contents, int trace mode)
This function writes a either a text file or a data file in the format described in
Section 2.3 [File Format], page 22. The parameters have these interpretations.

repository is the address of a file opened for writing by the caller, that will be written
from its current position.

filename is the address of a null terminated character string set by the caller to be
the name of the file that will be reported to the user in the event of an
i/o error.

preamble is NULL in the case of a text file, but a list of character string represen-
tations as per Appendix A [Character Table], page 123, in the case of a
data file. If a data file has is to be written with an empty preamble, then
this list should have a NULL head and a NULL tail.

contents is either a list of character string representations in the case of a text file,
or is an unconstrained list in the case of a data file.

trace mode

may be set to a non-zero value by the caller to request that everything
written to a text file should be echoed to standard output. It is ignored
in the case of a data file.

The effect of calling this function is to write the preamble and contents to the file in
the format indicated by the preamble. The file is left open when this function returns.

Line breaks are always written as character code 10, not as 13 10, regardless of the
convention on the host system, so that files written by this function can be reliably
read by other functions in the library.

Leading hashes are automatically added to the beginning of the lines in the preamble,
except where they are unnecessary due to a continuation character on the previous
line. This action enforces consistency with the file format, ensuring that anything
written as a data file can be read back as one. The hashes are stripped automatically
when the file is read by avm_preamble_and_contents.

Another feature of this function is that it will mark any output file as executable
if it is a data format file with a prelude whose first character in the first line is an
exclamation point. This feature makes it easier for a compiler implemented in virtual
code to generate executable shell scripts directly.

A fatal error is reported if any of the data required to be a character representation
is not listed in the Appendix A [Character Table], page 123. A fatal error can also
be caused by a memory overflow. Possible error messages are the following.

94 avram - a virtual machine code interpreter

• program-name: invalid output preamble format

• program-name: invalid text format

• program-name: can’t write to filename

In the last case, the error message will be followed by an explanation furnished by
the standard strerror function if available.

Functionvoid avm output as directed (list data, int

ask to overwrite mode, int verbose mode)
This function writes an ensemble of files at specified paths in either text or data
format, optionally interacting with the user through standard input and output. The
parameters have these interpretations.

data is a list in which each item specifies a file to be written.

ask to overwrite mode

may be set to a non-zero value by the calling program in order to have
this function ask the user for permission to overwrite existing files.

verbose mode

may be set to a non-zero value by the calling program to have this function
print to standard output a list of the names of the files it writes.

A high level interface between virtual code applications and the file system is provided
by this function. The data parameter format is compatible with the the data structure
returned by an application complying with the conventions in Section 2.6.3 [Output
From Non-interactive Applications], page 30.

Each item in the data list should be a non-empty list whose head and tail are also
non-empty. The fields in each item have the following relevance to the file it specifies.

• The head of the head is NULL if the file is to be opened for appending, and
non-NULL if it is to be overwritten.

• The tail of the head represents a path as a list of character string representa-
tions, in a form suitable as an argument to avm_path_name.

• The head of the tail represents the preamble of the file, as either NULL for a
text file or a non-empty list of character string representations for a data file.

• The tail of the tail represents the contents of the file, either as a list of character
string representations for a text file or as a list in an unconstrained format for a
data file.

For each item in the list, the function performs the following steps.

1. It decides whether to open a file for overwriting or appending based on the head
of the head.

2. It uses the tail of the head to find out the file name from avm_path_name, in
order to open it.

3. If the ask to overwrite mode flag is set and the file is found to exist already, the
function will print one of the following messages to standard output, depending
on whether the file is to be overwritten or appended.

Chapter 3: Library Reference 95

• program-name: overwrite filename? (y/n)

• program-name: append to filename? (y/n)

It will then insist on either y or n as an answer before continuing.

4. If the ask to overwrite flag has not been set, or the file did not previously exist,
or the answer of y was given, the preamble and contents of the file are then
written with avm_output.

5. If permission to write or append was denied, one of the following messages is
reported to standard output, and the data that were to be written are lost.

• program-name: not writing filename

• program-name: not appending filename

6. If permission was granted to write or append to the file or the verbose mode flag
is set, one of the messages

• program-name: writing filename

• program-name: appending filename

is sent to standard output.

If any files are to be written to standard output, which would be indicated by a NULL

path, they are not written until all other files in the list are written. This feature is
in the interest of security, as it makes it more difficult for malicious or inept virtual
code to alter the appearance of the console through standard output until after the
interactive dialogue has taken place. Permission is not solicited for writing to standard
output, and it will not be closed.

Any of the fatal errors or i/o errors possible with avm_output or avm_path_name are
also possible with this function, as well as the following additional ones.

• program-name: invalid file specification

• program-name: can’t close filename

• program-name: can’t write filename

The last two are non-fatal i/o errors that will be accompanied by an explanation from
the strerror function if the host supports it. The other message is the result of a
badly formatted data parameter.

Functionvoid avm put bytes (list bytes)
This function takes a list of character representations, converts them to characters,
and sends them to standard output. There is no chance of a memory overflow, but
the following other errors are possible.

• program-name: invalid text format (code nn)

• program-name: can’t write to standard output

The latter is non-fatal, but the former causes the program to abort. It is caused
when any member of the list bytes is not a character representation appearing in
Appendix A [Character Table], page 123.

96 avram - a virtual machine code interpreter

Functionvoid avm initialize formout ()
This function initializes some data structures used locally by the other functions in
this section, and should be called at the beginning of a run before any of them is
called.

Functionvoid avm count formout ()
This function doesn’t do anything in the current version of the library, but should be
called after the last call to any of the other functions in this section. Future versions
of the library might use this function for cleaning up some internal data structures,
and client programs that call it will maintain compatibility with them.

3.4 Invocation

The functions documented in this section can be used to incorporate the capabilities of
a virtual machine emulator into other C programs with a minimal concern for the details
of the required data structures and virtual code invocation conventions.

3.4.1 Command Line Parsing

A couple of functions declared in ‘cmdline.h’ can be used to do all the necessary parsing
of command lines and environment variables needed by virtual code applications.

Functionlist avm default command line (int argc, char *argv [], int

index, char *extension, char *paths, int default to stdin mode, int

force text input mode, int *file ordinal)
The purpose of this function is to build most of the data structure used by parameter
mode applications, as described in Section 2.6.1 [Input Data Structure], page 27, by
parsing the command line according to Section 1.5 [Command Line Syntax], page 8.
The parameters have these interpretations.

argc is the number elements in the array referenced by argv

argv is the address of an array of pointers to null terminated character strings
holding command line arguments

index is the position of the first element of argv to be considered. Those pre-
ceding it are ignored.

extension is the address of a string that will be appended to input file names given
in argv in an effort to find the associated files

paths is the address of a null terminated character string containing a colon
separated list of directory names that will be searched for input files

default to stdin mode

is set to a non-zero value by the caller if the contents of standard input
should be read in the absence of input files

force text input mode

is set to a non-zero value by the caller to indicate that input files should be
read as text, using avm_load (rather than avm_preamble_and_contents,

Chapter 3: Library Reference 97

which would allow them to be either text or data). The preamble field of
the returned file specifications will always be empty when this flag is set.

file ordinal

is set to a pointer to an integer by the caller if only one file is to be loaded
during each call. The value of the integer indicates the which one it will
be.

The result returned by this function is a list whose head is a list of file specifications
and whose tail is a list of command line options intended for input to a virtual code
application.

The list of file specifications returned in the head of the result follows the same
conventions as the data parameter to the function avm_output_as_directed, except
that the head of the head of each item is a list representing the time stamp of the file
as given by avm_date_representation. If the file is standard input, then it holds
the current system date and time.

If the file ordinal parameter is NULL, then all files on the command line are loaded,
but if it points to an integer n, then only the nth file is loaded, and n is incremented.
If there is no nth file, a NULL value is returned as the entire result of the function.
For a series of calls, the integer should be initialized to zero by the caller before the
first call.

If standard input is indicated as one of the files on the command line (by a dash),
then it is also loaded regardless of the file ordinal, but a cached copy of it is used
on subsequent calls after the first, so that the function does not actually attempt to
reread it. If standard input is to be loaded, it must be finite for this function to work
properly.

The search strategy for files is described in Section 1.10 [Environment], page 16, and
makes use of the extension and paths parameters.

In the list of command line options returned in the tail of the result, each item is a
list with a non-empty head and tail, and is interpreted as follows.

• The head of the head is a list representing a natural number, as given by avm_

natural, indicating the position of the option on the command line relative to
the initial value of the index parameter.

• The tail of the head is a list which is NULL in the case of a “short form” option,
written with a single dash on the command line, but is a list whose head and
tail are NULL in the case of a “long form” option, written with two dashes.

• The head of the tail is a list representing a character string for the keyword of
an option, for example foo in the case of an option written --foo=bar,baz.

• The tail of the tail is a list of lists representing character strings, with one
item for each parameter associated with the option, for example, bar and baz.

If multiple calls to the function are made with differing values of *file ordinal but
other parameters unchanged, the same list of options will be returned each time,
except insofar as the position numbers in the head of the head of each item are
adjusted as explained in Section 2.6.2 [Input for Mapped Applications], page 29.

Any of the i/o errors or fatal errors associated with other file input operations are
possible with this function as well. This non-fatal warning message is also possible.

98 avram - a virtual machine code interpreter

program-name: warning: search paths not supported

This error occurs if the library has been built on a platform that doesn’t have the
‘argz.h’ header file and the paths parameter is non-NULL.

Functionlist avm environment (char *env [])
This function takes the address of a null terminated array of pointers to null termi-
nated character strings of the form "variable=value". The result returned is a list
of lists, with one item for each element of the array. The head of each item is a repre-
sentation of the left side of the corresponding string, and the tail is a representation
of the right.

This function is therefore useful along with avm_default_command_line for building
the remainder of the data structure described in Section 2.6 [Parameter Mode Inter-
face], page 27. For example, a virtual machine emulator for non-interactive parameter
mode applications with no bells and whistles could have the following form.

int
main(argc,argv,env)
...
{
FILE *virtual_code_file;

...
avm_initialize_lists();
avm_initialize_apply();
avm_initialize_rawio();
avm_initialize_formout();
avm_initialize_cmdline();
virtual_code_file = fopen(argv[1],"rb");
operator = avm_received_list(

virtual_code_file,argv[1]);
fclose(virtual_code_file);
command = avm_default_command_line(argc,

argv,2,NULL,NULL,0,0,NULL);
environs = avm_environment(env);
operand = avm_join(command,environs);
result = avm_apply(operator,operand);
avm_output_as_directed(result,0,0);
avm_dispose(result);

...
}

The avm_environment function could cause the program to abort due to a memory
overflow. For security reasons, it will also abort with an error message if any non-
printing characters are detected in its argument. (See Section 1.6.7 [Other Diagnostics
and Warnings], page 14.)

Functionvoid avm initialize cmdline ()
This function initializes some local variables and should be called before any of the
other functions in this section is called, or else their results are unpredictable.

Chapter 3: Library Reference 99

Functionvoid avm count cmdline ()
This function should be called after the last call to any of the other functions in
this section, as it reclaims some locally allocated storage. If the avm_count_lists

function is used, it should be called after this one.

3.4.2 Execution Modes

Some functions declared in ‘exmodes.h’ are useful for executing interactive applications
or filter mode transducers in a manner consistent with the specifications described in the
previous chapter.

Functionvoid avm interact (list avm interactor, int step mode, int

ask to overwrite mode, int quiet mode)
This function executes an interactive virtual code application. The parameters have
these interpretations.

avm interactor

is the virtual code for a function that performs as specified in Section 2.6.4
[Output From Interactive Applications], page 30.

step mode will cause all shell commands to be echoed if set to a non-zero value, and
will cause the program to pause after each shell command until a key is
pressed.

ask to overwrite mode

can be set to a non-zero value by the caller to cause the program to ask
permission of the user to overwrite any existing files in cases where the
virtual code returns a file list as described in Section 2.6.4.3 [Mixed Modes
of Interaction], page 33.

quiet mode

can be set to a non-zero value to suppress console messages in the case
of file output per Section 2.6.4.3 [Mixed Modes of Interaction], page 33.

The meaning of this function is accessible to any reader willing to slog through Sec-
tion 2.6.4 [Output From Interactive Applications], page 30. The only subtle point
is that avm interactor parameter in this function does not correspond to the virtual
code application that avram reads from a virtual code file, but to the result computed
when the application read from the file is applied to the data structure representing
the command line and environment.

Any of the memory overflows or i/o errors possible with other functions in the library
are possible from this one as well, and will also cause it to print an error message and
halt the program. A badly designed virtual code application could cause a deadlock,
which will not be detected or reported

Functionvoid avm trace interaction ()
This function enables diagnostic output for the avm_recoverable_interact function.

Functionvoid avm disable interaction ()
This function causes avm_interact and avm_recoverable_interact to terminate
with an error instead of executing, as required by the --jail command line option.

100 avram - a virtual machine code interpreter

Functionlist avm recoverable interact (list interactor, int *fault)
This function is similar to avm_interact but always closes the pipe and performs no
file i/o, and will return an error message rather than exiting. Otherwise it returns
a transcript of the intereaction as a list of lists of strings represented as lists of
character encodings. It implements the interact combinator with the virtual code
for the transducer function given as the parameter. A prior call to avm_trace_

interaction will cause diagnostic information to be written to standard output when
this function is executed.

Functionvoid avm byte transduce (list operator)
This function executes a filter mode byte transducer application, which behaves as
described in Section 2.5.3 [Byte Transducers], page 26. The argument is the virtual
code for the application, which would be found in a virtual code file. There are limited
opportunities for i/o errors, as only standard input and standard output are involved
with this function, but fatal errors due to memory overflow are possible.

Functionvoid avm line map (list operator)
This function executes line mapped filter mode applications, which are explained
in Section 2.5.2 [Line Maps], page 26. The argument is the virtual code for the
application. Similar comments to those above apply.

Functionvoid avm initialize exmodes ()
This function should be called before any of the other functions in this section in
order to initialize some local variables. Results are undefined if this function isn’t
called first.

Functionvoid avm count exmodes ()
This function doesn’t do anything in the present version of the library, but should
be called after the last call to any of the other functions in this section in order to
maintain compatibility with future versions, which may use it for cleaning up local
variables.

3.5 Version Management

The avram library is designed to support any number of backward compatibility modes
with itself, by way of some functions declared in ‘vman.h’. The assumption is that the
library will go through a sequence of revisions during its life, each being identified by a
unique number. In the event of a fork in the project, each branch will attempt to maintain
compatibility at least with its own ancestors.

Functionvoid avm set version (char *number)
This function can be used to delay the demise of a client program that uses the library
but is not updated very often. The argument is a null terminated string representing
a version number, such as "0.13.0".

A call to this function requests that all library functions revert to their behavior as
of that version in any cases where the current behavior is incompatible with it. It

Chapter 3: Library Reference 101

will also cause virtual code applications evaluated with avm_apply to detect a version
number equal to the given one rather than the current one. (See Section 2.7.7.1
[Version], page 41.)

The program will exit with an internal error message if any function in the library
has already interrogated the version number before this function is called, or if it
is passed a null pointer. This problem can be avoided by calling it prior to any of
the avm_initialize functions with a valid address. The program will exit with the
message

program-name: multiple version specifications

if this function is called more than once, even with the same number. If the number is
not recognized as a present or past version, or is so old that it is no longer supported,
the program will exit with this message.

avram: can’t emulate version number

Client programs that are built to last should allow the version number to be specified
as an option by the user, and let virtual code applications that they execute take
care of their own backward compatibility problems. This strategy will at least guard
against changes in the virtual machine specification and other changes that do not
affect the library API.

Functionint avm prior to version (char *number)
This function takes the address of a null terminated string representing a version
number as an argument, such as "0.13.0", and returns a non-zero value if the version
currently being emulated predates it.

If no call has been made to avm_set_version prior to the call to this function, the
current version is assumed, and subsequent calls to avm_set_version will cause an
internal error.

The intended use for this function would be by a maintainer of the library introducing
an enhancement that will not be backward compatible, who doesn’t wish to break
existing client programs and virtual code applications. For example, if a version 1.0

is developed at some time in the distant future, and it incorporates a previously
unexpected way of doing something, code similar to the following could be used to
maintain backward compatibility.

if (avm_prior_to_version("1.0"))
{

/* do it the 0.x way */
}

else
{

/* do it the 1.0-and-later way */
}

This function will cause an internal error if the parameter does not match any known
past or present version number, or if it is a null pointer.

102 avram - a virtual machine code interpreter

Functionchar* avm version ()
This function returns the number of the version currently being emulated as the
address of a null terminated string. The string whose address is returned should not
be modified by the caller.

If no call has been made to avm_set_version prior to the call to this function, the
current version is assumed, and subsequent calls to avm_set_version will cause an
internal error.

3.6 Error Reporting

Most of the error reporting by other functions in the library is done by way of the
functions declared in ‘error.h’. These function communicate directly with the user through
standard error. Client programs should also use these functions where possible for the sake
of a uniform interface.

Functionvoid avm set program name (char *argv0)
The argument to this function should be the address of a null terminated string
holding the name of the program to be reported in error messages that begin with a
program name. Typically this string will be the name of the program as it was invoked
on the command line, possibly with path components stripped from it. An alternative
would be to set it to the name of a virtual code application being evaluated. If this
function is never called, the name "avram" is used by default. Space for a copy of
the program name is allocated by this function, and a fatal memory overflow error is
possible if there is insufficient space available.

Functionchar* avm program name ()
This function returns a pointer to a null terminated character string holding the
program name presently in use. It will be either the name most recently set by avm_

set_program_name, or the default name "avram" if none has been set. The string
whose address is returned should not be modified by the caller.

Functionvoid avm warning (char *message)
This function writes the null terminated string whose address is given to standard
error, prefaced by the program name and followed by a line break.

Functionvoid avm error (char *message)
This function writes the null terminated string whose address is given to standard
error, prefaced by the program name and followed by a line break, as avm_warning,
but it then terminates the process with an exit code of 1.

Functionvoid avm fatal io error (char *message, char *filename, int

reason)
This function is useful for reporting errors caused in the course of reading or writing
files. The message is written to standard error prefaced by the program name, and
incorporating the name of the relevant file. The reason should be the error code
obtained from the standard errno variable, which will be translated to an informative
message if possible by the standard strerror function and appended to the message.
After the message is written, the process will terminate with an exit code of 1.

Chapter 3: Library Reference 103

Functionvoid avm non fatal io error (char *message, char *filename, int

reason)
This function does the same as avm_fatal_io_error except that it doesn’t exit the
program, and allows control to return to the caller, which should take appropriate
action.

Functionvoid avm internal error (int code)
This function is used to report internal errors and halt the program. The error
message is written to standard error prefaced by the program name and followed by
a line break. The code should be a unique integer constant (i.e., not one that’s used
for any other internal error), that will be printed as part of the error message as an
aid to the maintainer.

This function should be used by client programs only in the event of conditions that
constitute some violation of a required invariant. It indicates to the user that some-
thing has gone wrong with the program, for which a bug report would be appropriate.

Functionvoid avm reclamation failure (char *entity, counter count)
This function is used only by the avm_count functions to report unreclaimed storage.
The count is the number of units of storage left unreclaimed, and the entity is the
address of a null terminated string describing the type of unreclaimed entity, such as
"lists" or "branches". The message is written to standard error followed by a line
break, but the program is not halted and control returns to the caller.

3.7 Profiling

The functions declared in ‘profile.h’ can be used for constructing and writing tables of
run time statistics such as those mentioned in Section 1.9 [Files], page 15, and Section 2.7.7.3
[Profile], page 41. These functions maintain a database of structures, each recording the
statistics for a particular virtual code fragment.

Each structure in the database is identified by a unique key, which must be a list rep-
resenting a character string. A pointer to such a structure is declared to be of type score.
For the most part, the data structure should be regarded as opaque by a client program,
except for a field reductions of type counter, which may be modified arbitrarily by the
client.

The way these operations are used in the course of evaluating virtual code applications
containing profile annotations is to add a structure to the database each time a new pro-
filed code fragment is encountered, using the annotation as its key, and to increment the
reductions of the structure each time any constituent of the code gets a quantum of work
done on it. Other ways of using these operations are left to the developer’s discretion.

