Additional-lapack-notes.html 3.5 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667
  1. <html lang="en">
  2. <head>
  3. <title>Additional lapack notes - avram - a virtual machine code interpreter</title>
  4. <meta http-equiv="Content-Type" content="text/html">
  5. <meta name="description" content="avram - a virtual machine code interpreter">
  6. <meta name="generator" content="makeinfo 4.13">
  7. <link title="Top" rel="start" href="index.html#Top">
  8. <link rel="up" href="lapack.html#lapack" title="lapack">
  9. <link rel="prev" href="lapack-exceptions.html#lapack-exceptions" title="lapack exceptions">
  10. <link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
  11. <meta http-equiv="Content-Style-Type" content="text/css">
  12. <style type="text/css"><!--
  13. pre.display { font-family:inherit }
  14. pre.format { font-family:inherit }
  15. pre.smalldisplay { font-family:inherit; font-size:smaller }
  16. pre.smallformat { font-family:inherit; font-size:smaller }
  17. pre.smallexample { font-size:smaller }
  18. pre.smalllisp { font-size:smaller }
  19. span.sc { font-variant:small-caps }
  20. span.roman { font-family:serif; font-weight:normal; }
  21. span.sansserif { font-family:sans-serif; font-weight:normal; }
  22. --></style>
  23. </head>
  24. <body>
  25. <div class="node">
  26. <a name="Additional-lapack-notes"></a>
  27. <p>
  28. Previous:&nbsp;<a rel="previous" accesskey="p" href="lapack-exceptions.html#lapack-exceptions">lapack exceptions</a>,
  29. Up:&nbsp;<a rel="up" accesskey="u" href="lapack.html#lapack">lapack</a>
  30. <hr>
  31. </div>
  32. <h4 class="subsection">D.10.3 Additional <code>lapack</code> notes</h4>
  33. <p>The functions <code>dgesdd</code> and <code>zgesdd</code> are an effective
  34. dimensionality reduction technique for a large database of time
  35. <a name="index-dimensionality-reduction-760"></a>series. A set of basis vectors can be computed once for the database,
  36. and then any time series in the database can be expressed as a linear
  37. combination thereof. To the extent that the data embody any redundant
  38. information, an approximate reconstruction of an individual series
  39. from the database will require fewer coefficients (maybe far fewer) in
  40. terms of the basis than original length of the series.
  41. <p>The library functions <code>dgelsd</code> and <code>zgelsd</code> are good for
  42. <a name="index-least-squares-761"></a>finding least squares fits to empirical data. If the matrix parameter
  43. <var>a</var> is interpreted as a list of inputs and the vector parameter
  44. <var>b</var> as the list of corresponding output data from some unknown
  45. linear function of <var>n</var> variables <var>f</var>, then <var>x</var> is the list
  46. of coefficients whereby <var>f</var> achieves the optimum fit to the data
  47. in the least squares sense.
  48. <p>These functions solve a special case of the problem solved by
  49. <a name="index-generalized-least-squares-762"></a><a name="index-least-squares-763"></a><code>dggglm</code> and <code>zggglm</code> where the parameter <var>B</var> is the
  50. identity matrix. For the latter functions, the output vector <var>y</var>
  51. can be interpreted as a measure of the error, and <var>B</var> can be
  52. chosen to express unequal costs for errors at different points in
  53. the fitted function.
  54. <p>Cholesky decompositions obtained by <code>dpptrf</code> and <code>zpptrf</code>
  55. <a name="index-Cholesky-decomposition-764"></a>are useful for generating correlated random numbers. A population of
  56. vectors of uncorrelated standard normally distributed random numbers
  57. can be made to exhibit any correlations to order by multiplying all of
  58. <a name="index-correlation-765"></a>the vectors by the lower Cholesky factor of the desired covariance
  59. <a name="index-covariance-matrix-766"></a>matrix.
  60. </body></html>