12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667 |
- <html lang="en">
- <head>
- <title>Additional lapack notes - avram - a virtual machine code interpreter</title>
- <meta http-equiv="Content-Type" content="text/html">
- <meta name="description" content="avram - a virtual machine code interpreter">
- <meta name="generator" content="makeinfo 4.13">
- <link title="Top" rel="start" href="index.html#Top">
- <link rel="up" href="lapack.html#lapack" title="lapack">
- <link rel="prev" href="lapack-exceptions.html#lapack-exceptions" title="lapack exceptions">
- <link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
- <meta http-equiv="Content-Style-Type" content="text/css">
- <style type="text/css"><!--
- pre.display { font-family:inherit }
- pre.format { font-family:inherit }
- pre.smalldisplay { font-family:inherit; font-size:smaller }
- pre.smallformat { font-family:inherit; font-size:smaller }
- pre.smallexample { font-size:smaller }
- pre.smalllisp { font-size:smaller }
- span.sc { font-variant:small-caps }
- span.roman { font-family:serif; font-weight:normal; }
- span.sansserif { font-family:sans-serif; font-weight:normal; }
- --></style>
- </head>
- <body>
- <div class="node">
- <a name="Additional-lapack-notes"></a>
- <p>
- Previous: <a rel="previous" accesskey="p" href="lapack-exceptions.html#lapack-exceptions">lapack exceptions</a>,
- Up: <a rel="up" accesskey="u" href="lapack.html#lapack">lapack</a>
- <hr>
- </div>
- <h4 class="subsection">D.10.3 Additional <code>lapack</code> notes</h4>
- <p>The functions <code>dgesdd</code> and <code>zgesdd</code> are an effective
- dimensionality reduction technique for a large database of time
- <a name="index-dimensionality-reduction-760"></a>series. A set of basis vectors can be computed once for the database,
- and then any time series in the database can be expressed as a linear
- combination thereof. To the extent that the data embody any redundant
- information, an approximate reconstruction of an individual series
- from the database will require fewer coefficients (maybe far fewer) in
- terms of the basis than original length of the series.
- <p>The library functions <code>dgelsd</code> and <code>zgelsd</code> are good for
- <a name="index-least-squares-761"></a>finding least squares fits to empirical data. If the matrix parameter
- <var>a</var> is interpreted as a list of inputs and the vector parameter
- <var>b</var> as the list of corresponding output data from some unknown
- linear function of <var>n</var> variables <var>f</var>, then <var>x</var> is the list
- of coefficients whereby <var>f</var> achieves the optimum fit to the data
- in the least squares sense.
- <p>These functions solve a special case of the problem solved by
- <a name="index-generalized-least-squares-762"></a><a name="index-least-squares-763"></a><code>dggglm</code> and <code>zggglm</code> where the parameter <var>B</var> is the
- identity matrix. For the latter functions, the output vector <var>y</var>
- can be interpreted as a measure of the error, and <var>B</var> can be
- chosen to express unequal costs for errors at different points in
- the fitted function.
- <p>Cholesky decompositions obtained by <code>dpptrf</code> and <code>zpptrf</code>
- <a name="index-Cholesky-decomposition-764"></a>are useful for generating correlated random numbers. A population of
- vectors of uncorrelated standard normally distributed random numbers
- can be made to exhibit any correlations to order by multiplying all of
- <a name="index-correlation-765"></a>the vectors by the lower Cholesky factor of the desired covariance
- <a name="index-covariance-matrix-766"></a>matrix.
- </body></html>
|