Functionscore avm entries (list team, list *message, int *fault)
This function retrieves or creates a data base entry given its key. The parameters
have these interpretations.

team is a list representing a character string that uniquely identifies the
database entry to be retrieved or created.

104 avram - a virtual machine code interpreter

message is the address of a list known to the caller, which will be assigned a list
representing an error message if any error occurs in the course of searching
the database or creating a new entry.

fault is the address of an integer that will be set to a non-zero value if any
error is caused by this function.

The pointer returned by this function is the address of the record whose key is given
by the team parameter. If such a record is already in the database, its address is
returned, but otherwise a new one is created whose address is then returned. The
reductions field of a newly created entry will be zero.

In the course of searching the database, the avm_compare function is used, so the
associated lists may be modified as noted in Section 3.1.5 [Comparison], page 80. It
is not necessary for a client to include the header file ‘compare.h’ or to call avm_
initialize_compare in order to use the profile operations, because they are done
automatically.

If an error message is assigned to the list referenced by message, the integer referenced
by fault will be set to a non-zero value. The form of the error message will be a list in
which each item is a list of character representations as per Appendix A [Character
Table], page 123. It is the responsibility of the caller to dispose of the error message.
Currently the only possible error is a memory overflow, which in this case is non-fatal.

Functionvoid avm tally (char *filename)
This function makes a table of the results stored in the data base built by the avm_

entries function. The argument is the address of a null terminated character string
containing the name of the file in which the results will be written. A file is opened
and the table is written in a self explanatory text format, with columns labeled
“reductions” and “invocations” among others. The latter contains the number of
times the associated key was accessed through avm_entries.

The data written to the file should be taken with a grain of salt. It is computed
using native integer and floating point arithmetic, with no checks made for overflow
or roundoff error, and no guarantee of cross platform portability. The number of
“reductions” means whatever the developer of the client program wants it to mean.

The following error messages are possible with this function, which will be written to
standard error. None of them is fatal.

• program-name: can’t write filename

• program-name: can’t write to filename

• program-name: can’t close filename

• program-name: invalid profile identifier

The last message is reported if any record in the database has a key that is not a
list of valid character representations. The others are accompanied by an explanation
from the standard strerror function if possible.

Functionvoid avm initialize profile ()
This function should be called before any of the other functions in this section in
order to initialize the data base. Results are undefined if it is not called first.

Chapter 3: Library Reference 105

Functionvoid avm count profile ()
This function can be called after the other functions in this section as a way of
detecting memory leaks. If any storage remains unreclaimed that was created by
the functions in this section, a warning message is written to standard error. If the
avm_count_lists function is being used by the client program, it should be called
after this one.

3.8 Emulation Primitives

The functions documented in this section can be used to take very specific control over
the evaluation of virtual code applications. It is unlikely that a client program will have
any need for them unless it aims to replace or extend the avm_apply function.

The virtual machine is somewhat removed from a conventional von Neumann model of
computation, so emulating it in C or any other imperative language is less straightforward
than one would prefer. An elaborate system of interdependent data structures is used
to represent partially evaluated computations, which does not particularly lend itself to
a convenient, modular API. The abstraction provided by the functions in this section is
limited mainly to that of simple memory management and stack operations. Consequently,
a developer wishing to build on them effectively would need to grok the data structures
involved, which are described in some detail.

3.8.1 Lists of Pairs of Ports

A port is the name given to a type of pointer used in the library as the address of a
place where a computational result yet to be evaluated will be sent. Ports are discussed
further in Section 3.8.2 [Ports and Packets], page 106, but are mentioned here because it is
sometimes necessary to employ a list of pairs of them. A pointer to such a list is declared
as a portal type. It refers to a structure of the form

struct port_pair
{
port left;
port right;
portal alters;

}

A small selection of functions for portal memory management is declared as follows in
the header file ‘portals.h’. For reasons of C-ness, the type declarations themselves are
forced to be in ‘lists.h’.

Functionportal avm new portal (portal alters)
This function is used to create storage for a new port_pair structure, and returns a
portal pointer to it if successful. If the storage can’t be allocated, a NULL pointer is
returned. The alters field of the result is initialized as the given parameter supplied
by the caller. All other fields are filled with zeros.

Functionvoid avm seal (portal fate)
This function performs the reclamation of storage associated with portal pointers,
either by freeing them or by consigning them temporarily to a local cache for perfor-

106 avram - a virtual machine code interpreter

mance reasons. Client programs should use only this function for disposing of portal
storage rather than using free directly, so as to allow accurate record keeping.

Functionvoid avm initialize portals ()
This function should be called by a client program prior to calling either of the above
memory management functions in order to initialize some local variables. Anomalous
results are possible otherwise.

Functionvoid avm count portals ()
This function should be called at the end of a run or after the last call to any of the
other functions in this section as a way of detecting memory leaks associated with
portal pointers. A warning message will be written to standard error if any remains
unreclaimed.

3.8.2 Ports and Packets

A pointer type declared as a port points to a structure in the following form, where a
flag is an unsigned short integer type, and a counter is an unsigned long integer.

struct avm_packet
{
port parent;
counter errors;
portal descendents;
list impetus, contents;
flag predicating;

};

For reasons that make sense to C, the avm_packet and port types are declared in lists.h,
but a few memory management operations on them are available by way of functions de-
clared in ‘ports.h’. The intended meaning of this structure is described presently, but first
the memory management functions are as follows.

Functionport avm newport (counter errors, port parent, int predicating)
This function attempts to allocate storage for a new packet structure and returns its
address if successful. If storage can not be allocated, a NULL pointer is returned. The
errors, parent, and predicating fields are initialized with the parameters supplied
by the caller. The rest of the structure is filled with zeros. A local memory cache is
used for improved performance.

Functionvoid avm sever (port appendage)
This function reclaims the storage associated with a port, either freeing it entirely or
holding it in a local cache. None of the entities that may be referenced by pointers
within the structure are affected. Only this function should be used by client programs
for disposing of ports, not the free function directly, or some internal bookkeeping
will be disrupted. An internal error results if the argument is a NULL pointer.

Functionvoid avm initialize ports ()
This function must be called prior to calling either of the two above, in order to
initialize some static variables.

Chapter 3: Library Reference 107

Functionvoid avm count ports ()
This function may be called after the last call to any of the other functions in this
section in order to detect and report unreclaimed storage associated with ports. A
non-fatal warning will be written to standard error if any is detected, but otherwise
there is no effect.

The interesting aspect of this data structure is the role it plays in capturing the state of
a computation. For this purpose, it corresponds to a single node in a partially computed
result to be represented by a list when it’s finished. The nodes should be envisioned as
a doubly-linked binary tree, except that the pair of descendents for each node is not yet
known with certainty, so a list of alternatives must be maintained.

Because the computation is not completed while this data structure exists, there are
always some empty fields in it. For example, the descendents and the contents fields
embody the same information, the latter doing so in a compact as opposed to a more
expanded form. Hence, it would be redundant for both fields to be non-empty at the same
time. The data structure is built initially with descendents and no contents, only to be
transformed into one with contents and no descendents.

The significance of each field in the structure can be summarized as follows.

contents If the computational result destined for the port pointing to this packet is not
complete, then this field is NULL and the descendents are being computed.
Otherwise, it contains the result of the computation.

descendents

This field points to a list of pairs of ports serving as the destinations for an
ensemble of concurrent computations.1 The head and tail of the contents

are to be identified respectively with the contents of the left and right port

in the first pair to finish being computed.

parent If this packet is addressed by the left or the right of port in one of the
descendents of some other packet, then this field points to that packet.

errors A non-zero value in this field indicates that the result destined for the contents
of this packet is expected to be an error message. If the exact level of error
severity incurred in the computation of the contents matches this number,
then the contents can be assigned the result, but otherwise the result should
propagate to the contents of the parent.

predicating

A non-zero value in this field implies that the result destined for the contents
of this packet is being computed in order to decide which arm of a conditional
function should be chosen. I.e., a NULL result calls for the one that is invoked
when the predicate is false.

impetus If the result destined for the contents of this packet is being computed in order
to transform a virtual code fragment from its original form to an equivalent

1 Earlier versions of avram included a bottom avoiding choice combinator that required
this feature, but which has been withdrawn. A single pair of descendent ports would
now suffice.

108 avram - a virtual machine code interpreter

representation capable of being evaluated more directly, this field points to a
list node at the root of the virtual code in its original form.

One of the hitherto undocumented fields in a list node structure declared in ‘lists.h’
is called the interpretation, and is of type list. A client program delving into suffi-
cient depth of detail to be concerned with ports and packets may reasonably assign the
interpretation field of the list referenced by the impetus field in a packet to be a copy
of the contents of the packet when they are eventually obtained. Doing so will save some
time by eliminating the need for it to be recomputed if the same virtual code should be
executed again.

If this course is taken, the facilitator field in a list node, also hitherto undocumented,
should contain the address of the packet referring to the list node as its impetus. The reason
for this additional link is so that it can be followed when the impetus of the packet is be
cleared by avm_dispose in the event that the list node is freed before the computation
completes. This action is performed in order to preclude a dangling pointer in the impetus
field.

3.8.3 Instruction Stacks

A header file named ‘instruct.h’ declares a number of memory management and stack
operations on a data structure of the following form.

struct instruction_node
{
port client;
score sheet;
struct avm_packet actor;
struct avm_packet datum;
instruction dependents;

};

In this structure, an instruction is a pointer to an instruction_node, a score is a
pointer to a profile database entry as discussed in Section 3.7 [Profiling], page 103, and the
port and avm_packet types are as described in Section 3.8.2 [Ports and Packets], page 106.

This data structure is appropriate for a simple virtual machine code evaluation strategy
involving no concurrency. The strategy to evaluate an expression f x would be based on a
stack of these nodes threaded through the dependents field, and would proceed something
like this.

1. The stack is initialized to contain a single node having f in its actor.contents field,
and x in its datum.contents field.

2. The client in this node would refer to a static packet to whose contents field the
final result will be delivered.

3. The evaluator examines the actor.contents field on the top of the stack, detects by
its form the operation it represents, and decides whether it corresponds to one that
can be evaluated immediately by way of a canned function available in the library. List
reversal, transposition, and comparison would be examples of such operations.

4. If the operation can be performed in this way, the result is computed and assigned to
the destination indicated by the client field.

Chapter 3: Library Reference 109

5. If the operation is not easy enough to perform immediately but is of a form recognizable
as a combination of simpler operations, it is decomposed into the simpler operations,
and each of them is strategically positioned on the stack so as to effect the evaluation of
the combination. For example, if f were of the form compose(g,h) (silly notation),
the node with f and x would be popped, but a node with g as its actor.contentswould
be pushed, and then a node with h as its actor.contents and x as its datum.contents
would be pushed. Furthermore, the client field of the latter node would point to the
datum.contents of the one with g, and the client field of the one with g would point
wherever the client of the popped node used to point.

6. If the operation indicated by the top actor.contents is neither implemented by a
canned operation in the library nor easily decomposable into some that are, the eval-
uator can either give up or use virtual code to execute other virtual code. The latter
trick is accomplished by pushing a node with f as its datum.contents, and a copy of a
hard coded virtual code interpreter V as its actor.contents. The client of this node
will point to the f in the original node so as to overwrite it when a simplified version
is subsequently computed. The implementation of V is a straightforward exercise in
silly programming.

7. In any case, the evaluator would continue working on the stack until everything on it
has been popped, at which time the result of the entire computation will be found in
the packet addressed by the client in the original instruction node.

What makes this strategy feasible to implement is the assumption of a sequential lan-
guage, wherein synchronization incurs no cost and is automatic. The availability of any
operand is implied by its position at the top of the stack. If you are reading this section
with a view to implementing a concurrent or multi-threaded evaluation strategy, it will be
apparent that further provisions would need to be made, such as that of a data_ready flag
added to the avm_packet structure.

The following functions support the use of stacks of instruction nodes that would be
needed in an evaluation strategy such as the one above.

Functionint avm scheduled (list actor contents, counter datum errors,

list datum contents, port client, instruction *next, score sheet)
This function performs the memory allocation for instruction nodes. It attempts to
create one and to initialize the fields with the given parameters, returning a pointer
to it if successful. It returns a NULL pointer if the storage could not be allocated.

Copies of the list parameters actor_contents and data_contents are made by this
function using avm_copied, so the originals still exist as far as the caller is concerned
and will have to be deallocated separately from this structure. The copies are made
only if the allocation succeeds.

Any fields other than those indicated by the parameters to this function are filled
with zeros in the result.

Functionvoid avm retire (instruction *done)
This function performs the storage reclamation of instructions, taking as its argument
the instruction to be reclaimed. The list fields in the structure corresponding to the

110 avram - a virtual machine code interpreter

list parameters used when it was created are specifically reclaimed as well, using
avm_dispose.

The argument to this function is the address of an instruction rather than just an
instruction so that the instruction whose address is given may be reassigned as
the dependents field of the deallocated node. In this way, the instructions can form
a stack that is popped by this function.

This function cooperates with avm_scheduled in the use of a local cache of instruction
nodes in the interest of better performance. Client modules should not attempt to
allocate or reclaim instructions directly with malloc or free, but use only these
functions.

It causes a fatal internal error to pass a NULL pointer to this function.

Functionvoid avm reschedule (instruction *next)
Given the address of an instruction pointer that may be regarded as the top of a stack
of instructions threaded through the dependents field, this function exchanges the
positions of the top instruction and the one below it. A fatal internal error is caused
if there are fewer than two instructions in the stack.

A use for this function arises in the course of evaluating virtual code applications of
the form conditional(p,(f,g)) (in silly notation). The evaluation strategy would
require pushing nodes for all three constituents, but with p pushed last (therefore
evaluated first). The result of the evaluation of p would require either the top one
or the one below it to be popped without being evaluated, depending on whether the
result is empty.

Functionvoid avm initialize instruct ()
This function should be called before any of the instruction memory management
functions is called in order to initialize some local data structures. Results are unpre-
dictable without it.

Functionvoid avm count instruct ()
This function should be called after the last call to any of the other functions in this
section in order to detect and report unreclaimed storage associated with them. A
warning message will be written to standard error if any unreclaimed instructions
remain. This function relies on the assumption that the memory management has
been done only by way of the above functions.

3.9 External Library Maintenance

External mathematical library functions such as those documented in Appendix D [Ex-
ternal Libraries], page 135 that are invoked from virtual code by the library combinator
(Section 2.7.16.1 [Library combinator], page 59) are also accessible from C by way of a uni-
form API implemented by the functions declared in libfuns.h. This interface applies even
to libraries implemented in Fortran such as minpack. This section briefly documents the
functions in libfuns.h and sets out some recommeded guidelines for developers wishing to
add support for other external libraries.

Chapter 3: Library Reference 111

3.9.1 Calling existing library functions

Whatever data types a library function manipulates, its argument and its result are each
ultimately encoded each by a single list as explained in Section 3.1.4 [Type Conversions],
page 72. This representation allows all library functions to be invoked by a uniform calling
convention as detailed below.

Functionlist avm library call (list library name, list function name, list

argument, int *fault)
This function serves as an interpreter of external library functions by taking a li-

brary name, a function name, and an argument to the result returned by the corre-
sponding library function for the given argument.

The library and function names should be encoded as lists of character representa-
tions, the same as the arguments that would be used with the library combinator if
it were being invoked by virtual code (with attention to the backward compatibility
issue explained in Section 3.2 [Characters and Strings], page 84).

If an error occurs in the course of evaluating a library function, the integer referenced
by fault will be assigned a non-zero value, and the result will be a list of character
string representations explaining the error, such as <’memory overflow’>, for exam-
ple. Otherwise, the list returned will encode the result of the library function in a
way that depends on the particular function being evaluated.

Functionlist avm have library call (list library name, list

function name, int *fault)
This function implements the have combinator described in Section 2.7.16.2 [Have
combinator], page 60, which tests for the availability of a library function. The
library name and function name parameters are as explained above for avm_library_
call, and fault could signal an error similarly for this function as well.

The result returned will be an error message in the event of an error, or a list of pairs
of strings otherwise. The list will be empty if the library function is not available. If
the library function is available, the list will contain a single pair, as in

<(library_name,function_name)>

In addition, the list representation of the character string ’*’ can be specified as
either the library name or the function name or both. This string is interpreted as
a wild card and will cause all matching pairs of library and function names to be
returned in the list.

Functionvoid avm initialize libfuns ()
This function initializes some static data structures used by the two functions above.
It may be called optionally before the first call to either of them, but will be called
automatically if not.

Functionvoid avm count libfuns ()
This function can be used as an aid to detecting memory leaks. It reclaims any data
structures allocated by avm_initialize_libfuns and should be called towards the
end of a run some time prior to avm_count_lists Section 3.1.1 [Simple Operations],
page 66, if the latter is being used.

112 avram - a virtual machine code interpreter

3.9.2 Implementing new library functions

Adding more external libraries to avram is currently a manual procedure requiring the
attention of a developer conversant with C. To support a new library called foobar, these
steps need to be followed at a minimum.

• Create a new file called ‘foobar.h’ under the ‘avm/’ directory in the main source
tree whose name doesn’t clash with any existing file names and preferably doesn’t
induce any proper prefixes among them. This file should contain at least these function
declarations.

extern list avm_foobar_call (list function_name,list argument,
int *fault);

extern list avm_have_foobar_call (list function_name,int *fault);

extern void avm_initialize_foobar ();

extern void avm_count_foobar ();

There should also be the usual preprocessor directives for ‘include’ files. The naming
convention shown should be followed in anticipation of automated support for these
operations in the future.

• Add ‘foobar.h’ to the list of other header files in ‘avm/Makefile.am’.

• Create a new file called ‘foobar.c’ under the ‘src/’ directory whose name doesn’t
clash with any existing file names to store most of the library interface code. It can
start out with stubs for the functions declared in ‘foobar.h’.

• Add ‘foobar.c’ to the list of other source files in ‘src/Makefile.am’

• Execute the following command in the main ‘avram-x.x.x’ source directory where the
file ‘configure.in’ is found.

aclocal \
&& automake --gnu --add-missing \
&& autoconf

This command requires having automake and autoconf installed on your system.

• Make the following changes to ‘libfuns.c’.

• Add the line #include<avm/foobar.h> after the other include directives.

• Add the string "foobar" to the end of the array of libnames in avm_initialize_

libfuns.

• Add a call to avm_initialize_foobar to the body.

• Add a call to avm_count_foobar to the body of avm_count_libfuns.

• Add a case of the form

case nn:
return avm_foobar_call(function_name,argument,fault);

after the last case in avm_library_call, being careful not to change the order,
and using the same name as above in the file ‘foobar.h’.

Chapter 3: Library Reference 113

• Add a case of the form

case nn:
looked_up = avm_have_foobar_call(function_name,fault);
break;

after the last case in avm_have_library_call, being careful not to change the
order, and using the same name as above in the file ‘foobar.h’.

• Edit ‘foobar.c’ and ‘foobar.h’ to suit, periodically compiling and testing by executing
make.

• Package and install at will.

The functions shown above have the obvious interpretations, namely that avm_foobar_
call evaluates a library function from the foobar library, and avm_have_foobar_call

tests for a function’s availability. The latter should interpret wild cards as explained in
Section 3.9.1 [Calling existing library functions], page 111, but should return only a list of
strings for the matching function names rather than a list of pairs of strings, as the library
name is redundant. The remaining functions are for static initialization and reclamation.

These functions should consist mainly of boilerplate code similar to the corresponding
functions in any of the other library source files, which should be consulted as examples.
The real work would be done by other functions called by them. These should be statically
declared within the ‘.c’ source file and normally not listed in the ‘.h’ header file unless there
is some reason to think they may be of more general use. Any externally visible functions
should have names beginning with avm_ to avoid name clashes.

Some helpful hints are reported below for what they may be worth.

• The reason for doing this is to leverage off other people’s intelligence, so generally
foobar.c should contain only glue code for library routines developed elsewhere with
great skill rather than reinventing them in some home grown way.

• The best numerical software is often written by Fortran programmers. Linking to a
Fortran library is no problem on GNU systems provided that all variables are passed
by reference and all arrays are converted to column order (Section 3.1.4 [Type Conver-
sions], page 72).

