jk.c 181 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706
  1. #include "version.h"
  2. #include <ctype.h>
  3. #include <dlfcn.h>
  4. #include <errno.h>
  5. #include <ffi.h>
  6. #include <gc.h>
  7. #include <limits.h>
  8. #include <math.h>
  9. #include <pcre.h>
  10. #include <setjmp.h>
  11. #include <stdbool.h>
  12. #include <stddef.h>
  13. #include <stdint.h>
  14. #include <stdio.h>
  15. #include <stdlib.h>
  16. #include <string.h>
  17. #include <sys/wait.h>
  18. #include <time.h>
  19. #include <unistd.h>
  20. jmp_buf interactive_checkpoint;
  21. bool is_interactive;
  22. size_t max_rec_depth = 1000;
  23. size_t rec_depth = 0;
  24. void *malloc_checked(size_t size)
  25. {
  26. void *p;
  27. if (!(p = GC_MALLOC(size)))
  28. abort();
  29. memset(p, 0, size);
  30. return p;
  31. }
  32. void *malloc_checked_atomic(size_t size)
  33. {
  34. void *p;
  35. if (!(p = GC_malloc_atomic(size)))
  36. abort();
  37. memset(p, 0, size);
  38. return p;
  39. }
  40. void *malloc_checked_uncollectable(size_t size)
  41. {
  42. void *p;
  43. if (!(p = GC_malloc_uncollectable(size)))
  44. abort();
  45. memset(p, 0, size);
  46. return p;
  47. }
  48. void *realloc_checked(void *p, size_t size)
  49. {
  50. if (!(p = GC_REALLOC(p, size)))
  51. abort();
  52. return p;
  53. }
  54. char *strdup_checked(char *s)
  55. {
  56. char *p = GC_strdup(s);
  57. if (!p)
  58. abort();
  59. return p;
  60. }
  61. typedef struct
  62. {
  63. void **data;
  64. size_t length;
  65. } list_t;
  66. list_t *list_new(void)
  67. {
  68. list_t *list = malloc_checked(sizeof(list_t));
  69. list->data = NULL;
  70. list->length = 0;
  71. return list;
  72. }
  73. list_t *list_newk(size_t k)
  74. {
  75. list_t *list = malloc_checked(sizeof(list_t));
  76. list->data = malloc_checked(k * sizeof(void *));
  77. list->length = k;
  78. return list;
  79. }
  80. list_t *list_copy(list_t *l)
  81. {
  82. list_t *list = list_newk(l->length);
  83. for (size_t i = 0; i < l->length; i++)
  84. list->data[i] = l->data[i];
  85. return list;
  86. }
  87. void list_push(list_t *l, void *v)
  88. {
  89. size_t i = l->length++;
  90. l->data = realloc_checked(l->data, l->length * sizeof(void *));
  91. l->data[i] = v;
  92. }
  93. void *list_pop(list_t *l)
  94. {
  95. if (!l->data)
  96. return NULL;
  97. size_t i = --l->length;
  98. void *v = l->data[i];
  99. l->data[i] = NULL;
  100. if (!l->length)
  101. {
  102. GC_FREE(l->data);
  103. l->data = NULL;
  104. }
  105. else
  106. l->data = realloc_checked(l->data, l->length * sizeof(void *));
  107. return v;
  108. }
  109. void *list_index(list_t *l, ssize_t index)
  110. {
  111. if (!l->data)
  112. return NULL;
  113. if (index < 0)
  114. index += ((ssize_t)l->length);
  115. if (index < 0 || index >= l->length)
  116. return NULL;
  117. return l->data[index];
  118. }
  119. void list_set(list_t *l, ssize_t index, void *v)
  120. {
  121. if (!l->data)
  122. return;
  123. if (index < 0)
  124. index += ((ssize_t)l->length);
  125. if (index < 0 || index >= l->length)
  126. return;
  127. l->data[index] = v;
  128. }
  129. typedef struct
  130. {
  131. char *str;
  132. size_t size;
  133. } buffer_t;
  134. buffer_t *buffer_new(void)
  135. {
  136. buffer_t *buf = malloc_checked(sizeof(buffer_t));
  137. buf->str = NULL;
  138. buf->size = 0;
  139. return buf;
  140. }
  141. void buffer_append(buffer_t *buf, char c)
  142. {
  143. buf->size++;
  144. void *p = malloc_checked_atomic(sizeof(char) * buf->size);
  145. if (buf->str)
  146. {
  147. memcpy(p, buf->str, buf->size - 1);
  148. GC_FREE(buf->str);
  149. }
  150. buf->str = p;
  151. buf->str[buf->size - 1] = c;
  152. }
  153. char *buffer_read(buffer_t *buf)
  154. {
  155. if (buf->size == 0 || buf->str[buf->size - 1])
  156. buffer_append(buf, 0);
  157. char *str = buf->str;
  158. GC_FREE(buf);
  159. return str;
  160. }
  161. void buffer_append_str(buffer_t *buf, char *s)
  162. {