• Most C++ programmers have yet to reach a comparable standard, but C++ libraries
can also be linked by running nm on the static library file to find out the real names
of the functions and c++filt to find out which is which. However, there is no obvious
workaround for the use of so called derived classes by C++ programmers to simulate
passing functions as parameters.

• Anything worth using can probably be found in the Debian archive.

• Not all libraries are sensible candidates for interfaces to avram. Typical design flaws
are

• irrepressible debugging messages written to stderr or stdout that are unfit for
end user consumption

• deliberately crashing the application if malloc fails

• opaque data types with undocumented storage requirements

• opaque data types that would be useful to store persistently but have platform
specific binary representations

114 avram - a virtual machine code interpreter

• heavily state dependent semantics

• identifiers with clashing names

• restrictive licenses

Some of these misfeatures have workarounds as explained next in Section 3.9.3 [Working
around library misfeatures], page 114, at least if there’s nothing else wrong with the
library.

Those who support avram are always prepared to assist in the dissemination of worth-
while contributed library modules under terms compatible with [Copying], page 167, and
under separate copyrights if preferred. Contributed modules can be integrated into the
official source tree provided that they meet the following additional guidelines to those
above.

• source code documentation and indentation according to GNU coding standards
(http://www.gnu.org/prep/standards)

• sufficient stability for a semi-annual release cycle

• no run-time or compile-time dependence on any non-free software, although dynamic
loading and client/server interaction are acceptable

• portable or at least unbreakable configuration by appropriate use of autoconf macros
and conditional defines

• little or no state dependence at the level of the virtual code interface (i.e., pure functions
or something like them, except for random number generators and related applications)

• adequate documentation for a section in Appendix D [External Libraries], page 135

3.9.3 Working around library misfeatures

As mentioned already (Section 3.9.2 [Implementing new library functions], page 112),
some common problems with external libraries that are worthwhile in other respects are
that they may generate unwelcome console output while running, they may follow ill defined
memory management policies, and they may handle exceptions just by crashing themselves
along with the client module.

An accumulation of techniques for coping with these issues (short of modifying the
library source) has been collected into the API and made available by way of the header
file ‘mwrap.h’. This section briefly documents how they might be put to use.

3.9.3.1 Inept excess verbiage

Although the author of a library function may take pride in putting its activities on
display, it should be assumed that virtual code applications running on avram have other
agendas for the console, so the library interface module should prevent direct output from
the external library.

More thoughtful API’s may have a verbosity setting, which should be used in preference
to this workaround, but failing that, it is easy to dispense with console output generated
by calls to external library functions by using some combination of the following functions.

Chapter 3: Library Reference 115

Functionvoid avm turn off stdout ()
Calling this function will suppress all output to the standard output stream until the
next time avm_turn_on_stdout is called. Additional calls to this function without
intervening calls to avm_turn_on_stdout may be made safely with no effect. The
standard output stream is flushed as a side effect of calling this function.

Functionvoid avm turn on stdout ()
Calling this function will allow output to the standard output stream to resume if
it has been suppressed previously by a call to avm_turn_off_stdout. If avm_turn_
off_stdout has not been previously called, this function has no effect. Any output
that would have been sent to stdout during the time it was turned off will be lost.

Functionvoid avm turn off stderr ()
This function performs a similar service to that of avm_turn_off_stdout but pertains
to the standard error stream. The standard error and the standard output streams
are controlled independently even if both of them are piped to the same console.

Functionvoid avm turn on stderr ()
This function performs a similar service to that of avm_turn_on_stdout but pertains
to the standard error stream.

As an example, the following code fragment will prevent any output to standard output
taking place as a side effect of blather, but will allow error messages to standard error.
Note that ouput should not be left permanently turned off.

...
#include <avm/mwrap.h>
...

x = y + z;
avm_turn_off_stdout ();
w = blather (foo, bar, baz);
avm_turn_on_stdout ();
return w;
...

One possible issue with these functions is that they rely on a feature of the GNU C
library that might not be portable to non-GNU systems and has not been widely tested on
other platforms.

Another issue is that a library function could be both careless enough to clutter the
console unconditionally and meticulous enough to check for I/O errors after each attempted
write. Writing while the output stream is disabled will return an I/O error to the caller (i.e.,
to the verbose library function) for appropriate action, which could include terminating the
process.

3.9.3.2 Memory leaks

Incorrect memory management may undermine confidence in a library when one wonders
what else it gets wrong, but if the worst it does is leave a few bytes unreclaimed, then help
is at hand.

116 avram - a virtual machine code interpreter

The first priority is to assess the seriousness of the situation. Similarly to the way library
functions are bracketed with calls to those listed in Section 3.9.3.1 [Inept excess verbiage],
page 114, the following functions are meant to be placed before and after a call to a library
function either for diagnostic purposes or production use.

Functionvoid avm manage memory ()
After this function is called, all subsequent calls to the standard C functions malloc,
free, and realloc are intercepted and logged until the next time avm_dont_manage_
memory is called. Furthermore, a complete record is maintained of the addresses and
sizes of all allocated areas of memory during this time in a persistent data structure
managed internally.

Functionvoid avm dont manage memory ()
Calling this function suspends the storage monitoring activities initiated by calling
avm_manage_memory, but the record of allocated memory areas is not erased.

Functionvoid avm debug memory ()
After this function is called and avm_manage_memory is also called, the standard
output stream will display a running account of the sizes and addresses of all memory
allocations or deallocations as they occur until the next call to either avm_dont_

debug_memory or avm_dont_manage_memory.

Functionvoid avm dont debug memory ()
This function stops the output being sent to stdout caused by avm_debug_memory,
if any, but has no effect on the logging of memory management events preformed due
to avm_manage_memory.

While the latter two are not useful in production code, they can help to clarify an inad-
equately documented API during development by experimentally identifying the functions
that cause memory to be allocated. They can also provide the answer to questions like
whether separate copies are made from arrays passed to functions (useful for knowing when
it’s appropriate to free them).

Although the console output reveals everything there is to know about memory man-
agement during the selected window, the question of unreclaimed storage is more directly
settled by the following functions.

Functionvoid avm initialize mwrap ()
This function has to be called before any other functions from ‘mwrap.h’ in order to
clean the slate and prepare the static data structures for use. This function might not
have to be called explicitly if the client module is part of avram, whose main program
would have already called it. There is no harm in calling it repeatedly.

Functionvoid avm count mwrap ()
This function should be called after the last call to any other functions in ‘mwrap.h’,
when it is expected that all storage that was allocated while avm_manage_memory was
in effect should have been reclaimed.

Chapter 3: Library Reference 117

If there is no unreclaimed storage allocated during an interval when memory was
being managed, this function returns uneventfully. However, if any storage remains
unreclaimed, a message stating the number of bytes is written to stderr.

If avm_debug_memory is also in effect when this function detects unreclaimed storage,
an itemized list of the unreclaimed memory addresses and their sizes is written to
standard output.

Of course, in order for avm_count_mwrap to report meaningful results, any memory
that is allocated during the interval between calls to avm_manage_memory and avm_dont_

manage_memorymust have been given an opportunity to be reclaimed also while this logging
mechanism is in effect. However, there may be arbitrarily many intervening intervals during
which it is suspended.

On the other hand, any storage that is allocated when memory is not being managed
must not be freed at a time when it is (except for freeing a NULL pointer, which is tolerated
but not encouraged). Doing so raises an internal error, causing termination with extreme
prejudice. This behavior is a precaution against library functions freeing storage that they
didn’t allocate, which would mean no memory is safe and it’s better for avram not to
continue.

If these investigations uncover no evidence of a memory leak, then perhaps the relevant
library functions are reliable enough to run without supervisory memory management.
Alternatively, when memory leaks are indicated, the next function provides a simple remedy.

Functionvoid avm free managed memory ()
This function causes all storage to be reclaimed that was allocated at any time while
logging of memory allocation was in effect (i.e., whenever avm_manage_memory had
been called more recently than avm_dont_manage_memory). When the storage is
freed, no further record of it is maintained.

A side effect of this function is to call avm_dont_manage_memory and therefore leave
memory management turned off.

This last function when used in conjunction with the others is therefore the workaround
for library functions that don’t clean up after themselves. It may be important to do it for
them if repeated calls to the library function are expected, which would otherwise cause
unreclaimed storage to accumulate until it curtailed other operations.

One small issue with this function is the assumption that unreclaimed storage is really a
leak and not internal library data that is designed to persist between calls. If this assumption
is not valid, breakage will occur. However, libraries deliberately making use of persistent
data are likely to have initialization and destructor functions as part of their API’s, so this
assumption is often justified if they don’t.

An example of using these functions is given below.

In this example, allocated_library_object is a hypothetical function exported by an
external library that causes storage to be allocated, and library_reclamation_routine

is provided by the same library ostensibly to reclaim the storage thus allocated. However,
the latter is suspected of memory leaks.

The variable my_data is declared and used by an avram developer who is presumably
competent to reclaim it correctly, rather than it being part of an external library. Memory

118 avram - a virtual machine code interpreter

management is therefore enabled during the calls to the library routines but not at other
times.

The call to avm_count_mwrap is redundant immediately after a call to avm_free_

managed_memory, because with all managed memory having been freed, no memory leak
will ever be detected, but it is included for illustrative purposes.

#include <avm/mwrap.h>
...

{
void *behemoth;
char *my_data;

avm_initialize_mwrap ();
avm_manage_memory ();
behemoth = allocated_library_object (foo, bar);
avm_dont_manage_memory ();
my_data = (char *) malloc (100);
...
free (my_data);
avm_manage_memory ();
library_reclamation_routine (&behemoth);
avm_free_managed_memory ();
avm_count_mwrap ();
return;

}

It might be a cleaner solution in some sense to omit the call to library_reclamation_

routine entirely, because the storage allocated during the call to allocated_library_

object will be reclaimed perfectly well by avm_free_managed_memory without it. Doing so
may also be the only option if the library reclamation routine is either extremely unreliable
or non-existent. However, the style above is to be preferred for portability if possible. The
memory management functions rely on the availability of the system header file malloc.h,
and GNU C library features whose portability is not assured. If the required features are
not detected on the host system at configuration time, conditional directives in the avram

source will make the avm_* memory management functions perform no operations, and
the responsibility for memory management will devolve to the possibly less robust external
library implementation.

3.9.3.3 Suicidal exception handling

An inconvenient characteristic of some external library functions is to terminate the
program rather than returning an error status to the caller for routine events such as a
failure of memory allocation. Although in many cases there is no simple workaround for
this behavior, memory allocation failures at least can be detected and preventive action
taken by using the functions described in this section.

The general approach is to use memory management functions from ‘mwrap.h’ as de-
scribed previously (Section 3.9.3.2 [Memory leaks], page 115), while additionally registering
a return destination for a non-local jump to be taken in the event of a memory overflow.

Chapter 3: Library Reference 119

The jump is taken when an external library function calls malloc or realloc unsuccess-
fully. The jump avoids passing control back to the library function, thereby denying it the
opportunity to abort, but restores the context to that of the jump destination almost as if
the library function and all of its intervening callers had returned normally.

The interface is similar to that of the standard setjmp function defined in the system
header file setjmp.h, and in fact is built on it, but differs in that the client module does
not explicitly refer to jump buffers. Instead, the mwrap module internally maintains a stack
of return destinations.

If a jump is taken, it always goes to the most recently registered destination. It may
revert to the previously registered destination only when the current one is cleared. This
organization provides the necessary flexibility for multiple clients and recursion, but it
necessitates a protocol whereby each registration of a destination must be explicitly cleared
exactly once.

The following functions implement these two features.

Functionint avm setjmp ()
This function specifies the point to which control will pass by a non-local jump if
there is insufficient memory to complete a subsequent malloc or realloc operation.
Only the operations that take place while memory is being managed due to avm_

manage_memory are affected (Section 3.9.3.2 [Memory leaks], page 115).

The function returns zero when it is called normally and successfully registers the
return point.

It returns a non-zero value when it has been entered by a non-local jump (i.e., when
malloc or realloc has reported insufficient memory while memory management is ac-
tive), or when the return point could not be successfully registered due to insufficient
memory. The client need not distinguish between these two cases, because both cor-
respond to memory overflows and the destination must be cleared by avm_clearjmp

regardless.

When a non-zero value is returned due to this function being reached by a non-local
jump, it has the side effects of reclaiming all managed memory by calling avm_free_

managed_memory and disabling memory management by calling avm_dont_manage_

memory.

Functionvoid avm clearjmp ()
This function cancels the effect of avm_setjmp () by preventing further non-local
jumps to its destination if the destination was successfully registered, or by acknowl-
edging unsuccessful registration otherwise. It should be called before exiting any
function that calls avm_setjmp () or anomalous results may ensue.

The memory management functions avm_manage_memory and avm_dont_manage_memory
can be useful with or without avm_setjmp, depending on how much of a workaround is
needed for a given library. If a library does not abort on memory overflows, there is no
need to use avm_setjmp, while it may still be appropriate to use the other functions against
memory leaks.

120 avram - a virtual machine code interpreter

Calling avm_clearjmp is particularly important if a client module with memory man-
agement that doesn’t use avm_setjmp is invoked subsequently to one that does, so that
memory overflows in the latter won’t cause an attempted jump to a stale destination.

A further complication that arises from careful consideration of these issues is the sit-
uation of a client module that does not intend to use avm_setjmp but is called (perhaps
indirectly) by one that does. The latter will have registered a return destination that re-
mains active and valid even if the former refrains from doing so, thereby allowing a branch
to be taken that should have been prevented. Although it is an unusual situation, it can be
accommodated by the following function.

Functionvoid avm setnonjump ()
This function temporarily inhibits non-local jumps to destinations previously regis-
tered by avm_setjmp until the next time avm_clearjmp is called. Thereafter, any
previously registered destinations are reinstated.

A sketch of how some of these functions might be used to cope with library functions
that would otherwise terminate the program in the event of a memory overflow is shown
below. The GNU libc reference manual contains a related discussion of non-local jumps.

#include <avm/mwrap.h>
...

int
function foobar (foo, bar)
...
{
char *my_data;

my_data = (char *) malloc (100);
if (avm_setjmp () != 0)

{
avm_clearjmp ();
avm_turn_on_stdout (); /* reaching here */
free (my_data); /* means malloc */
return ABNORMAL_STATUS; /* failed below */

}
avm_turn_off_stdout ();
avm_manage_memory ();
...
call_library_functions (foo, bar); /* may jump */
... /* to above */
avm_free_managed_memory ();
avm_turn_on_stdout ();
avm_clearjmp ();
free (my_data); /* reaching here means */
return OK_STATUS; /* jumping wasn’t done */

}

Portability issues with these functions are not well known at this writing. If the configu-
ration script for avram fails to detect the required features in setjmp.h on the host system,

Chapter 3: Library Reference 121

conditional compilation directives will disable the functions avm_setjmp, avm_clearjmp,
and avm_setnonjmp. However, it may still be possible for the other avm_* memory man-
agement functions to be configured.

If setjmp is not configured, the avm_setjmp function is still callable but will always
return a value of zero, and will provide no protection against external library functions
aborting the program. The other two will perform no operation and return.

122 avram - a virtual machine code interpreter

Appendix A: Character Table 123

Appendix A Character Table

This table lists the representations used by avram for characters. The left column shows
the character code in decimal. For printable characters, the middle column shows the charac-
ter. The right column shows the representation used. For example, the letter A has character
code 65, and the representation (nil,(((nil,(nil,(nil,nil))),nil),(nil,nil))).

These representations were generated automatically to meet various helpful criteria,
and are not expected to change in future releases. No character representation coincides
with the representations used for boolean values, natural numbers, character strings, pairs
of characters, or certain other data types beyond the scope of this document. An easy
algorithm for lexical sorting is possible. Subject to these criteria, the smallest possible trees
were chosen.

0 (nil,(nil,(nil,((nil,nil),(nil,nil)))))
1 (nil,(nil,((nil,nil),(nil,nil))))
2 (nil,(nil,((nil,nil),(nil,(nil,nil)))))
3 (nil,(nil,((nil,(nil,nil)),(nil,nil))))
4 (nil,(nil,(((nil,nil),nil),(nil,nil))))
5 (nil,(nil,(((nil,nil),(nil,nil)),nil)))
6 (nil,(nil,((((nil,nil),(nil,nil)),nil),nil)))
7 (nil,((nil,nil),(nil,nil)))
8 (nil,((nil,nil),(nil,(nil,nil))))
9 (nil,((nil,nil),(nil,(nil,(nil,nil)))))
10 (nil,((nil,nil),(nil,(nil,(nil,(nil,nil))))))
11 (nil,((nil,nil),(nil,((nil,nil),(nil,nil)))))
12 (nil,((nil,nil),(nil,((nil,(nil,nil)),nil))))
13 (nil,((nil,nil),(nil,(((nil,nil),nil),nil))))
14 (nil,((nil,nil),((nil,nil),(nil,nil))))
15 (nil,((nil,nil),((nil,nil),(nil,(nil,nil)))))
16 (nil,((nil,nil),((nil,(nil,nil)),nil)))
17 (nil,((nil,nil),((nil,(nil,nil)),(nil,nil))))
18 (nil,((nil,nil),((nil,(nil,(nil,nil))),nil)))
19 (nil,((nil,nil),(((nil,nil),nil),(nil,nil))))
20 (nil,((nil,nil),(((nil,nil),(nil,nil)),nil)))
21 (nil,((nil,(nil,nil)),(nil,nil)))
22 (nil,((nil,(nil,nil)),(nil,(nil,nil))))
23 (nil,((nil,(nil,nil)),(nil,(nil,(nil,nil)))))
24 (nil,((nil,(nil,nil)),(nil,((nil,nil),nil))))
25 (nil,((nil,(nil,nil)),((nil,nil),nil)))
26 (nil,((nil,(nil,nil)),((nil,nil),(nil,nil))))
27 (nil,((nil,(nil,nil)),((nil,(nil,nil)),nil)))
28 (nil,((nil,(nil,nil)),(((nil,nil),nil),nil)))
29 (nil,((nil,(nil,(nil,nil))),(nil,nil)))
30 (nil,((nil,(nil,(nil,nil))),(nil,(nil,nil))))
31 (nil,((nil,(nil,(nil,nil))),((nil,nil),nil)))
32 (nil,((nil,(nil,(nil,(nil,nil)))),(nil,nil)))
33 ! (nil,((nil,(nil,((nil,nil),nil))),(nil,nil)))
34 " (nil,((nil,(nil,((nil,nil),(nil,nil)))),nil))