  163. for (size_t i = 0; i < strlen(s); i++)
  164. buffer_append(buf, s[i]);
  165. }
  166. typedef struct
  167. {
  168. enum token_tag_t
  169. {
  170. T_PUNCT,
  171. T_LPAR,
  172. T_RPAR,
  173. T_NAME,
  174. T_NUMBER,
  175. T_BNUMBER,
  176. T_QUOTE
  177. } tag;
  178. char *text;
  179. } token_t;
  180. typedef struct
  181. {
  182. char *source;
  183. size_t len;
  184. size_t pos;
  185. list_t *tokens;
  186. } lexer_t;
  187. lexer_t *lexer_new(void)
  188. {
  189. lexer_t *lexer = malloc_checked(sizeof(lexer_t));
  190. return lexer;
  191. }
  192. char lexer_lookahead(lexer_t *lexer, size_t offset)
  193. {
  194. size_t pos = lexer->pos + offset;
  195. if (pos >= lexer->len)
  196. return 0;
  197. return lexer->source[pos];
  198. }
  199. char lexer_eat(lexer_t *lexer)
  200. {
  201. if (lexer->pos >= lexer->len)
  202. return 0;
  203. return lexer->source[lexer->pos++];
  204. }
  205. void lexer_push_token(lexer_t *lexer, enum token_tag_t tag, char *text)
  206. {
  207. token_t *token = malloc_checked(sizeof(token_t));
  208. token->tag = tag;
  209. token->text = text;
  210. list_push(lexer->tokens, token);
  211. }
  212. list_t *guards;
  213. typedef struct
  214. {
  215. jmp_buf lb;
  216. size_t rec_depth;
  217. } guard_t;
  218. guard_t *guard()
  219. {
  220. guard_t *g = malloc_checked_atomic(sizeof(guard_t));
  221. g->rec_depth = rec_depth;
  222. list_push(guards, g);
  223. return g;
  224. }
  225. guard_t *guarding() { return list_index(guards, -1); }
  226. void unguard() { GC_FREE(list_pop(guards)); }
  227. void fatal(char *s)
  228. {
  229. guard_t *g = guarding();
  230. if (g)
  231. {
  232. rec_depth = g->rec_depth;
  233. longjmp(g->lb, 1);
  234. }
  235. fprintf(stderr, "|%s error\n", s);
  236. if (is_interactive)
  237. {
  238. rec_depth = 0;
  239. longjmp(interactive_checkpoint, 1);
  240. }
  241. exit(1);
  242. }
  243. void lexer_error(lexer_t *lexer, char *s) { fatal(s); }
  244. void lexer_lex_number(lexer_t *lexer, bool is_negative)
  245. {
  246. buffer_t *buf = buffer_new();
  247. if (is_negative)
  248. buffer_append(buf, '-');
  249. if (lexer_lookahead(lexer, 0) == '.')
  250. {
  251. buffer_append(buf, lexer_eat(lexer));
  252. if (!(isdigit(lexer_lookahead(lexer, 0))))
  253. lexer_error(lexer, "trailing-dot");
  254. }
  255. do
  256. {
  257. buffer_append(buf, lexer_eat(lexer));
  258. if (lexer_lookahead(lexer, 0) == '`' && isdigit(lexer_lookahead(lexer, 1)))
  259. lexer_eat(lexer);
  260. } while (isdigit(lexer_lookahead(lexer, 0)));
  261. if (lexer_lookahead(lexer, 0) == '.')
  262. {
  263. buffer_append(buf, lexer_eat(lexer));
  264. if (!(isdigit(lexer_lookahead(lexer, 0))))
  265. lexer_error(lexer, "trailing-dot");
  266. do
  267. {
  268. buffer_append(buf, lexer_eat(lexer));
  269. } while (isdigit(lexer_lookahead(lexer, 0)));
  270. }
  271. lexer_push_token(lexer, T_NUMBER, buffer_read(buf));
  272. }
  273. void lexer_lex(lexer_t *lexer, char *s)
  274. {
  275. lexer->source = s;
  276. lexer->len = strlen(s);
  277. lexer->pos = 0;
  278. lexer->tokens = list_new();
  279. while (lexer->pos < lexer->len)
  280. {
  281. char c = lexer_lookahead(lexer, 0);
  282. if (c == '/' && !lexer->tokens->data)
  283. break;
  284. if (isspace(c))
  285. {
  286. lexer_eat(lexer);
  287. if (lexer_lookahead(lexer, 0) == '/')
  288. break;
  289. }
  290. else if (c == '0' && (lexer_lookahead(lexer, 1) == 'x' ||
  291. lexer_lookahead(lexer, 1) == 'b' ||
  292. lexer_lookahead(lexer, 1) == 'o'))
  293. {
  294. lexer_eat(lexer);
  295. buffer_t *buf = buffer_new();
  296. char b = lexer_eat(lexer);
  297. buffer_append(buf, b);
  298. const char *base = b == 'x' ? "0123456789abcdefABCDEF"
  299. : b == 'b' ? "01"
  300. : "01234567";
  301. while (strchr(base, lexer_lookahead(lexer, 0)) != NULL)
  302. buffer_append(buf, lexer_eat(lexer));
  303. lexer_push_token(lexer, T_BNUMBER, buffer_read(buf));
  304. }
  305. else if (isdigit(c) || c == '.')