124 avram - a virtual machine code interpreter

35 # (nil,((nil,((nil,nil),nil)),(nil,nil)))
36 $ (nil,((nil,((nil,nil),nil)),(nil,(nil,nil))))
37 % (nil,((nil,((nil,nil),(nil,nil))),nil))
38 & (nil,((nil,((nil,nil),(nil,nil))),(nil,nil)))
39 ’ (nil,((nil,((nil,nil),(nil,(nil,nil)))),nil))
40 ((nil,((nil,((nil,(nil,nil)),nil)),(nil,nil)))
41) (nil,((nil,((nil,(nil,nil)),(nil,nil))),nil))
42 * (nil,((nil,(((nil,nil),nil),nil)),(nil,nil)))
43 + (nil,((nil,(((nil,nil),nil),(nil,nil))),nil))
44 , (nil,((nil,(((nil,nil),(nil,nil)),nil)),nil))
45 - (nil,(((nil,nil),nil),(nil,nil)))
46 . (nil,(((nil,nil),nil),(nil,(nil,nil))))
47 / (nil,(((nil,nil),nil),(nil,(nil,(nil,nil)))))
48 0 (nil,(((nil,nil),nil),((nil,nil),(nil,nil))))
49 1 (nil,(((nil,nil),nil),((nil,(nil,nil)),nil)))
50 2 (nil,(((nil,nil),(nil,nil)),nil))
51 3 (nil,(((nil,nil),(nil,nil)),(nil,nil)))
52 4 (nil,(((nil,nil),(nil,nil)),(nil,(nil,nil))))
53 5 (nil,(((nil,nil),(nil,nil)),((nil,nil),nil)))
54 6 (nil,(((nil,nil),(nil,(nil,nil))),nil))
55 7 (nil,(((nil,nil),(nil,(nil,nil))),(nil,nil)))
56 8 (nil,(((nil,nil),(nil,(nil,(nil,nil)))),nil))
57 9 (nil,(((nil,nil),((nil,nil),nil)),(nil,nil)))
58 : (nil,(((nil,nil),((nil,nil),(nil,nil))),nil))
59 ; (nil,(((nil,nil),((nil,(nil,nil)),nil)),nil))
60 < (nil,(((nil,(nil,nil)),nil),(nil,nil)))
61 = (nil,(((nil,(nil,nil)),nil),(nil,(nil,nil))))
62 > (nil,(((nil,(nil,nil)),(nil,nil)),nil))
63 ? (nil,(((nil,(nil,nil)),(nil,nil)),(nil,nil)))
64 @ (nil,(((nil,(nil,nil)),(nil,(nil,nil))),nil))
65 A (nil,(((nil,(nil,(nil,nil))),nil),(nil,nil)))
66 B (nil,(((nil,(nil,(nil,nil))),(nil,nil)),nil))
67 C (nil,(((nil,((nil,nil),nil)),nil),(nil,nil)))
68 D (nil,(((nil,((nil,nil),nil)),(nil,nil)),nil))
69 E (nil,((((nil,nil),nil),nil),(nil,nil)))
70 F (nil,((((nil,nil),nil),nil),(nil,(nil,nil))))
71 G (nil,((((nil,nil),nil),(nil,nil)),nil))
72 H (nil,((((nil,nil),nil),(nil,nil)),(nil,nil)))
73 I (nil,((((nil,nil),nil),(nil,(nil,nil))),nil))
74 J (nil,((((nil,nil),(nil,nil)),nil),(nil,nil)))
75 K (nil,((((nil,nil),(nil,nil)),(nil,nil)),nil))
76 L (nil,((((nil,(nil,nil)),nil),nil),(nil,nil)))
77 M (nil,((((nil,(nil,nil)),nil),(nil,nil)),nil))
78 N (nil,(((((nil,nil),nil),nil),nil),(nil,nil)))
79 O (nil,(((((nil,nil),nil),nil),(nil,nil)),nil))
80 P ((nil,nil),(nil,nil))
81 Q ((nil,nil),(nil,(nil,nil)))
82 R ((nil,nil),(nil,(nil,(nil,nil))))
83 S ((nil,nil),(nil,(nil,(nil,(nil,nil)))))

Appendix A: Character Table 125

84 T ((nil,nil),(nil,(nil,(nil,(nil,(nil,nil))))))
85 U ((nil,nil),(nil,(nil,((nil,(nil,nil)),nil))))
86 V ((nil,nil),(nil,(nil,(((nil,nil),nil),nil))))
87 W ((nil,nil),(nil,((nil,nil),(nil,nil))))
88 X ((nil,nil),(nil,((nil,(nil,nil)),nil)))
89 Y ((nil,nil),(nil,((nil,(nil,nil)),(nil,nil))))
90 Z ((nil,nil),(nil,((nil,(nil,(nil,nil))),nil)))
91 [((nil,nil),(nil,((nil,((nil,nil),nil)),nil)))
92 \ ((nil,nil),(nil,(((nil,nil),nil),nil)))
93] ((nil,nil),(nil,(((nil,nil),nil),(nil,nil))))
94 ^ ((nil,nil),(nil,(((nil,nil),(nil,nil)),nil)))
95 _ ((nil,nil),(nil,(((nil,(nil,nil)),nil),nil)))
96 ‘ ((nil,nil),(nil,((((nil,nil),nil),nil),nil)))
97 a ((nil,nil),((nil,nil),(nil,nil)))
98 b ((nil,nil),((nil,nil),(nil,(nil,nil))))
99 c ((nil,nil),((nil,nil),(nil,(nil,(nil,nil)))))

100 d ((nil,nil),((nil,nil),((nil,nil),(nil,nil))))
101 e ((nil,nil),((nil,nil),((nil,(nil,nil)),nil)))
102 f ((nil,nil),((nil,(nil,nil)),nil))
103 g ((nil,nil),((nil,(nil,nil)),(nil,nil)))
104 h ((nil,nil),((nil,(nil,nil)),(nil,(nil,nil))))
105 i ((nil,nil),((nil,(nil,nil)),((nil,nil),nil)))
106 j ((nil,nil),((nil,(nil,(nil,nil))),nil))
107 k ((nil,nil),((nil,(nil,(nil,nil))),(nil,nil)))
108 l ((nil,nil),((nil,(nil,(nil,(nil,nil)))),nil))
109 m ((nil,nil),((nil,((nil,nil),nil)),(nil,nil)))
110 n ((nil,nil),((nil,((nil,nil),(nil,nil))),nil))
111 o ((nil,nil),((nil,((nil,(nil,nil)),nil)),nil))
112 p ((nil,nil),(((nil,nil),nil),(nil,nil)))
113 q ((nil,nil),(((nil,nil),nil),(nil,(nil,nil))))
114 r ((nil,nil),(((nil,nil),(nil,nil)),nil))
115 s ((nil,nil),(((nil,nil),(nil,nil)),(nil,nil)))
116 t ((nil,nil),(((nil,nil),(nil,(nil,nil))),nil))
117 u ((nil,nil),(((nil,(nil,nil)),nil),(nil,nil)))
118 v ((nil,nil),(((nil,(nil,nil)),(nil,nil)),nil))
119 w ((nil,nil),((((nil,nil),nil),nil),(nil,nil)))
120 x ((nil,nil),((((nil,nil),nil),(nil,nil)),nil))
121 y ((nil,nil),(((((nil,nil),nil),nil),nil),nil))
122 z ((nil,(nil,nil)),(nil,nil))
123 { ((nil,(nil,nil)),(nil,(nil,(nil,nil))))
124 | ((nil,(nil,nil)),(nil,(nil,(nil,(nil,nil)))))
125 } ((nil,(nil,nil)),(nil,((nil,nil),nil)))
126 ~ ((nil,(nil,nil)),(nil,((nil,nil),(nil,nil))))
127 ((nil,(nil,nil)),(nil,((nil,(nil,nil)),nil)))
128 ((nil,(nil,nil)),((nil,nil),(nil,nil)))
129 ((nil,(nil,nil)),((nil,nil),(nil,(nil,nil))))
130 ((nil,(nil,nil)),((nil,(nil,nil)),nil))
131 ((nil,(nil,nil)),((nil,(nil,nil)),(nil,nil)))
132 ((nil,(nil,nil)),((nil,(nil,(nil,nil))),nil))

126 avram - a virtual machine code interpreter

133 ((nil,(nil,nil)),(((nil,nil),nil),(nil,nil)))
134 ((nil,(nil,nil)),(((nil,nil),(nil,nil)),nil))
135 ((nil,(nil,(nil,nil))),(nil,nil))
136 ((nil,(nil,(nil,nil))),(nil,(nil,nil)))
137 ((nil,(nil,(nil,nil))),(nil,(nil,(nil,nil))))
138 ((nil,(nil,(nil,nil))),(nil,((nil,nil),nil)))
139 ((nil,(nil,(nil,nil))),((nil,nil),(nil,nil)))
140 ((nil,(nil,(nil,nil))),((nil,(nil,nil)),nil))
141 ((nil,(nil,(nil,(nil,nil)))),(nil,nil))
142 ((nil,(nil,(nil,(nil,nil)))),(nil,(nil,nil)))
143 ((nil,(nil,(nil,(nil,nil)))),((nil,nil),nil))
144 ((nil,(nil,(nil,(nil,(nil,nil))))),(nil,nil))
145 ((nil,(nil,(nil,((nil,nil),nil)))),(nil,nil))
146 ((nil,(nil,((nil,nil),nil))),(nil,nil))
147 ((nil,(nil,((nil,nil),(nil,nil)))),(nil,nil))
148 ((nil,(nil,((nil,(nil,nil)),nil))),(nil,nil))
149 ((nil,(nil,(((nil,nil),nil),nil))),(nil,nil))
150 ((nil,((nil,nil),nil)),(nil,nil))
151 ((nil,((nil,nil),nil)),(nil,(nil,nil)))
152 ((nil,((nil,nil),nil)),(nil,(nil,(nil,nil))))
153 ((nil,((nil,nil),nil)),(nil,((nil,nil),nil)))
154 ((nil,((nil,nil),nil)),((nil,nil),(nil,nil)))
155 ((nil,((nil,nil),nil)),((nil,(nil,nil)),nil))
156 ((nil,((nil,nil),(nil,nil))),(nil,nil))
157 ((nil,((nil,nil),(nil,nil))),(nil,(nil,nil)))
158 ((nil,((nil,nil),(nil,(nil,nil)))),(nil,nil))
159 ((nil,((nil,nil),((nil,nil),nil))),(nil,nil))
160 ((nil,((nil,(nil,nil)),nil)),(nil,nil))
161 ((nil,((nil,(nil,nil)),nil)),(nil,(nil,nil)))
162 ((nil,((nil,(nil,nil)),nil)),((nil,nil),nil))
163 ((nil,((nil,(nil,nil)),(nil,nil))),(nil,nil))
164 ((nil,((nil,(nil,(nil,nil))),nil)),(nil,nil))
165 ((nil,((nil,((nil,nil),nil)),nil)),(nil,nil))
166 ((nil,(((nil,nil),nil),nil)),(nil,nil))
167 ((nil,(((nil,nil),nil),(nil,nil))),(nil,nil))
168 ((nil,(((nil,nil),(nil,nil)),nil)),(nil,nil))
169 ((nil,(((nil,(nil,nil)),nil),nil)),(nil,nil))
170 ((nil,((((nil,nil),nil),nil),nil)),(nil,nil))
171 (((nil,nil),nil),(nil,nil))
172 (((nil,nil),nil),(nil,(nil,nil)))
173 (((nil,nil),nil),(nil,(nil,(nil,nil))))
174 (((nil,nil),nil),(nil,(nil,(nil,(nil,nil)))))
175 (((nil,nil),nil),(nil,(nil,((nil,nil),nil))))
176 (((nil,nil),nil),(nil,((nil,nil),nil)))
177 (((nil,nil),nil),(nil,((nil,nil),(nil,nil))))
178 (((nil,nil),nil),(nil,((nil,(nil,nil)),nil)))
179 (((nil,nil),nil),(nil,(((nil,nil),nil),nil)))
180 (((nil,nil),nil),((nil,nil),(nil,nil)))
181 (((nil,nil),nil),((nil,nil),(nil,(nil,nil))))

Appendix A: Character Table 127

182 (((nil,nil),nil),((nil,(nil,nil)),nil))
183 (((nil,nil),nil),((nil,(nil,nil)),(nil,nil)))
184 (((nil,nil),nil),((nil,(nil,(nil,nil))),nil))
185 (((nil,nil),nil),(((nil,nil),nil),(nil,nil)))
186 (((nil,nil),nil),(((nil,nil),(nil,nil)),nil))
187 (((nil,nil),(nil,nil)),(nil,nil))
188 (((nil,nil),(nil,nil)),(nil,(nil,nil)))
189 (((nil,nil),(nil,nil)),(nil,(nil,(nil,nil))))
190 (((nil,nil),(nil,nil)),(nil,((nil,nil),nil)))
191 (((nil,nil),(nil,nil)),((nil,(nil,nil)),nil))
192 (((nil,nil),(nil,(nil,nil))),(nil,nil))
193 (((nil,nil),(nil,(nil,nil))),(nil,(nil,nil)))
194 (((nil,nil),(nil,(nil,(nil,nil)))),(nil,nil))
195 (((nil,nil),(nil,((nil,nil),nil))),(nil,nil))
196 (((nil,nil),((nil,nil),nil)),(nil,nil))
197 (((nil,nil),((nil,nil),nil)),(nil,(nil,nil)))
198 (((nil,nil),((nil,nil),(nil,nil))),(nil,nil))
199 (((nil,nil),((nil,(nil,nil)),nil)),(nil,nil))
200 (((nil,nil),(((nil,nil),nil),nil)),(nil,nil))
201 (((nil,(nil,nil)),nil),(nil,nil))
202 (((nil,(nil,nil)),nil),(nil,(nil,nil)))
203 (((nil,(nil,nil)),nil),(nil,(nil,(nil,nil))))
204 (((nil,(nil,nil)),nil),(nil,((nil,nil),nil)))
205 (((nil,(nil,nil)),nil),((nil,nil),(nil,nil)))
206 (((nil,(nil,nil)),nil),((nil,(nil,nil)),nil))
207 (((nil,(nil,nil)),(nil,nil)),(nil,nil))
208 (((nil,(nil,nil)),(nil,nil)),(nil,(nil,nil)))
209 (((nil,(nil,nil)),(nil,(nil,nil))),(nil,nil))
210 (((nil,(nil,nil)),((nil,nil),nil)),(nil,nil))
211 (((nil,(nil,(nil,nil))),nil),(nil,nil))
212 (((nil,(nil,(nil,nil))),nil),(nil,(nil,nil)))
213 (((nil,(nil,(nil,nil))),nil),((nil,nil),nil))
214 (((nil,(nil,(nil,nil))),(nil,nil)),(nil,nil))
215 (((nil,(nil,(nil,(nil,nil)))),nil),(nil,nil))
216 (((nil,(nil,((nil,nil),nil))),nil),(nil,nil))
217 (((nil,((nil,nil),nil)),nil),(nil,nil))
218 (((nil,((nil,nil),nil)),nil),(nil,(nil,nil)))
219 (((nil,((nil,nil),nil)),nil),((nil,nil),nil))
220 (((nil,((nil,nil),nil)),(nil,nil)),(nil,nil))
221 (((nil,((nil,nil),(nil,nil))),nil),(nil,nil))
222 (((nil,((nil,(nil,nil)),nil)),nil),(nil,nil))
223 (((nil,(((nil,nil),nil),nil)),nil),(nil,nil))
224 ((((nil,nil),nil),nil),(nil,nil))
225 ((((nil,nil),nil),nil),(nil,(nil,nil)))
226 ((((nil,nil),nil),nil),(nil,(nil,(nil,nil))))
227 ((((nil,nil),nil),nil),(nil,((nil,nil),nil)))
228 ((((nil,nil),nil),nil),((nil,nil),nil))
229 ((((nil,nil),nil),nil),((nil,nil),(nil,nil)))
230 ((((nil,nil),nil),nil),((nil,(nil,nil)),nil))

128 avram - a virtual machine code interpreter

231 ((((nil,nil),nil),nil),(((nil,nil),nil),nil))
232 ((((nil,nil),nil),(nil,nil)),(nil,nil))
233 ((((nil,nil),nil),(nil,nil)),(nil,(nil,nil)))
234 ((((nil,nil),nil),(nil,(nil,nil))),(nil,nil))
235 ((((nil,nil),nil),((nil,nil),nil)),(nil,nil))
236 ((((nil,nil),(nil,nil)),nil),(nil,nil))
237 ((((nil,nil),(nil,nil)),nil),(nil,(nil,nil)))
238 ((((nil,nil),(nil,nil)),(nil,nil)),(nil,nil))
239 ((((nil,nil),(nil,(nil,nil))),nil),(nil,nil))
240 ((((nil,nil),((nil,nil),nil)),nil),(nil,nil))
241 ((((nil,(nil,nil)),nil),nil),(nil,nil))
242 ((((nil,(nil,nil)),nil),nil),(nil,(nil,nil)))
243 ((((nil,(nil,nil)),nil),nil),((nil,nil),nil))
244 ((((nil,(nil,nil)),nil),(nil,nil)),(nil,nil))
245 ((((nil,(nil,nil)),(nil,nil)),nil),(nil,nil))
246 ((((nil,(nil,(nil,nil))),nil),nil),(nil,nil))
247 ((((nil,((nil,nil),nil)),nil),nil),(nil,nil))
248 (((((nil,nil),nil),nil),nil),(nil,nil))
249 (((((nil,nil),nil),nil),nil),(nil,(nil,nil)))
250 (((((nil,nil),nil),nil),nil),((nil,nil),nil))
251 (((((nil,nil),nil),nil),(nil,nil)),(nil,nil))
252 (((((nil,nil),nil),(nil,nil)),nil),(nil,nil))
253 (((((nil,nil),(nil,nil)),nil),nil),(nil,nil))
254 (((((nil,(nil,nil)),nil),nil),nil),(nil,nil))
255 ((((((nil,nil),nil),nil),nil),nil),(nil,nil))

Appendix B: Reference Implementations 129

Appendix B Reference Implementations

This appendix contains some silly source code for several functions that are mentioned
in Section 2.7 [Virtual Code Semantics], page 33, for specifying the virtual machine code
semantics, namely pairwise, transition, insert and replace.

The intention is to specify the virtual machine mathematically with a minimum of hand
waving, by using only simple equations and small fragments of silly code, which has a
straightforward semantics. However, the silly code fragments are more significant in some
cases than what could fit into a few lines or be mechanically derived from an equation.

The purpose of this appendix is therefore to avoid leaving any gaps in the construction
by demonstrating that everything mentioned can be done. None of this code is needed for
any practical purpose, because its functionality is inherent in the virtual machine, but it
shows how certain operations would be specified if they were not built in.

B.1 Pairwise

This silly code fragment is mentioned in Section 2.7.13.3 [Reduce], page 48, in the
discussion of reduce, and is provided as an example of a solution to equations E1 to E3. It
is written in the style of a higher order function, in that it takes a function f as an argument
and returns another function, [[pairwise]] f as a result.

self = left
argument = right
head = left
tail = right

pairwise =

compose(
refer,
compose(

bu(
conditional,
conditional(argument,compose(tail,argument),constant nil)),

couple(
(hired couple)(

(hired compose)(
identity,
constant (hired fan head)(

argument,
compose(tail,argument))),

constant (hired meta)(
self,
compose(tail,compose(tail,argument)))),

constant argument)))

130 avram - a virtual machine code interpreter

To see how this works, one should evaluate it symbolically with an unknown f , which will
result in some silly pseudocode, and then evaluate that symbolically with some sample
lists.

B.2 Insert

This function is mentioned in Section 2.7.13.4 [Sort], page 49, on sorting. It takes the
virtual code for a partial order relational operator and returns the code for a function of
two arguments. The left argument is a list item and the right argument is a list of items of
the same type, which is already sorted with respect to the relational operator given as the
argument to insert. The result of the function returned by insert is a list similar to its
right argument but with the left argument inserted in the proper position to maintain the
order.

This code makes use of the self, argument, head and tail declarations associated with
pairwise.

insert =

bu(compose,refer) (hired conditional)(
constant compose(right,argument),
couple(

(hired conditional)(
(hired compose)(

identity,
constant compose(

couple(left,compose(head,right)),
argument)),

constant (
argument,
couple(

compose(head,compose(right,argument)),
(hired meta)(

self,
couple(

compose(left,argument),
compose(tail,compose(right,argument))))))),

constant argument))

As with the other higher order functions in this appendix, the only feasible ways to verify
it would be either by formal proof or by some form of symbolic interpretation.

B.3 Replace

This code is needed in the discussion of assignment in Section 2.7.10 [Assignment],
page 45. where it serves as a solution to equation E0. The idea is that the function takes
an argument of the form ((locations,values),store) and returns the store with the values
stored at the locations indicated.

Appendix B: Reference Implementations 131

locations = compose(left,compose(left,argument))
values = compose(right,compose(left,argument))
store = compose(right,argument)

replace =

refer conditional(
store,
(

conditional(
compose(left,locations),
(

conditional(
compose(right,locations),
(

(hired meta)(
self,
couple(

(hired fan right)(locations,values),
(hired meta)(

self,
couple(

(hired fan left)(locations,values),
store)))),

couple(
(hired meta)(

self,
couple(

couple(compose(left,locations),values),
compose(left,store))),

compose(right,store)))),
conditional(

compose(right,locations),
(

couple(
compose(left,store),
(hired meta)(

self,
couple(

couple(compose(right,locations),values),
compose(right,store)))),

values)))),
(hired meta)(

self,
couple(couple(locations,values),constant (nil,nil)))))

132 avram - a virtual machine code interpreter

B.4 Transition

This code is relevant to the discussion of transfer in Section 2.7.13.5 [Transfer], page 50,
where its specification is described in detail. When this code is evaluated on a virtual code
application f , the result is the code for a transition function that takes one configuration
to the next in the course of evaluating a transfer function, as specified in equations E7 to
E9.

output_buffer = compose(left,argument)
input_buffer = compose(right,compose(right,argument))
active = compose(left,compose(right,argument))
state = compose(left,active)
output = compose(right,active)

transition =

bu(compose,refer) (hired bu(conditional,active))(
(hired conditional)(

constant input_buffer,
bu(compose,(fan bu(hired meta,self))) (hired apply)(

constant fan bu(couple,couple(output,output_buffer)),
couple (fan bu(compose,couple))(

couple(
(hired apply)(

hired,
constant (state,compose(head,input_buffer))),

constant compose(tail,input_buffer)),
couple(

(hired apply)(hired,constant(state,constant nil)),
constant constant nil)))),

constant compose(flat,compose(reverse,output_buffer)))

Appendix C: Changes 133

Appendix C Changes

This section is reserved for brief updates due to changes in the software that may be
important enough to note temporarily until more thorough revisions to the document can
be made.

The lack of content here indicates that the current version is either completely up to
date or in such a sorry state of neglect that even this section is obsolete.

134 avram - a virtual machine code interpreter

Appendix D: External Libraries 135

Appendix D External Libraries

Various functions are callable from virtual code applications by way of the library

combinator as explained in Section 2.7.16.1 [Library combinator], page 59. An expression
(shown in silly syntax) of the form library(’foo’,’bar’) x applies a function named
’bar’ from a library named ’foo’ to an argument x.

A brief overview of the libraries and functions can always be had by executing

$ avram --external-libraries

The listing displayed by this command may show some that are not included here if this
version of the documentation is not current or your installation has been locally enhanced.
It may also lack some that are documented here if your installation is not fully equipped.

Although the overview from the command line is adequate for a reminder, it is not
informative enough to explain how each function should be used. The purpose of this
section is to provide this information in greater detail.

Some general comments are applicable to all libraries.

Each library documented in this section can generate error messages in the event of
exceptional conditions, that are documented individually. In addition to those, it’s also
possible for any library function to return error messages of

<’unrecognized library’>
<’unrecognized xxxx function name’>

where xxxx is the name of a library. These indicate either that the library name is invalid,
or the library name is valid but the function name is invalid, or that they’re both valid
but the library wasn’t detected on the host when avram was compiled. A virtual code
application can always avoid these errors by testing for the availability of a function using
the have combinator (Section 2.7.16.2 [Have combinator], page 60).

In addition, any library function that operates on numerical values or lists thereof can
return these messages in cases of invalid input.

<’missing value’>
<’invalid value’>
<’bad vector specification’>
<’bad matrix specification’>

These messages indicate that an input parameter that was required to be a valid repre-
sentation of a floating point number, a vector, or a matrix was something other than that
(Section 3.1.4 [Type Conversions], page 72). The last could also occur if a parameter that
is required to be a square matrix has unequal numbers of rows and columns.

D.1 bes

An interface to the Bessel functions as defined in the GNU Scientific Library (gsl) is
available to virtual code applications by invoking a function of the form

library(’bes’,f)

where f is a character string identifying the Bessel function family. All functions in this
library return a floating point number encoded as in Section D.11 [math], page 150.

136 avram - a virtual machine code interpreter

D.1.1 Bessel function calling conventions

The virtual code interface simplifies the gsl C language API by excluding the facilities
for error estimates, omitting certain array valued functions, and subsuming sets of related
functions within common ones where possible.

The functions with names in the following group take an argument of the form (n,x),
where n identifies the member of the function family, and x is the argument to the function.

• J regular cylindrical Bessel functions

• Y irregular cylindrical Bessel functions

• I regular modified cylindrical Bessel functions

• K irregular modified cylindrical Bessel functions

For these functions, n can be either a natural number encoded as in Section 2.4 [Rep-
resentation of Numeric and Textual Data], page 23, or a floating point number encoded as
in Section D.11 [math], page 150. The latter case specifies functions of a fractional order.
The relevant gsl function is called based on the value and type of the parameter.

Two further related families of functions follow the same calling convention.

• Isc scaled regular modified cylindrical Bessel functions

• Ksc scaled irregular modified cylindrical Bessel functions

The foregoing functions are related to those above by an exponential scale factor as docu-
mented in the gsl reference manual.

Functions with names in the following group also take an argument of the form (n,x),
but are not defined for fractional orders and so require a natural number for n.

• j regular spherical Bessel functions

• y irregular spherical Bessel functions

• isc regular modified spherical Bessel functions

• ksc irregular modified spherical Bessel functions

The functions in the remaining group follow idiosyncratic calling conventions.

• zJ0, zJ1 These take a natural number n and return the nth root of the regular cylin-
drical Bessel functions of order 0 or 1, respectively.

• zJnu This takes a pair (nu,n) where nu is the (fractional) order of a regular cylindrical
Bessel function, n is a natural number. It returns the nth zero of the function.

• lnKnu This takes a pair of floating point numbers (nu,x) where nu is the (fractional)
order of an irregular modified cylindrical Bessel and x is the argument to the function,
and it returns the natural log of the function.

D.1.2 Bessel function errors

Memory overflows and unrecognized function names can happen as with other library
interfaces. A message of

<’bad bessel function call’>

means that invalid input parameters were given, such as a fractional order to a function
family that is defined only for natural orders.

Appendix D: External Libraries 137

D.2 complex

Complex numbers are represented according to the ISO C standard as arrays of two IEEE
double precision floating point numbers of 8 bytes each, with the number representing the
real part first.

A small selection of operations on complex numbers is available by function calls of the
form library(’complex’,f). These functions are implemented by the host system’s C
library.

One example is library(’complex’,’create’) which takes a pair of floating point
numbers (x,y) to a complex number whose real part is x and whose imaginary part is
y. See Section D.11 [math], page 150 for information about constructing floating point
numbers.

Other than that, the complex library functions f fall into three main groups, which are
the real valued unary operations, the complex valued unary operations, and the complex
valued binary operations. All of these operations are designated by their standard C names
as documented elsewhere, such as the GNU libc reference manual, except as noted.

• real valued unary operations

creal cimag cabs carg

• complex valued unary operations

ccos cexp clog conj csin csqrt
ctan csinh ccosh ctanh casinh cacosh
catanh casin cacos catan

• complex valued binary operations

cpow vid bus mul add sub div

The last four correspond to the C language operators *, +, -, and / for complex numbers.
The functions named vid and bus are similar to div and sub, respectively, but with the
operands interchanged. That is,

library(’complex’,’vid’) (x,y)

is equivalent to

library(’complex’,’div’) (y,x)

All functions in this library taking complex numbers as input may also operate on real
numbers, and binary operators can have either or both operands real. For real operands, a
value of zero is inferred as the imaginary part. The result type of the function is the same
regardless.

D.3 fftw

Some functions in the fftw fast Fourier transform library are callable by virtual code
programs of the form library(’fftw’,f), where f can be one of the following character
strings.

u_fw_dft (uni-dimensional forward Discrete Fourier transform)

138 avram - a virtual machine code interpreter

u_bw_dft (uni-dimensional backward Discrete Fourier transform)

b_fw_dft (bi-dimensional forward Discrete Fourier transform)

b_bw_dft (bi-dimensional backward Discrete Fourier transform)

u_dht (uni-dimensional Discrete Hartley transform)

b_dht (bi-dimensional Discrete Hartley transform)

These stand for the discrete Fourier transform, in one dimension and two dimensions,
either backward or forward, and the discrete Hartley transform in one dimension and two
dimensions. The fftw library documentation (http://www.fftw.org) can give more infor-
mation about the meaning of these transformations.

The interface is somewhat simplified compared to the API for the fftw C library because
there are no considerations of memory management or planning, nor any provision for
dimensions higher than two.

Furthermore, from the virtual side of the interface, these functions operate on lists rather
than arrays. The one dimensional Fourier transforms take a list of complex numbers to a
list of complex numbers (see Section D.2 [complex], page 137), and the one dimensional
Hartley transforms take a list of reals to a list of reals (see Section D.11 [math], page 150).
The two dimensional transforms are analogous but they take a matrix represented as a list
of lists. Error messages pertaining to invalid input documented at the beginning of this
section (Appendix D [External Libraries], page 135) are relevant.

Finally, unlike the native API for fftw, these transformations are scaled so that the
backward transformation is the inverse of the forward, and the Hartley transformations are
their own inverses (subject to roundoff error).

D.4 glpk

The glpk library (ftp://ftp.gnu.org/pub/gnu/glpk/) solves linear programming
problems by the either the simplex algorithm or an interior point method.

The API for C client programs involves a complicated protocol with many optional
settings, which is simplified for the virtual machine interface. Specifically, the library gives
a choice of only two functions, which can be expressed in the following forms.

library(’glpk’,’simplex’)

library(’glpk’,’interior’)

These functions have the same calling convention and should return generally the same
output for identical inputs, but differences in performance, precision, and maybe correctness
can be expected. The remainder of this section applies to both of them.

D.4.1 glpk input parameters

The argument must be a triple of the form, (c,(m,y)), subject to the following speci-
fication.

• c is a list of cost function coefficients as floating point numbers (see Section D.11 [math],
page 150). There should be one item of c for each variable in the linear programming
problem (Note that there is no additive constant, which would require one extra).

Appendix D: External Libraries 139

The interpretation of c is that an assignment of non-negative values to the variables x
is sought to make the vector inner product c x as small as possible.

• m is a sparse matrix represented as a list of triples in the form

<((i,j),a)...>

where i and j are row and column indices as natural numbers starting from 0 and a is a
non-zero floating point number. The presence of a triple ((i,j),a) in the list indicates
that the i,j-th entry in the matrix has a value of a. Missing combinations of i and j

indicate that the corresponding entry is zero.

The interpretation of m is that together with y it specifies a system of equations the
variables in the solution x must satisfy simultaneously, as explained below.

• y is a list of floating point numbers, with one number for each distinct value of i in m,
above, needed to complete the equations.

The interpretation of y is that in matrix notation, the condition m x = y must be met
by any acceptable solution x.

To put it another way, for each distinct value of i, the i-th item of y has to equal the
sum over all j of xj a, where a is the real number appearing in the triple ((i,j),a) in
m, if any, and xj is the j-th variable of the solution.

D.4.2 glpk output

If a solution meeting the constraints is found, it is returned as a list of pairs of the
form <(i,x)...>, where each i is a natural number and each x is a floating point number
giving the value obtained for the i-th variable numbered from zero. Any values of i that are
omitted from the list indicate that the corresponding variable has a value of zero.

If no solution is found due to infeasibility or because glpk just didn’t find one, an empty
list is returned. The lack of a solution is not treated as an exceptional condition.

D.4.3 glpk errors

Possible error messages are

<’bad glpk specification’>

which means that the input did not conform to the description given above, and

<’memory overflow’>

It is not considered an exceptional condition for no feasible solution to exist, and in that
case an empty list is returned.

The glpk documentation gives no assurance as to the correctness of reported solutions,
so the user should also take the possibility of incorrect results into account.

D.4.4 Additional glpk notes

A sparse matrix representation of m is used because in practice most linear programming
problems have very sparse systems of equations.

Only the constraint of non-negativity is admitted. Other constraints such as upper
bounds must be effected through a change of variables if required.

The glpk library has a small memory leak, which avram corrects by methods described
in Section 3.9.3.2 [Memory leaks], page 115.

140 avram - a virtual machine code interpreter

D.5 gsldif

Numerical differentiation of a real valued function of a single real variable can be done
by a library function of the form

library(’gsldif’,method)

where method is one of

• ’backward’

• ’central’

• ’forward’

• ’t_backward’

• ’t_central’

• ’t_forward’

D.5.1 gsldif input parameters

The argument to the functions with mnemonics of backward, central or forward is a
pair (f,x), where f is the virtual machine code for a real valued function of a real variable,
and x is the input to f where the derivative is sought. Real numbers are represented
according to Section D.11 [math], page 150.

The argument to the functions with mnemonics of t_backward, t_central or t_forward
is a pair ((f,t),x), where f and x are as above, and t is a tolerance represented as a
floating point number. The tolerance is passed through to the GNU Scientific library (GSL)
differentiation routines.

When no tolerance is specified, the default is 1.0e-8.

D.5.2 gsldif output

The result returned by library(’gsldif’,method) (f,x) or library(’gsldif’,method)
((f,t),x) is an approximation of the first derivative of f evaluated at x.

The result is obtained by the one of the GNU Scientific Library (GSL) functions for
numerical differentiation that matches the virtual code function name. These functions are
documented in the GSL reference manual. The three methods should have approximately
the same results but may differ in numerical properties.

D.5.3 gsldif exceptions

An error message of

<’bad derivative specification’>

will be returned if the either the whole argument, f, or x is nil.

Any error message caused by the evaluation of f will propagate to the result.

Appendix D: External Libraries 141

D.5.4 Additional gsldif notes

The function f may be any expressible virtual machine code function that takes a real
argument to a real result, including one that uses other library functions. However, if f
passes functions to other library functions as arguments, there is a constant overhead in
stack space for each level, and a remote possibility of a segmentation fault if they are very
deeply nested.

Numerical instability is an issue for higher derivatives (i.e., differentiating a function
that is obtained by differentiating another function). Some experimentation with larger
tolerances may be needed.

D.6 gslevu

This library exports a pair of functions of the form

library(’gslevu’,’accel’)

library(’gslevu’,’utrunc’)

that take a list of real numbers x to a pair of real numbers (s,e).

The idea is that x represents the first few terms of an infinite series whose sum converges,
but only very slowly. The functions extrapolate an estimate of the infinite summation by
the Levin u-transform as documented in the GNU Scientific Library reference manual.

For well behaved series, considerably fewer terms are needed for an accurate estimate
than a direct summation would require.

D.6.1 gslevu calling conventions

The input to either of these functions is a list of real numbers represented as explained
in Section D.11 [math], page 150.

The result is a pair (s,e) holding an estimate of the sum, s, and an estimate of the error
in the sum, e, each being a real number.

Both functions compute the same sum, s, but the utrunc function is faster and more
memory efficient, using a less trustworthy method of estimating the error.

D.6.2 gslevu exceptions

If an empty list is passed as a parameter to a function in this library, an error message
of <’empty gslevu sequence’> is returned.

If there is insufficient memory, an error message of <’memory overflow’> is returned.

Other than that, no exceptional conditions are relevant other than the general ones
documented at the beginning of Appendix D [External Libraries], page 135.

D.7 gslint

An interface to a selection of numerical integration routines from the GNU Scientific
Library is provided by functions of the form

library(’gslint’,q)

where q can be one of ’qng’, ’qng_tol’, ’qagx’, ’qagx_tol’, ’qagp’, or ’qagp_tol’.

142 avram - a virtual machine code interpreter

D.7.1 gslint input parameters

The library functions qng and qagx take an argument of the form (f,(a,b)), where f is
a function to be integrated, a is the lower limit, and b is the upper limit, both limits being
floating point numbers as in Section D.11 [math], page 150.

The qng_tol and qagx_tol functions take an argument of the form ((f,t),(a,b)),
where f, a, and b are as above, and t is a specified tolerance.

The qagp and qagp_tol functions take arguments of the form (f,p) and ((f,t),p),
respectively, where f and t are as above, and p is an ordered list of real numbers specifying
the limits of integration along with arbitrarily many intervening breakpoints.

The integrand f is expressed in virtual machine code, and takes a single real argument
to a real result. The argument and result of f are required to be floating point numbers
as described in Section D.11 [math], page 150. Any expressible function of this type is
acceptable, even one defined in terms of other integrals, so that a double or triple integral
can be expressed easily, albeit a costly computation. However, a constant overhead in stack
space is required for each nested library function call, and there is currently no mechanism
to prevent segmentation faults due to a stack overflow.

When no tolerance is specified, as with qng, qagx, and qagp, the tightest attainable
tolerance is chosen by default, currently 2e-14, in order find the most accurate result
possible. A selection of progressively looser tolerances is tried automatically if the tightest
one is not successful, stopping when either a solution is found or ten orders of magnitude
are covered.

If a tolerance is explicitly specified, as with qng_tol, qagx_tol or qagp_tol, only that
tolerance is tried.

D.7.2 gslint output

In all cases, if no exception occurs, the result returned is an approximation of the integral
of f over the interval from a to b or from the first item of p to the last.

Results may differ in numerical properties depending on the integration method and the
tolerance used.

• The qagp* and qagx* functions use an adaptive algorithm, whereas the qng* functions
use a faster non-adaptive algorithm suitable only for smooth integrands.

• Faster and maybe more accurate results are obtained for discontinuous or non-
differentiable integrands by the qagp* integration methods if the interior points in
p are chosen to coincide with the discontinuities or corners.

• Larger tolerances are conducive to faster but less accurate results in most cases.

D.7.3 gslint exceptions

If an argument of an inappropriate form can be detected (such as an empty pair or one
without floating point numbers), it causes an error message to be returned saying

<’bad integral specification’>

Error messages signalled by the integrand f may also be reported, as well as any message
returned by gsl_strerror. A typical cause for a gsl_strerror message would be an
explicitly specified tolerance that is too tight. An error message of

Appendix D: External Libraries 143

<’slow convergence’>

is returned in the event of excessively many function evaluations (currently 3600 at each
tolerance level).

D.7.4 Additional gslint notes

The qagx* functions subsume the GSL variants qags, qagiu, qagil, and qagi for finite,
semi-infinite, and infinite intervals, which are seleted as appropriate based on the limits of
integration a and b.

The qagp function reverts to the qagx function if there are only two points given in p.
Fewer than two will cause an error.

The library interface code relies on the standard setjmp utility found in the system
header file setjmp.h to break out of integrals that don’t converge after excessively many
function evaluations. Non-termination has been an issue in the past with GSL integration
routines for very badly behaved integrands, and the API provides no documented means
for the user supplied integrand function to request a halt.

Although it is meant to be standard, a host without setjmp will cause avram to be
configured to abort the application with an error message in the event of non-convergence.
This behavior is considered preferable to the alternative of non-termination. Usually an
effective workaround in such cases is to specify a sufficiently loose tolerance explicitly by
using one of the *_tol library functions.

D.8 harminv

The harminv library decomposes a complex valued function of a discrete variable into
a sum of decaying sinusoids given a finite sample. It uses a method with better accuracy
and convergence than Fourier analysis or least squares curve fitting. More information is
available at http://ab-initio.mit.edu/wiki/index.php/Harminv.

D.8.1 harminv input parameters

The virtual machine interface to the harminv library provides only a single function,
callable as

library(’harminv’,’hsolve’)

The input to this function is an operand of the form

(signal,(fmin,fmax),nf)

where

• signal is a list of complex numbers containing samples of the function to be decom-
posed at equal time steps (Section D.2 [complex], page 137 and Section 2.4 [Represen-
tation of Numeric and Textual Data], page 23).

• fmin and fmax are the band limits expressed in units of inverse time steps as floating
point numbers (Section D.11 [math], page 150).

• nf is the number of spectral basis functions expressed as a natural (Section 2.4 [Rep-
resentation of Numeric and Textual Data], page 23).

If a value of 0 is specified for nf a default value of

144 avram - a virtual machine code interpreter

min(300, (fmax - fmin) * n * 1.1)

is used, where n is the length of signal. The computation time increases cubically with nf.

D.8.2 harminv output

The result returned by a call to

library(’harminv’,’hsolve’)

with valid input (Section D.8.1 [harminv input parameters], page 143) is a list of similar
tuples of the form

<(amplitude,frequency,decay,quality,error)...>

with all members being real valued except for the amplitudes, which are complex. Each
tuple describes a function of the form

f(t) = A * sin (frequency * t + P) * exp (-decay * t)

such that the summation of these functions approximates the original given signal (Sec-
tion D.8.1 [harminv input parameters], page 143). The real amplitude A and phase P are
given by the modulus and argument of the complex amplitude returned in the result,

A = library(’complex’,’cabs’) amplitude
P = library(’complex’,’carg’) amplitude

in terms of the complex library functions (Section D.2 [complex], page 137). The error
values are measures of the goodness of fit, and the quality factors are defined as

quality = (pi * |frequency| / decay)

It may be useful in some applications to ignore components with quality factors outside of
a certain range.

D.8.3 harminv exceptions

Various exceptional conditions are possible with the harminv library interface, and one
of the following messages could be returned. Each of them has the form of a list containing
a single character string.

• unrecognized harminv function name is reported in case of a function call of the form
library(’harminv’,f) where f is anything other than the character string ’hsolve’,
this being the only function in the library.

• bad harminv function call is reported if the input parameters don’t meet the spec-
ifications described in Section D.8.1 [harminv input parameters], page 143, or if fmin
is greater than fmax.

• bad vector specification could be the result of a list of real numbers rather than
complex numbers being passed as a signal. Real numbers can be converted to complex
numbers using the create function from the complex library (Section D.2 [complex],
page 137).

• memory overflow can occur if avram is operating very close to the limit of host memory,
or perhaps if infeasibly large values are passed as nf

• counter overflow is similar to a memory overflow

Appendix D: External Libraries 145

D.8.4 Additional harminv notes

The harminv library interface requires the harminv and lapack libraries to be installed
on the host system, and also requires standard complex number support from the system’s
C library.

The author’s installation of avram has been compiled against the Debian harminv devel-
opment library package, which at this writing is unmaintained and is missing the necessary
header file ‘harminv-int.h’, without which compilation of files including ‘harminv.h’ fails.
Some headers from ‘harminv.h’ have been copied directly into ‘avram-x.x.x/src/harminv.c’
under the avram source tree to avoid this dependence, so that avram will compile correctly
on a Debian system. These may need to be updated if necessary to track the harminv

source.

D.9 kinsol

The kinsol library (http://www.llnl.gov/CASC/sundials/) contains sophisticated
routines for non-linear optimization and constrained non-linear optimization, some of which
are available to virtual code applications by way of functions expressed as shown.

library(’kinsol’,k)

The function name k is a string of the form ’xy_zzzzz’. The field zzzzz specifies the
optimization algorithm, which can be one of dense, gmres, bicgs, or tfqmr, following
the names used by the API for kinsol in C. The field y determines the way gradients
are obtained, which is either j for a user supplied Jacobian, or d for finite differences
computed by kinsol. The remaining field x is either c for constrained optimization, or u for
unconstrained. Hence, the whole function name can be one of sixteen possible alternatives.

cd_dense cd_gmres cd_bicgs cd_tfqmr
ud_dense ud_gmres ud_bicgs ud_tfqmr
cj_dense cj_gmres cj_bicgs cj_tfqmr
uj_dense uj_gmres uj_bicgs uj_tfqmr

More specific information about the optimization algorithms can be found in the kinsol
documentation at the above address. Different algorithms may perform better on different
problems.

D.9.1 kinsol input parameters

Functions whose names are of the form xd_zzzzz take an argument of the form (f,(i,o)),
and functions whose names are of the form xj_zzzzz take an argument of the form
((f,j),(i,o)). The parameters have these interpretations.

• f is a function to be optimized, expressed in virtual machine code. It takes a list of
real numbers as input and returns a list of real numbers as output. The numbers must
be in floating point format as described in Section D.11 [math], page 150.

• j is a function in virtual machine code that computes the Jacobian or partial derivatives
of f for a given list of input numbers. The exact calling convention for j depends on
the optimization algorithm selected, as explained below.

• i is a list of real numbers suitable as an input for f. The exact values of the numbers
in i are not crucial but the length of i is taken as an indication of the required length

146 avram - a virtual machine code interpreter

for any input list to f. In the case of constrained optimization problems (i.e., functions
with names beginning with c), i must consist entirely of non-negative numbers.

• o is a list numbers indicating the “optimal” output from f in the sense described below
(Section D.9.2 [kinsol output], page 146). Its length is taken to indicate the usual
length of an output returned by f.

If the optimization problem is being solved by either the cj_dense or the uj_dense

method, the Jacobian parameter j is expected to take a list v of real numbers the length
of i as input and return a list of lists of reals as output. The numbers are represented as
described in Section D.11 [math], page 150. The outer list in the output from j is required
to be the length of o, while each inner list is required to be the length of i.

The output from j is interpreted as a matrix of the form described in Section 3.1.4.3 [Two
dimensional arrays], page 74. The entry in row m and column n is the partial derivative
(evaluated at v) of the m-th component of the output of f with respect to the n-th item of
the input list.

For optimization problems being solved by the methods of xj_gmres, xj_bicgs, or xj_
tfqmr, (i.e., where x is either c or u) the Jacobian function j follows a different convention
that is meant to be more memory efficient. Given an argument of the form (m,v), it
returns only the m-th row of the matrix described above instead of the whole thing. The
parameter m is a natural number less than the length of o, and v is a list of real numbers
the length of i the same as above. The number m is encoded as described in Section 2.4
[Representation of Numeric and Textual Data], page 23.

D.9.2 kinsol output

The kinsol functions attempt to search the domain of f for a vector v the length of
i to satisfy f (v) = o as closely as possible. In the case of constrained optimization, (i.e.,
functions whose names begin with c), only non-negative numbers are acceptable in v. The
search for v will start in the vicinity of i. The value of i will therefore determine a unique
solution if multiple solutions exist, and will save time if it is near a solution.

In some cases when a solution can’t be found due to non-convergence, an empty list is
returned. Non-convergence is not considered an exceptional condition. In all other cases
where no exception occurs, the output from a kinsol function will be the list v of real
numbers satisfying f (v) = o to the best possible tolerance.

D.9.3 kinsol exceptions

• Any error messages that may be generated in the course of evaluating the functions f
and j will propagate to the result returned by the kinsol library functions.

• If there is insufficient memory to complete any operation, the result is a message of

<’memory overflow’>

• If the argument to the library function (i.e., (f,(i,o)) or ((f,j),(i,o))) fails to meet
the required specifications in a detectable way, the result will be a message of

<’bad kinsol specification’>

• Any status returned by any kinsol API functions other than success or one of several
types of non-convergence results in a message of

<’kinsol error’>

Appendix D: External Libraries 147

D.9.4 Additional kinsol notes

When a user supplied Jacobian function j is specified, the solution is likely to be found
faster and more accurately. The Jacobian should be given if an analytical form for f is
known, from which the Jacobian can be obtained easily by partial differentiation. If the
Jacobian is unavailable, a finite difference method implemented internally by kinsol is used
as a substitute and will usually yield acceptable results.

Tolerances are not explicitly specified on the virtual side of the interface although the
native kinsol API requires them. A range of tolerances over ten orders of magnitude is
automatically tried before giving up.

Similarly to the glpk and lpsolve library interfaces (Section D.4 [glpk], page 138 and
Section D.15 [lpsolve], page 160), the only expressible constraint through the virtual code
interface is that all variables are non-negative. Arbitrary upper and lower bounds can be
simulated by appropriate variable substitutions in the formulation of the problem.

The kinsol library natively requires a system function f with equally many inputs as
outputs, and will search only for the input associated with an output vector of all zeros, but
the virtual code interface relaxes these requirements by allowing a function that transforms
between lists of unequal lengths, and will search for the input of f causing it to match any
given “optimal” output o. These effects are achieved by padding the shorter of the two
vectors transparently and subtracting the specified optimum from the result.

The kinsol library can be configured to use single precision, double precision, or ex-
tended precision arithmetic, but only a double precision configuration is compatible with
avram. This condition is checked when avram is configured and it will not interface with
alternative kinsol configurations.

The kinsol library has some more advanced features to which this interface doesn’t do
justice, such as preconditioning, scaling, solution of systems with band limited Jacobians,
and concurrent computation.

D.10 lapack

An arsenal of weapons grade linear algebra functions from the LAPACK Fortran library is
accessible to virtual code applications through library calls of the form

library(’lapack’,f)

Each library function f invokes a LAPACK function of the same name, but the calling
conventions on the virtual side are an artifact of the interface requiring their own documen-
tation.

Some functions that are part of LAPACK are not described here (mostly the so called
computational and auxiliary routines, and anything in single precision), because they are
not accessible by the virtual code interface.

D.10.1 lapack calling conventions

A table describing the inputs and outputs to the lapack library functions listed by their
function names is given in this section. Some general points related to most of the functions
are mentioned first.

148 avram - a virtual machine code interpreter

• References to vectors, matrices, and packed matrices should be understood as their
list representations explained in Section 3.1.4 [Type Conversions], page 72. Although
LAPACK internally uses column order arrays, the virtual code library interface exhibits
a matrix as a list of lists with one inner list for each row.

• Some functions require a symmetric matrix as an input parameter. Any input pa-
rameter that is required to be a symmetric matrix may be specified optionally either
in square form or in triangular form as described in Section 3.1.4.3 [Two dimensional
arrays], page 74. If a square matrix form is used, symmetry is not checked and the
lower triangular portion is ignored.

• Some function names are listed in pairs differing only in the first letter. Function
names beginning with d pertain to vectors or matrices of real numbers (Section D.11
[math], page 150), and function names beginning with z pertain to complex numbers
(Section D.2 [complex], page 137). The specifications of similarly named functions are
otherwise identical.

dgesvx

zgesvx These library functions take a pair (a,b) where a is an n by n matrix and b is
a vector of length n. If a is non-singular, they return a vector x such that a x

= b. Otherwise they return an empty list.

dgelsd

zgelsd These functions generalize those above by taking a pair (a,b) where a is an m

by n matrix and b is a vector of length m, with m greater than n. They return
a vector x of length n to minimize the magnitude of b - a x.

dgesdd

zgesdd These functions take a list of m time series (i.e., vectors) each of length n and
return a list of basis vectors each of length n. The basis vectors span the set of
time series in the given list according to the singular value decomposition (i.e.,
with the basis vectors forming a series in order of decreasing significance). The
number of basis vectors is at most min(m,n) but could be less if the input time
series aren’t linearly independent. An empty list could be returned due to lack
of convergence.

dgeevx

zgeevx These functions take a non-symmetric square matrix and return a pair (e,v)
where e is a list of eigenvectors and v is a list of eigenvalues, both of which will
contain only complex numbers. (N.B., both functions return complex results
even though dgeevx takes real input.) They could also return nil due to a lack
of convergence.

dpptrf

zpptrf These functions take a symmetric square matrix and return one of the Cholesky
factors. The Cholesky factors are a pair of triangular matrices, each equal to
the transpose of the other, whose product is the original matrix.

• If the input matrix is specified in lower triangular form, the lower triangular
Cholesky factor is returned.

Appendix D: External Libraries 149

• If the input matrix is specified in square or upper triangular form, the
upper triangular Cholesky factor is returned.

• In either case, the result is returned in triangular form.

dggglm

zggglm The input is a pair of matrices and a vector ((A,B),d). The output is a
pair of vectors (x,y) satisfying Ax + By = d for which the magnitude of y is
minimal. The dimensions all have to be consistent, which means the number of
rows in A and B is the length of d, the number of columns in A is the length
of x, and the number of columns in B is the length of y.

dgglse

zgglse The input is of the form ((A,c),(B,d)) where A and B are matrices and c

and d are vectors. The output is a vector x to minimize the magnitude of Ax -

c subject to the constraint that Bx = d. The dimensions have to be consistent,
which means A has m rows, c has length m, B has p rows, d has length p,
both A and B have n columns, and the output x has length n. It is also a
requirement that p <= n <= m + p.

dsyevr This function takes a symmetric real matrix and returns a pair (e,v) where
e is a list of eigenvectors and v is a list of eigenvalues. Both contain only
real numbers. This function is fast and accurate but not as storage efficient as
possible. If there is insufficient memory, it automatically invokes dspev.

dspev This function takes a symmetric real matrix and returns a pair (e,v) where
e is a list of eigenvectors and v is a list of eigenvalues. Both contain only
real numbers. It uses roughly half the memory of dsyevr but is not as fast or
accurate.

zheevr This function takes a complex Hermitian matrix and returns a pair (e,v) where
e is a list of eigenvectors and v is a list of eigenvalues. The eigenvectors are
complex but the eigenvalues are real.

• A Hermitian matrix has Aij equal to the complex conjugate of Aji.

• Although not exactly symmetric, a Hermitian matrix may nevertheless be
given in either upper or lower triangular form.

• This function is faster but less storage efficient than zhpev, and calls it
automatically if it runs out of memory.

zhpev This function has the same inputs and approximate outputs as zheevr but is
slower and more memory efficient because it uses only packed matrices.

D.10.2 lapack exceptions

• Any of these functions can return a message of

<’memory overflow’>

if it runs out of memory.

• If the input parameters don’t meet the specification, they can also return

<’bad lapack specification’>

150 avram - a virtual machine code interpreter

• Any unexpected behavior from the LAPACK Fortran functions or irregular status re-
turned by them is reported by the message

<’lapack error’>

Getting to the bottom of it may require some debugging of the avram source code in
the file ‘lapack.c’.

D.10.3 Additional lapack notes

The functions dgesdd and zgesdd are an effective dimensionality reduction technique
for a large database of time series. A set of basis vectors can be computed once for the
database, and then any time series in the database can be expressed as a linear combination
thereof. To the extent that the data embody any redundant information, an approximate
reconstruction of an individual series from the database will require fewer coefficients (maybe
far fewer) in terms of the basis than original length of the series.

The library functions dgelsd and zgelsd are good for finding least squares fits to em-
pirical data. If the matrix parameter a is interpreted as a list of inputs and the vector
parameter b as the list of corresponding output data from some unknown linear function
of n variables f, then x is the list of coefficients whereby f achieves the optimum fit to the
data in the least squares sense.

These functions solve a special case of the problem solved by dggglm and zggglm where
the parameter B is the identity matrix. For the latter functions, the output vector y can
be interpreted as a measure of the error, and B can be chosen to express unequal costs for
errors at different points in the fitted function.

Cholesky decompositions obtained by dpptrf and zpptrf are useful for generating cor-
related random numbers. A population of vectors of uncorrelated standard normally dis-
tributed random numbers can be made to exhibit any correlations to order by multiplying
all of the vectors by the lower Cholesky factor of the desired covariance matrix.

D.11 math

The math library exports functions that operate on IEEE double precision floating point
numbers using the host system’s C library. The numbers are represented natively as contigu-
ous blocks of 8 bytes each, and on the virtual side as lists of eight character representations.
(More explanation is given in Section 3.1.4 [Type Conversions], page 72.) These functions
take the form

library(’math’,f)

where f is a character string identifying the function in most cases by its standard name in
the C library.

D.11.1 math library operators

The unary operators take a single real number to a real result. They include

ceil floor round trunc
sin cos tan sinh cosh tanh
asin acos atan asinh acosh atanh
exp log sqrt cbrt expm1 log1p fabs

Appendix D: External Libraries 151

The binary operators take a pair of real numbers (x,y) to a single real number output.
They include

pow hypot atan2 remainder bus vid add sub mul div

where the last four correspond to the C language operators +, -, *, and /. The functions
named bus and vid are like the sub and div functions, respectively, with the order of the
operands reversed, as explained in Section D.2 [complex], page 137.

The meanings of these operators are documented in the GNU libc reference manual or
other C language references. They follow IEEE standards including proper handling of nan
and infinity.

D.11.2 math library predicates

There is one binary predicate, islessequal, and several unary predicates, isinfinite,
isnan, isnormal, isubnormal and iszero.

The predicate islessequal takes a pair of floating point numbers (x,y) as an argument,
and returns nil for a false result and (nil,nil) for a true result.

The unary predicates have the obvious interpretations as classification functions, and
should probably be used in preference to comparison with constants in case the represen-
tations aren’t unique.

D.11.3 math library conversion functions

The conversion function strtod takes a string representing a floating point number in C
format to its representation. This function is the primary means of creating or initializing
floating point numbers in virtual code. A value of floating point 0.0 is returned if the string
is not valid, but no exception is raised.

The conversion asprintf is similar to the one by that name in C, but requires a pair
(f,x) as an argument. The left side f is a character string containing a C style format
conversion for exactly one double precision floating point number, such as ’%0.4e’, and
the parameter x is a floating point number. The result returned will be a character string
expressing the number in the specified format.

D.11.4 math library exceptions

The most likely cause of an exception is an attempt to apply a math library function to
nil or to an argument that doesn’t represent a floating point number. In these cases, an
error message of <’missing value’> or <’invalid value’> will be the result.

An error message of <’invalid asprintf() specifier’> is reported by the asprintf
function if the format specifier pertains to a string, such as ’%s’. This error is specifically
trapped because the alternative would be a segmentation fault. Otherwise, invalid format
specifiers are not detected or reported.

Error messages of <’invalid text format’> can be generated by conversion functions
if any parameters that are meant to be character string representations are something else.

There is always a chance of a <’memory overflow’> error if there is insufficient memory
to allocate a result.

152 avram - a virtual machine code interpreter

D.11.5 Additional math library notes

Floating point exceptions such as division by zero are not specifically reported as excep-
tions, but invalid computations can be detected by the propagation of nan into the result,
following standard conventions.

The C function feclearexcept (FE_ALL_EXCEPT) is called before every floating point
operation so that no lingering exception flags can affect it.

There is no library predicate for exact comparison of floating point numbers, but none
is required because the virtual machine’s compare combinator will work on their represen-
tations as it will on any other data. The usual caveats apply with regard to comparing
floating point numbers in the presence of roundoff error.

D.12 mtwist

The mtwist library interfaces to a random number generator based on the Mersenne
Twistor algorithm. The algorithm has good properties but is not meant to be cryptograph-
ically secure. The library functions are of the form

library(’mtwist’,f)

where f is one of the followng character strings.

bern u_cont u_disc u_path u_enum w_disc w_enum

Formally they are not mathematical functions because their results depend on a pseudo-
random number that is not uniquely determined by their arguments. The numbers are
generated deterministically in a sequence starting from a seed derived from the system
clock at the time avram is launched, and each call uses the next number in the sequence.
In so doing, it simulates a random draw from a uniformly distributed population.

D.12.1 mtwist calling conventions

All of the functions in this library simulate a random draw from a distribution. There
is a choice of distribution statistics depending on the function used.

bern takes a floating point number p between 0 and 1, encoded as in Section D.11
[math], page 150, and returns a boolean value, either (nil,nil) for true or
nil for false. A true value is returned only if a random draw from a uniform
distribution ranging from 0 to 1 is less than p. This function therefore simulates
a draw from a Bernoulli distribution. A nil value of p is treated as 1/2.

u_cont takes a floating point number x as an argument, and returns a random draw
from a continuous uniform distribution ranging from 0 to x. A nil value of x
is treated as unity.

u_disc simulates a draw from a uniform discrete distribution whose domain is the set
of natural numbers from 0 to n - 1. The number n is given as a parameter to
this function, and the retuned value is the draw.

• The returned value will have at most 64 bits regardless of n.

• Natural numbers are encoded as described in Section 2.4 [Representation
of Numeric and Textual Data], page 23.

Appendix D: External Libraries 153

• If a value of 0 is passed for n, the full 64 bit range is used.

u_path takes a pair of natural numbers (n,m) and returns a randomly chosen tree
(Section 2.1 [Raw Material], page 19) with 1 leaf and n non-leaves each having
either a left or a right descendent but not both. The number m constrains the
result to fall within the first m - 1 trees of this form enumerated by exhausting
all possibilities at lower levels before admitting a right descendent at a higher
level. Within these criteria, all possible results are equally probable. Both
numbers are masked to 64 bits, but if m is zero, it is treated as 2^n.

u_enum simulates a random draw from a uniform discrete distribution whose domain is
enumerated. The argument to the function is a non-empty list, and the result
is an item selected from the list, with all choices being equally probable.

w_disc simulates a random draw from a non-uniform, or “weighted” discrete distri-
bution whose domain is a set of consecutive natural numbers starting from
zero. The argument to the function is a list giving the probability of each
outcome starting from zero as a floating point number. Probabilities must be
non-negative but needn’t be normalized.

w_enum simulates a random draw from a non-uniform, or “weighted” discrete distribu-
tion with an arbitrary domain enumerated in the argument. The argument is a
list of pairs <(x,p)..>, where x is a possible outcome and p is its probability.
The result returned is one of the values of x from the input list chosen at random
according to the associated probability. Probabilities must be non-negative but
needn’t be normalized.

D.12.2 mtwist exceptions

• <’memory overflow’> can be returned if there is insufficient memory to allocate a
result.

• Messages of <’missing value’> and <’invalid value’> can be returned if any float-
ing point argument is nil or is not a valid floating point number, unless there is a
designated default interpretation for nil as in bern and u_cont.

• A message of <’bad mtwist specification’> is returned if an argument to the bern
function is not in the range of 0 to 1, or if any probability passed to the w_* functions
is negative.

• A message of <’draw from empty list’> is returned if an argument to the *_enum
functions is nil or if an argument to w_enum contains nil.

D.12.3 Additional mtwist notes

Although the mtwist library is “external”, it requires no special configuration on the
host because the uniform variate generator in the form developed by its original authors is
short and elegant enough to be packaged easily within the avram distribution. All further
embellishments are home grown despite the advice at the end of Section 3.9.2 [Implementing
new library functions], page 112.

The u_path function is intended to allow sampling from a large population in logarithmic
time when it is stored in a balanced tree. A left-heavy tree should be constructed initially

154 avram - a virtual machine code interpreter

with the data items all at the same level. Thereafter, a result returned by u_path with the
appropriate dimensions can be used as an index into the tree for fast retrieval by the virtual
machine’s field combinator (Section 2.7.8.1 [Field], page 42).

The last three functions, u_enum, w_disc, and w_enum use an inversion method with a
binary search. The first draw from a given list will take a time asymptotically proportional
to the length of the list, but subsequent draws from the same list are considerably faster
due to a persistent cache maintained transparently by avram. For lists whose length is up
to 2^16, the time required for a subsequent draw consists mainly of constant overhead with
a small logarithmic component in the length of the list. For longer lists, the time ramps up
linearly by a small factor.

Information allowing fast draws from up to sixteen lists can be cached simultaneously.
If an application uses more than sixteen, the cached data are replaced in first-in first-out
order. The size of the cache and the maximum list length for logarithmic time access can
be adjusted easily by redefining constants in ‘mtwist.c’ under the avram source tree, but
will require recompilation.

D.13 minpack

The minpack library contains functions to solve non-linear optimization and least squares
problems. The functions can be expressed as

library(’minpack’,f)

where f can be one of ’hybrd’, ’hybrj’, ’lmder’, ’lmdif’, or ’lmstr’, following the
names of the underlying Fortran subroutines.

D.13.1 minpack calling conventions

The minpack library solves a similar problem to that of the kinsol library (Section D.9
[kinsol], page 145), and the two libraries have identical calling conventions at the level of
the virtual code interface.

The hybrd and lmdif functions take input arguments of the form (f,(i,o)), whereas
hybrj, lmder, and lmstr take arguments of the form ((f,j),(i,o)). The interpretations
of these parameters are explained in Section D.9.1 [kinsol input parameters], page 145.

For the lmstr function, the Jacobian function j takes an argument (m,v) and returns
only the m-th row of the Jacobian matrix. For lmder and hybrj, the Jacobian function
takes only an input vector v and returns the whole matrix. These specifications are also
explained further in relation to the kinsol library.

The output from any minpack function is a vector v satisfying f (v) = o to the best
possible tolerance if a solution is found. A range of tolerances over ten orders of magnitude
is sampled starting from 1e-15. If no solution is found, an empty list is returned.

D.13.2 minpack exceptions

• A message of <’memory overflow’> is possible any time minpack runs out of memory.

• A message of <’bad minpack specification’> will be returned if an input argument
recognizably violates the required specification.

Appendix D: External Libraries 155

• The <’minpack error’> message is returned in the event of any unexpected behavior
or irregular status from the API.

• Any error messages reported by the system function f or the Jacobian function j are
propagated to the result.

D.13.3 Additional minpack notes

The lm* functions are better suited to problems in which the system function f has more
outputs than inputs, and the hybr* functions are better suited to the alternative. If either is
called when the other is more appropriate, the job is handed off to the other automatically.

The lmstr function is more memory efficient than the others because it doesn’t compute
the whole Jacobian matrix at once. Any of the lm* functions is more memory efficient than
the kinsol equivalent when the output list is sufficiently longer than the input list.

Unlike kinsol, there is no provision in minpack for constrained optimization.

The minpack documentation doesn’t state whether it’s re-entrant, but the odds are
against it unless it uses no storage outside the user provided work areas. If it isn’t re-
entrant, anomalous effects could occur when a virtual code function being optimized calls
another minpack function. A workaround would be to use an equivalent kinsol function,
which is re-entrant by design.

The avram configuration script searches for a C header file ‘minpack.h’ on the host sys-
tem in order to build an interface to this library. This file is specific to the Debian minpack-

dev package and is not part of the upstream Fortran source. Configuring avram with an
interface to the minpack library on a non-Debian system may require the administrator to
retrieve the header file manually from the Debian archive and place it under ‘/usr/include’
before running the configuration script (in addition to installing the minpack library itself,
of course).

D.14 mpfr

The mpfr library provides a rich assortment of floating point operations on arbitrary
precision numbers (http://www.mpfr.org). These numbers are represented in a format
that is not binary compatible with the standard IEEE floating point number format used by
other libraries, but they offer superior numerical stability suitable for many ill conditioned
problems.

The virtual code interface to the mpfr library follows the native API to the extent of
using the same names for most operations, but excludes features pertaining to i/o, mutable
storage, and memory management.

The mpfr library functions are invoked by an expression of the form

library(’mpfr’,f)

Aside from a few exceptions as noted, f is a character string derived from the name of the
related function from the mpfr C library as documented at the above address, but without
the mpfr_ prefix.

The full complement of available functions is documented in the remainder of this section.

• References to natural numbers pertain to the list representation described in Section 2.4
[Representation of Numeric and Textual Data], page 23.

156 avram - a virtual machine code interpreter

• All functions that perform rounding use a mode of GMP_RNDN for rounding to nearest,
which is not explicitly specified on the virtual side.

D.14.1 mpfr binary operators

Functions with these names take a pair of mpfr numbers (x,y) and return an mpfr

number as a result.

• add

• sub

• mul

• div

• pow

• atan2

• hypot

• min

• max

• vid

• bus

Their semantics are similar to those listed in the mpfr documentation, with some minor
qualifications.

• Unlike the native API, there is no third argument to which the result is assigned,
because the result is the returned value.

• The precision of the result is the greater of the two precisions of the input numbers x
and y.

• The vid and bus functions are added features of the virtual code interface, correspond-
ing to division and subtraction with the order of the operands reversed, as explained
in Section D.2 [complex], page 137.

Mathematically it might make more sense for the precision of the result to be the lesser
of the two input precisions, but this way is more convenient for virtual code programs that
perform binary operations on their input with hard coded constants, because it makes one
size fit all.

D.14.2 mpfr unary operators

Functions with these names take a single mpfr number as an argument and return a
single mpfr number as a result.

sqr sqrt cbrt neg abs log
log2 log10 exp exp2 exp10 cos
sin tan acos asin atan cosh
sinh tanh acosh asinh atanh lngamma
expm1 eint gamma erf log1p nextbelow
ceil floor round trunc frac nextabove
erfc

Appendix D: External Libraries 157

The semantics of these functions are similar to those of their counterparts in the native
API, with these provisions.

• The precision of the result is the precision of the argument.

• There is no second argument for assigning the result.

• The nextabove and nextbelow functions do not modify their arguments in place, but
return a freshly allocated result like all other functions.

D.14.3 mpfr binary operators with a natural operand

Functions with these names take an argument of the form (x,n), where x is an mpfr

number and n is a natural number.

• root

• pow_ui

• mul_2ui

• div_2ui

• grow

• shrink

The last two are specific to the virtual code interface, having no counterpart in the native
API of the mpfr library. The grow function returns a copy of x with its precision increased
by n bits, and the shrink function returns a copy of x with its precision reduced by n bits.

• The precisions are silently capped at the maximum or floored at the minimum allowable
precisions if necessary.

• Increasing the precision by the grow function does not directly cause a more accurate
result to be computed, but only pads an existing number with zeros.

• Decreasing the precision by the shrink function does not prevent valid bits from being
discarded.

The appropriate way to use grow is to grow the precision of an operand before applying
an operator to it, which will cause the result to be computed to the full precision. This
capability is suitable for algorithms that iterate over increasing precisions until a stopping
criterion is met.

D.14.4 mpfr binary predicates

These predicates take a pair of mpfr numbers (x,y) as arguments and perform a logical
operation. If the result is true, they return (nil,nil), and if it’s false, they return nil.

• equal_p

• unequal_abs

• greater_p

• greaterequal_p

• less_p

• lessequal_p

• lessgreater_p

158 avram - a virtual machine code interpreter

The name of the function unequal_abs, for comparing absolute values, has been changed
from mpfr_cmpabs to avoid confusion with the virtual machine’s compare combinator. The
compare combinator returns a (nil,nil) result (i.e., true) if the operands are equal and a
nil result if they’re unequal, opposite from unequal_abs.

D.14.5 mpfr unary predicates

Each of these predicates takes an mpfr number as an argument and performs a logical
operation. If the result is true, it returns (nil,nil), and otherwise it returns nil.

• nan_p

• inf_p

• number_p

• zero_p

• integer_p

D.14.6 mpfr constants

Each of these functions takes a natural number as an argument specifying a precision,
and returns a mathematical constant evaluated to that precision.

• const_log2

• pi

• const_catalan

• inf

• ninf

• nan

The name of the constant pi has been shortened from mpfr_const_pi. The functions
inf and ninf return infinity and negative infinity, respectively.

The encoding of nan, used to represent the results of undefined computations such as
division by zero, is not unique even for a fixed precision. Applications should test for
undefined results using nan_p rather than by comparing a result to a hard coded nan

(Section D.14.5 [mpfr unary predicates], page 158).

D.14.7 mpfr functions with miscellaneous calling conventions

Some functions listed below don’t conform to any of the previously mentioned calling
conventions.

eq This is a ternary operator taking a triple (prec,(x,y)), where prec is a natural
number and x and y are mpfr numbers. It returns a result of (nil,nil) (i.e.,
true) if the numbers agree up to the specified precision measured in bits, and
returns nil otherwise.1

1 a potentially useful tool for algorithms concerned with numerical approximations despite
its inexplicable malignment in the mpfr documentation

Appendix D: External Libraries 159

urandomb This function takes a natural number specifying a precision and returns a uni-
formly distributed pseudo-random number of that precision between 0 and 1.

prec This function takes an mpfr number and returns a natural number as a result,
which is the precision of the argument in bits.

sin_cos This function takes an mpfr number z as an argument and returns a pair of
mpfr numbers (x,y) as a result, where x is the sine of z and y is the cosine.
The precisions of the results are the same as the precision of the argument.

D.14.8 mpfr conversion functions

The functions described in this section convert between mpfr numbers and character
strings, naturals, or standard IEEE floating point format (in their list representations).
Where these functions have similar or equivalent counterparts in the mpfr library’s native
API, the names have been changed for mnemonic reasons.

dbl2mp The input is a standard floating point number as in Section D.11 [math],
page 150. The result is an mpfr number equal to the input with a fixed precision,
currently set to 160 bits.

mp2dbl The input is an mpfr number, and the output is the best possible approximation
to it by a standard a double precision number.

str2mp The input is a pair (prec,s), where prec is a natural number specifying the
precision, and s is a string expressing a floating point number in C format. The
output is an mpfr number with the specified precision.

mp2str The input is an mpfr number, and the output is a character string expressing
the number in exponential decimal notation. Sufficiently many decimal digits
are included in the string to express the full precision.

nat2mp The input is a natural number represented as described in Section 2.4 [Repre-
sentation of Numeric and Textual Data], page 23, and the output is an mpfr

number of sufficient precision to express the natural number exactly.

The mp2str function enhances the native mpfr_get_str function by properly formatting
the output string rather than only listing the digits of the mantissa.

The nat2mp function does not rely on the mpfr native integer conversion functions, so
natural numbers with any number of bits up to MP_PREC_MAX can be used losslessly. There
is currently no conversion in the other direction.

D.14.9 mpfr exceptions

• A message of <’memory overflow’> is possible any time mpfr runs out of memory.

• A message of <’bad mpfr specification’> will be returned if an input argument
recognizably violates the required specification.

• The <’mpfr error’> message is returned in the event of any unexpected behavior or
irregular status from the API.

• The message of <’mpfr overflow’> can be cause by the nat2mp function if a natural
number has too many bits to be represented exactly as an mpfr number.

160 avram - a virtual machine code interpreter

D.14.10 Additional mpfr notes

The eq and urandomb functions depend not only on the mpfr library but on the gmp

library (http://ftp.gnu.org/gnu/gmp). It’s possible for them to be unavailable on a host
without gmp even if the rest of the mpfr library is properly configured.

The file mpfr.c in the avram source tree exports a couple of functions that may be
of use to C hackers interested in further development of avram with mpfr. The functions
avm_mpfr_of_list and avm_list_of_mpfr convert between the native representation for
mpfr numbers and the caching list representation used by avram (Section 3.1.4 [Type Con-
versions], page 72). This conversion is non-trivial because the numbers are not stored
contiguously.

D.15 lpsolve

This library interface exports functions to solve linear programming and mixed integer
programming problems using the lpsolve package documented at

http://lpsolve.sourceforge.net/5.5/.

Of the two linear programming solvers currently interfaced with avram, this one is believed
to be the more robust.

D.15.1 lpsolve calling conventions

The library is able to solve linear and mixed integer programming problems, depending
on which function is selected. The function to call the linear programming solver is of the
form

• library(’lpsolve’,’stdform’)

and the mixed integer programming functions are of the form

• library(’lpsolve’,’iform’)

• library(’lpsolve’,’bform’)

• library(’lpsolve’,’biform’)

The argument to the stdform function represents a triple (c,(m,y)), which has the same
interpretation described in Section D.4.1 [glpk input parameters], page 138. The arguments
to the iform, bform, and biform functions are tuples (i,(c,(m,y))) (b,(c,(m,y))),
and ((b,i),(c,(m,y))), respectively, where c, m, and y are as above, and

• b is a list of binary variable column indices

• i is a list of integer variable column indices

where column indices pertain to the constraint matrix, and are numbered from zero. Spec-
ifying some or all variables as integers directs the solver to seek only solutions in which
those variables have integer values, and specifying any as binary directs the solver to seek
only solutions in which those variables have values of zero or one. The IEEE floating point
representation is used for all variables regardless (Section D.11 [math], page 150).

Appendix D: External Libraries 161

D.15.2 lpsolve return values

If a feasible and optimal solution is found, a list of values for the variables is returned in
the form <(i,x)...>, where i is a natural number and x is a floating point number giving
the value of the i-th variable numbered from zero. Values of x equal to zero are omitted.

D.15.3 lpsolve errors

If any calling conventions are not followed, an exception is raised and a diagnostic mes-
sage of bad lpsolve problem specification is reported. If no feasible solution can be
found, no exception is raised but an empty list is returned.

D.16 rmath

A selection of mathematical and statistical functions from the GNU R math library has
a virtual code interface of the form

library(’rmath’,f)

where f is a character string derived from the name of a function in the C language API
described in the manual ‘R-exts.pdf’, available at http://www.r-project.org.

Every function in the library returns a real result in the form of Section D.11 [math],
page 150, but functions differ in the argument types. The arguments are tuples of real
numbers and booleans that also closely follow the native API as explained below.

D.16.1 rmath statistical functions

Functions for evaluating random draws, density, cumulative probability and inverse cu-
mulative probability are provided for some of the more frequently used probability distri-
butions, which are chi-squared, non-central chi-squared, exponential, lognormal, normal,
poisson, Student’s t, and uniform.

Each distribution is known by an abbreviated name and specified by one or two real
parameters as listed below. Names of distributions in this table form the stem of a library
function name. The names of the parameters such as mu and sigma are not explicitly
mentioned when invoking the functions, but are listed here for reference. The precise
definitions of the distribution functions and interpretations of these parameters can be
found in standard texts on probability and statistics.

chisq df
nchisq df, lambda
exp scale
lnorm logmean, logsd
norm mu, sigma
pois lambda
t n
unif a, b

The virtual code interface follows a naming convention similar to the native API, in
that function names beginning with r represent random draws from a distribution, with
the argument to the function being the parameters specifying the distribution. Functions

162 avram - a virtual machine code interpreter

in this first group return a random draw from a distribution described by a single real
parameter.

• rchisq

• rexp

• rpois

• rt

These next functions return random draws from distributions specified by a pair of param-
eters, (x,y).

• rnchisq

• rlnorm

• rnorm

• runif

Functions whose names begin with d evaluate the probability density of a distribution
at a given point. They require at least two real arguments, the first being the point whose
probability density is sought, and the remaining ones being the parameters that specify the
distribution. A boolean operand, which is nil for false and (nil,nil) for true, requests
the logarithm of the density when true.

Functions with names in the following group take a triple with two real operands and a
boolean, (x,(y,a)), and return a probabiity density.

• dchisq

• dexp

• dpois

• dt

The next functions pertain to distributions requiring two paramters to specify them, so they
take a quadruple with three real operands and a boolean, (x,(y,(z,a))).

• dnchisq

• dlnorm

• dnorm

• dunif

Functions whose names begin with p or q obtain cumulative probabilities or inverse cumu-
lative probabilities respectively for a specified distribution. They require one real operand to
identify the point whose probability or inverse probability is sought, and other real operands
to parameterize the distribution, as above. There are also two boolean operands. The first
is true in order to request a probability or inverse probability with respect to the lower
tail as opposed to the upper, and the other is true to indicate that probabilities are to be
expressed logarithmically.

The argument to these functions is a quadruple with two real operands and two booleans,
(x,(y,(a,b))).

• pchisq, qchisq

• pexp, qexp

Appendix D: External Libraries 163

• ppois, qpois

• pt, qt

The remaining functions pertain to distributions parameterized by two real operands. These
take a quintuple with three real operands and two booleans, (x,(y,(z,(a,b)))).

• pnchisq, qnchisq

• plnorm, qlnorm

• pnorm, qnorm

• punif, qunif

D.16.2 rmath miscellaneous functions

Some less frequently used real valued mathematical functions are also accessible by the
rmath library interface. The functions with names in this group take a single real operand.

gammafn lgammafn digamma
trigamma tetragamma pentagamma

The ones in this group take a pair of real operands (x,y).

beta lbeta bessel_j bessel_y

Those remaining take a triple of real operands (x,(y,z)).

bessel_i bessel_k

An alternative and better documented selection of Bessel functions is provided by the
bes library interface (Section D.1 [bes], page 135).

D.16.3 rmath exceptions

The only exceptional condition specific to the rmath library interface is associated with
the message <’bad rmath specification’>, which means that a tuple given as an argu-
ment has the wrong number or types of operands.

D.17 umf

Systems of equations described by sparse matrices (i.e., matrices containing mostly zeros)
arise in certain practical problems. The usual array representation in which zeros are explic-
itly stored would be prohibitive for large matrices occurring in many problems of interest. A
more sophisticated approach is used by the umf library to manage memory efficiently, which
is documented at http://www.cise.ufl.edu/research/sparse/SuiteSparse/current/SuiteSparse/UMFPA

A virtual code interface to functions for solving sparse systems of equations by these
methods is afforded by library functions of the form

library(’umf’,f)

where the library function name, f is a character string of the form tt_m_rrr.

• tt can be either di for real matrices, or zi for complex.

• m can be one of a, t, or c for solving a system given either by a matrix, its transpose,
or its conjugate transpose, respectively, corresponding to mnemonics A, Aat and At

used in the C language API.

164 avram - a virtual machine code interpreter

• rrr is either trp or col, to indicate a sparse matrix expressed either as a list of triples,
or in packed column form, as documented below.

The complete set of function names for this library interface is as follows.

di_a_trp di_a_col zi_a_trp zi_a_col
di_t_trp di_t_col zi_t_trp zi_t_col

zi_c_trp zi_c_col

Not all combinations are represented, because the conjugate transpose is relevant only to
complex matrices.

D.17.1 umf input parameters

For a square matrix A and a column vector b, the umf functions find the solution x to
the matrix equation M x = b, where M is either A, the transpose of A, or its conjugate
transpose. As noted above, the choice is determined by whether the the function name is
of the form *_a_*, *_t_*, or *_c_* respectively.

The argument to any of these functions is a pair (A,b), where A represents the matrix
mentioned above and b represents the column vector.

The parameter b is required to be a list of numbers whose length matches the num-
ber of rows in the matrix. The numbers are either real numbers for the di_* functions
(Section D.11 [math], page 150), or complex for the zi_* functions (Section D.2 [complex],
page 137).

There is a choice of representations for the parameter A, depending on whether the
function being called is one of the *_trp functions or one of the *_col functions.

For the *_trp functions, A is represented as a non-empty list of triples <((i,j),v)...>,
where each item of the list corresponds to a non-zero entry in the matrix.

• The parameters i and j are natural numbers as in Section 2.4 [Representation of Nu-
meric and Textual Data], page 23.

• The value v is a real number for the di_*_trp functions or a complex number for the
zi_*_trp functions.

• The presence of a triple ((i,j),v) in the list signifies that the i,j-th entry in the matrix
A (numbered from zero) has a value of v.

For the *_col functions, the representation of A is more complicated but has a slight
advantage in memory usage. It may also have an advantage in speed unless more time is
wasted on the virtual side transforming a matrix to this representation than it saves.

In this case, A is represented by a triple of the form ((p,i),v). The parameters p and
i are lists of natural numbers. The parameter v is a list of real numbers for the di_*_
col functions and complex numbers for the zi_*_col functions. They have the following
interpretations.

• v is the list of non-zero entries in the matrix in column major order.

• i has the same length as v, and each item of i is the row index of the corresponding
item in v, numbered from zero.

• p has the length of the number of columns in the matrix, and each item identifies the
starting position of a column in v and i, numbered from zero.

Appendix D: External Libraries 165

The first item of p is always zero. Further explanation of this format in terms of an array rep-
resentation can be found in the file ‘UMFPACK_UserGuide.pdf’, available from the umf library
home page at http://www.cise.ufl.edu/research/sparse/SuiteSparse/current/SuiteSparse/.

D.17.2 umf output

If no exception occurs, the solution x to the matrix equation M x = b noted previously
will be returned if one exists.

The solution is represented as either a list of real numbers as in Section D.11 [math],
page 150, or a list of complex numbers as in Section D.2 [complex], page 137. Real num-
bers are returned by the di_* functions, and complex numbers are returned by the zi_*
functions.

If no solution exists due to a singular matrix, an empty list is returned. The lack of a
solution isn’t treated as an exceptional condition.

D.17.3 umf exceptions

If an exceptional condition arises from the use of this library, one of the following lists
of character strings may be returned as the function result.

• <’memory overflow’> means the library function ran out of memory, most likely due
to a matrix being too large.

• <’bad umf specification’> means an input parameter didn’t conform to the appro-
priate format described above (Section D.17.1 [umf input parameters], page 164)

• <’umf error’> covers any unexpected behavior or abnormal status returned by any
function from the C language API.

For the *_trp functions. A non-square matrix will cause the second exception above.
For the *_col functions, a non-square matrix will cause the third exception or cause an
empty result to be returned.

The exceptions noted at the beginning of this section (Appendix D [External Libraries],
page 135) are also possible.

D.17.4 Additional umf notes

The C language API to umf provides very many less frequently used features that are
not part of the virtual code interface, some of which could be added by minor modifications
to the file ‘umf.c’ in the avram source tree.

A set of dl_* and zl_* functions orthogonal to those presently accessible would enable
matrices having billions of rows or columns by using long integers, but memory requirements
on the virtual code side for problems of that scale are probably prohibitive for the foreseeable
future.

166 avram - a virtual machine code interpreter

GNU GENERAL PUBLIC LICENSE 167

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright c© 1989, 1991 Free Software Foundation, Inc.
675 Mass Ave, Cambridge, MA 02139, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public License is intended to guarantee your
freedom to share and change free software—to make sure the software is free for all its users.
This General Public License applies to most of the Free Software Foundation’s software
and to any other program whose authors commit to using it. (Some other Free Software
Foundation software is covered by the GNU Library General Public License instead.) You
can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service if you wish), that you receive source code or
can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

168 avram - a virtual machine code interpreter

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

1. This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this General
Public License. The “Program”, below, refers to any such program or work, and a
“work based on the Program” means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term “modification”.) Each licensee is
addressed as “you”.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work based
on the Program (independent of having been made by running the Program). Whether
that is true depends on what the Program does.

2. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any warranty; and give
any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

3. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright notice
and a notice that there is no warranty (or else, saying that you provide a warranty)
and that users may redistribute the program under these conditions, and telling
the user how to view a copy of this License. (Exception: if the Program itself is
interactive but does not normally print such an announcement, your work based
on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based on the Program,
the distribution of the whole must be on the terms of this License, whose permissions

GNU GENERAL PUBLIC LICENSE 169

for other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

4. You may copy and distribute the Program (or a work based on it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following:

a. Accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distri-
bution, a complete machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

c. Accompany it with the information you received as to the offer to distribute cor-
responding source code. (This alternative is allowed only for noncommercial dis-
tribution and only if you received the program in object code or executable form
with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifi-
cations to it. For an executable work, complete source code means all the source code
for all modules it contains, plus any associated interface definition files, plus the scripts
used to control compilation and installation of the executable. However, as a spe-
cial exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

5. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

6. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Program (or any work based on the Program), you

170 avram - a virtual machine code interpreter

indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

7. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein. You are
not responsible for enforcing compliance by third parties to this License.

8. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For
example, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely from distribution
of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system, which
is implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

9. If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

10. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and “any later version”, you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify a
version number of this License, you may choose any version ever published by the Free
Software Foundation.

GNU GENERAL PUBLIC LICENSE 171

11. If you wish to incorporate parts of the Program into other free programs whose distri-
bution conditions are different, write to the author to ask for permission. For software
which is copyrighted by the Free Software Foundation, write to the Free Software Foun-
dation; we sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

12. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLI-
CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS
IS” WITHOUTWARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THEQUALITY AND PERFORMANCE OF THE PROGRAM ISWITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

13. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

172 avram - a virtual machine code interpreter

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to
the public, the best way to achieve this is to make it free software which everyone can
redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and an idea of what it does.
Copyright (C) 19yy name of author

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an
interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type ‘show w’. This is free software, and you are welcome
to redistribute it under certain conditions; type ‘show c’
for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of
the General Public License. Of course, the commands you use may be called something
other than ‘show w’ and ‘show c’; they could even be mouse-clicks or menu items—whatever
suits your program.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright
interest in the program ‘Gnomovision’
(which makes passes at compilers) written
by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

GNU GENERAL PUBLIC LICENSE 173

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the
GNU Library General Public License instead of this License.

174 avram - a virtual machine code interpreter

Function Index 175

Function Index

*
*avm_matrix_of_list . 75

*avm_matrix_reflection . 79

*avm_matrix_transposition 78

*avm_packed_matrix_of_list 77

*avm_row_number_array . 79

*avm_standard_unstrung . 86

*avm_unstrung . 86

*avm_value_of_list . 72

*avm_vector_of_list . 74

A
avm_anticipate . 82

avm_apply . 84

avm_area. 69

avm_binary_comparison . 81

avm_binary_membership . 71

avm_byte_transduce . 100

avm_character_code . 85

avm_character_representation 85

avm_clearjmp . 119

avm_comparison . 80

avm_concatenation . 71

avm_copied . 66

avm_count_apply . 84

avm_count_branches . 82

avm_count_chrcodes . 87

avm_count_cmdline . 99

avm_count_compare . 80

avm_count_decons . 81

avm_count_exmodes . 100

avm_count_fnames . 89

avm_count_formin . 92

avm_count_formout . 96

avm_count_instruct . 110

avm_count_libfuns . 111

avm_count_listfuns . 70

avm_count_lists . 66

avm_count_matcon . 80

avm_count_mwrap . 116

avm_count_portals . 106

avm_count_ports . 107

avm_count_profile . 105

avm_count_rawio . 90

avm_date_representation 88

avm_debug_memory . 116

avm_deconstruction . 81

avm_default_command_line 96

avm_disable_interaction 99

avm_dispose . 66

avm_dispose_branch . 83

avm_dispose_branch_queue 83

avm_dispose_rows . 79

avm_distribution . 71

avm_dont_debug_memory . 116

avm_dont_manage_memory 116

avm_enqueue . 67

avm_enqueue_branch . 82

avm_entries . 103

avm_environment . 98

avm_error . 102

avm_fatal_io_error . 102

avm_free_managed_memory 117

avm_have_library_call . 111

avm_initialize_apply. 84

avm_initialize_branches 82

avm_initialize_chrcodes 87

avm_initialize_cmdline . 98

avm_initialize_compare . 80

avm_initialize_decons . 81

avm_initialize_exmodes 100

avm_initialize_fnames . 89

avm_initialize_formin . 92

avm_initialize_formout . 96

avm_initialize_instruct 110

avm_initialize_libfuns 111

avm_initialize_listfuns 70

avm_initialize_lists. 66

avm_initialize_matcon . 79

avm_initialize_mwrap. 116

avm_initialize_portals 106

avm_initialize_ports. 106

avm_initialize_profile 104

avm_initialize_rawio. 90

avm_interact . 99

avm_internal_error . 103

avm_join. 67

avm_length . 68

avm_library_call . 111

avm_line_map . 100

avm_list_of_matrix . 76

avm_list_of_packed_matrix 78

avm_list_of_value . 73

avm_list_of_vector . 74

avm_load. 92

176 avram - a virtual machine code interpreter

avm_manage_memory . 116

avm_measurement . 72

avm_membership . 71

avm_multiscanned . 86

avm_natural . 69

avm_new_portal . 105

avm_newport . 106

avm_non_fatal_io_error 103

avm_output . 93

avm_output_as_directed . 94

avm_path_name . 88

avm_path_representation 88

avm_position . 69

avm_preamble_and_contents 91

avm_print_list . 69

avm_prior_to_version. 101

avm_program_name . 102

avm_prompt . 87

avm_put_bytes . 95

avm_received_list . 89

avm_reclamation_failure 103

avm_recoverable_anticipate 82

avm_recoverable_apply . 84

avm_recoverable_area. 70

avm_recoverable_enqueue 70

avm_recoverable_enqueue_branch 83

avm_recoverable_interact 100

avm_recoverable_join. 69

avm_recoverable_length . 70

avm_recoverable_natural 70

avm_recoverable_prompt . 87

avm_recoverable_standard_strung 86

avm_recoverable_strung . 86

avm_reschedule . 110

avm_retire . 109

avm_reversal . 71

avm_scanned_list . 86

avm_scheduled . 109

avm_seal . 105

avm_send_list . 90

avm_set_program_name. 102

avm_set_version . 100

avm_setjmp . 119

avm_setnonjump . 120

avm_sever . 106

avm_standard_character_code 85

avm_standard_character_representation 85

avm_standard_strung . 85

avm_strung . 85

avm_tally . 104

avm_trace_interaction . 99

avm_transposition . 71

avm_turn_off_stderr . 115

avm_turn_off_stdout . 115

avm_turn_on_stderr . 115

avm_turn_on_stdout . 115

avm_version . 101

avm_warning . 102

Concept Index 177

Concept Index

A
absolute path . 28

adaptive integration . 142

annotations . 41, 103

API . 65

appending to files . 30

apply . 40, 58

‘argz.h’ . 13, 98

arrays. 73

ask-to-overwrite command line option 7

asprintf . 151

assign . 45

assignment . 45, 56

asynchronous circuits . 51

author . 10, 51, 55

autoconf . 112, 114

automake . 112

avm_current_directory_prefix 88

avm_packet . 106

avm_parent_directory_prefix 88

avm_path_separator . 88

avm_path_separator_character 88

avm_root_directory_prefix 88

AVMINPUTS . 10, 13, 16

B
backward compatability 85, 111

backward compatibility. 13

bad bessel function call . 136

bad character in file name 12, 89

bad derivative specification 140

bad integral specification . 142

bad kinsol specification . 146

bad lapack specification . 149

bad matrix specification . 135

bad minpack specification 154

bad mpfr specification . 159

bad rmath specification . 163

bad umf specification . 165

bad vector specification . 135

bessel functions . 136, 163

bit strings . 21

booleans . 24, 28

bu . 44, 49, 58

bug reports. 10

bugs . 16

byte-transducer command line option . . 6, 24, 26

C
C++ . 65, 113

c++filt utility . 113

can’t close . 11, 95, 104

can’t emulate version . 13

can’t read . 10

can’t spawn . 11

can’t write 10, 90, 93, 95, 104

cat . 15, 51, 52

character codes . 22, 23, 27

character encodings . 84

character representations . 123

character strings 23, 24, 26, 55, 84

checksums. 23

chmod . 15

choice-of-output command line option 6, 25

Cholesky decomposition 148, 150

coding standards . 114

column major order 76, 77, 78, 79, 164

combinators . 43

command line 8, 27, 28, 29, 31, 32, 96

compare . 46, 80

compare combinator . 152, 158

complex numbers . 137

compose . 37, 39

compression . 42

concatenation . 51, 52, 71

concurrency . 108

conditional . 37, 39

conjugate transpose . 163

cons . 19, 34, 54, 55

constant . 37, 39

constrained non-linear optimization 145

constrained optimization . 155

constraints . 139, 147

convergence . 141

copyright . 114

correlation . 150

counter . 68, 106

counter overflow . 11

counter overflow . 89

couple . 37

covariance matrix . 61, 150

cumulative probability . 162

current time . 27

178 avram - a virtual machine code interpreter

D
date . 27

deadlock . 32, 62, 99

Debian . 113, 155

debugging . 59

deconstruction . 21, 42, 58, 81

default file extensions . 7

default-to-stdin command line option 7, 15

denotational semantics . 37

diagnostics . 9

dimensionality reduction . 150

discontiguous field . 80

distribute . 53

distributed implementation 21, 49

distributions . 161

E
eigenvectors . 148

email . 10

emulation . 3

emulation command line option 3, 13

environment 1, 10, 13, 16, 27, 28, 98

eof. 62

equality . 34, 40, 46

error messages. 9, 56, 70, 102

exceptions . 16, 35, 53, 57, 70

executable files . 15, 93

exp_popen . 11, 31

expect . 11

EXT command line option 7, 16

extensions . 7, 14

external-libraries . 3

F
facilitator . 108

fan . 43

feclearexcept . 152

field . 43, 46, 56

file extensions . 14

file format . 22, 25

file name extensions . 7, 14

file name suffixes . 7, 14

file names . 10, 28, 88

file parameters . 8

filter . 48

filter mode . 4, 14, 24

flag . 106

flat . 53

fold . 49

force-text-input command line option 4, 25

Fortran . 76, 110, 113, 147

Fourier transforms . 137, 143

ftp . 62

functional programming 1, 3, 43, 47, 59

G
gamma functions . 156, 163

generalized least squares 149, 150

gmp library . 160

GNU R . 61

GNU Scientific Library . 140

grammar . 36

guard . 57, 58

H
harminv . 143

Hartley transforms . 137

head field . 65

header file . 112, 155

help . 3

help command line option 3, 14

Hermitian matrix . 149

hired . 39, 58

home page . 3

I
I need avram linked with . 13

i/o errors . 10

identifiers . 37

identity . 37, 58

identity function . 20

imperative programming. 45, 47, 59

impetus. 108

improper integrals . 143

include directives . 112

infinite series . 141

infinite streams. 24, 26

infinite sum . 141

input files . 8

insert . 50, 130

Concept Index 179

instruction_node . 108

interactive applications 7, 14, 87

interactive command line option 7, 30

internal error . 117

internal errors . 10, 16

interpretation . 108

invalid asprintf specifier . 151

invalid assignment . 12

invalid comparison . 12

invalid concatenation . 12

invalid deconstruction . 12

invalid distribution . 12

invalid file name. 89

invalid file specification 12, 95

invalid membership . 12

invalid output preamble format 12, 93

invalid profile identifier 12, 104

invalid raw file format 12, 90, 92

invalid recursion . 12

invalid text format 11, 93, 95

invalid text format . 151

invalid transpose . 12

invalid value . 73, 135, 151

isolate . 40, 45

iterate . 47, 49

J
Jacobian . 145, 147, 154, 155

jail . 4

Java . 2

L
lapack error . 150

least squares 143, 149, 150, 154

left . 37, 42, 56

Levin u-transform . 141

libexpect . 11

library interfac source file 112

library interface header file 112

library modules . 37

licensing restrictions . 114

line breaks . 33, 91, 93

line-map command line option 6, 24, 26

linear algebra. 147

linear programming . 138, 160

lists 19, 20, 23, 24, 35, 47, 52, 65

LU decomposition . 75

M
map . 48

map-to-each-file command line option 7, 29

mapcur . 52

matrices . 74

matrix memory map . 77

member . 46, 71

memory overflow . 11

memory overflow . 89

meta . 37, 44

minpack error . 155

missing value . 73, 135, 151

mixed integer programming 160

mnemonics . 37

modes . 4, 24

mpfr error. 159

multiple -.EXT options . 14

multiple character encodings 84

multiple version specifications 13

multivariate normal distrubution 61

N
nan . 152, 158

native integer arithmetic 42, 72

naturals . 24, 28, 69

nil . 19, 23, 37

nm utility . 113

non-adaptive integration . 142

non-convergence . 146

non-linear optimization 145, 154

non-local jumps . 118, 120

non-standard installation . 15

not writing file name . 95

note . 41, 42

null character in file name 12, 89

numerical differentiation . 140

numerical integration . 141

O
operator precedence . 36

operator properties . 35

optimization . 145

overflow . 11, 42, 66, 70

180 avram - a virtual machine code interpreter

P
packed arrays. 77

pairs . 24

pairwise . 49, 129

parameter mode. 5, 7, 14, 24, 27

parameterized command line option 8

path separators . 9

paths . 13, 15, 16, 28, 30

pointer equality . 34, 80

pointers . 2, 34, 64, 80, 81

port . 105

port_pair . 105

portability . 115, 120

portal . 105

preamble 23, 25, 26, 28, 30, 90, 91, 93

precedence . 36

precision . 156, 157

predicates . 46, 151

printing algorithm . 21, 26

probability distributions . 161

‘profile.h’ . 103

‘profile.txt’ . 15, 41

prompts. 31

properties . 35

Q
queues . 21, 67, 81, 82

quiet command line option . 7

R
random number generators 114

random numbers . 152, 159

raw-mode command line option 25

raw-output command line option 6

raw-output command line option 25

re-entrancy . 155

recur . 44, 56

recursion . 43, 47, 49, 52, 81

reduce . 48

reductions . 104

refer . 44

reference count . 64, 67

relative path . 28

replace . 45, 56, 130

reverse . 52

right. 37, 42, 49, 56

rounding . 156

row major order . 79

run time errors . 9

S

score . 103

script . 15

search paths . 13, 16

search paths not supported 13, 97

security . 14, 95, 98

segmentation fault 66, 68, 73, 74, 78, 79, 141,

142, 151

semantic function . 36, 55

setjmp . 119, 143

shell . 8, 11, 30

shell script . 15, 16

silly . 35

silly-me. 55

single precision . 147

singular value decomposition 148

slow convergence . 142

sort . 49

sparse matrices . 163

sparse matrix . 139

spawning processes 11, 31, 32, 65

standard character encoding 85

standard input 3, 4, 7, 14, 24, 25, 26, 30, 89

standard library . 44

standard output 25, 26, 30, 69, 89, 95

standard prelude. 37

state dependence . 114

state transition function 50, 52

statistical distributions . 161

step command line option 8, 30

storage locations . 45

strerror 10, 90, 94, 95, 102, 104

strings . 23, 24, 55

strtod. 151

symmetric matrices . 148

symmetric matrix . 75

syntax . 36

system time . 27

Concept Index 181

T
tail field . 65

text files . 23, 25, 28

threads . 65, 109

time stamp . 27

tolerance . 142, 146, 154

trace command line option . 8

transfer. 50

transition . 50, 132

transpose . 53, 56, 71

trees . 20, 21, 23, 54, 64, 82

triangular matrices . 148

triangular matrix . 75, 77

trigonometric functions. 150

Turing equivalence . 35

type tags . 41

types . 24

U
ulimit . 11

umf error . 165

undefined expressions . 34, 55

universal function . 84

universal quantification 34, 54

universality . 35, 63

Unix . 1, 2, 9, 15, 27, 33

unknown date . 88

unparameterized command line option 6, 25

unrecognized combinator 12, 63

unrecognized function name 135

unrecognized library . 135

unrecognized option . 13

unsupported hook . 12, 13, 63

url . 3

V
value field . 72

variables . 40

vectors . 73

verbosity setting . 114

version . 41

versions . 13, 100

W
web page . 3

weight . 42

wild cards . 61

wish . 15

writing file name. 95

182 avram - a virtual machine code interpreter