  306. {
  307. lexer_lex_number(lexer, false);
  308. }
  309. else if (isalpha(c))
  310. {
  311. buffer_t *buf = buffer_new();
  312. do
  313. {
  314. buffer_append(buf, lexer_eat(lexer));
  315. } while (isalpha(lexer_lookahead(lexer, 0)));
  316. if (buf->size == 1 && lexer_lookahead(lexer, 0) == '.')
  317. {
  318. buffer_append(buf, lexer_eat(lexer));
  319. lexer_push_token(lexer, T_PUNCT, buffer_read(buf));
  320. }
  321. else
  322. lexer_push_token(lexer, T_NAME, buffer_read(buf));
  323. }
  324. else if (c == '(' || c == ')')
  325. {
  326. lexer_eat(lexer);
  327. lexer_push_token(lexer, c == '(' ? T_LPAR : T_RPAR, NULL);
  328. }
  329. else if (c == '\'')
  330. {
  331. buffer_t *buf = buffer_new();
  332. lexer_eat(lexer);
  333. for (;;)
  334. {
  335. if (lexer->pos >= lexer->len)
  336. lexer_error(lexer, "unmatched-quote");
  337. if (lexer_lookahead(lexer, 0) == '\'')
  338. {
  339. if (lexer_lookahead(lexer, 1) == '\'')
  340. {
  341. buffer_append(buf, lexer_eat(lexer));
  342. lexer_eat(lexer);
  343. continue;
  344. }
  345. lexer_eat(lexer);
  346. break;
  347. }
  348. buffer_append(buf, lexer_eat(lexer));
  349. }
  350. lexer_push_token(lexer, T_QUOTE, buffer_read(buf));
  351. }
  352. else if (ispunct(c))
  353. {
  354. char buf[3];
  355. buf[0] = lexer_eat(lexer);
  356. buf[1] = 0;
  357. if (lexer_lookahead(lexer, 0) == '.' ||
  358. lexer_lookahead(lexer, 0) == ':')
  359. {
  360. buf[1] = lexer_eat(lexer);
  361. buf[2] = 0;
  362. }
  363. if (strcmp(buf, "-") == 0 && isdigit(lexer_lookahead(lexer, 0)))
  364. {
  365. lexer_lex_number(lexer, true);
  366. continue;
  367. }
  368. lexer_push_token(lexer, T_PUNCT, strdup_checked(buf));
  369. }
  370. else
  371. lexer_error(lexer, "lex");
  372. }
  373. }
  374. typedef struct _table_t table_t;
  375. typedef struct _table_entry_t table_entry_t;
  376. struct _table_entry_t
  377. {
  378. char *key;
  379. void *value;
  380. bool is_deleted;
  381. };
  382. struct _table_t
  383. {
  384. table_entry_t *entries;
  385. size_t used;
  386. size_t capacity;
  387. };
  388. #define TABLE_MIN_SIZE 32
  389. table_t *table_new(void)
  390. {
  391. table_t *table = malloc_checked(sizeof(table_t));
  392. table->used = 0;
  393. table->capacity = TABLE_MIN_SIZE;
  394. table->entries = malloc_checked(table->capacity * sizeof(table_entry_t));
  395. return table;
  396. }
  397. size_t table_length(table_t *table) { return table->used; }
  398. bool table_empty(table_t *table) { return table->used == 0; }
  399. static uint64_t MM86128(void *key, const int len, uint32_t seed)
  400. {
  401. #define ROTL32(x, r) ((x << r) | (x >> (32 - r)))
  402. #define FMIX32(h) \
  403. h ^= h >> 16; \
  404. h *= 0x85ebca6b; \
  405. h ^= h >> 13; \
  406. h *= 0xc2b2ae35; \
  407. h ^= h >> 16;
  408. const uint8_t *data = (const uint8_t *)key;
  409. const int nblocks = len / 16;
  410. uint32_t h1 = seed;
  411. uint32_t h2 = seed;
  412. uint32_t h3 = seed;
  413. uint32_t h4 = seed;
  414. uint32_t c1 = 0x239b961b;
  415. uint32_t c2 = 0xab0e9789;
  416. uint32_t c3 = 0x38b34ae5;
  417. uint32_t c4 = 0xa1e38b93;
  418. const uint32_t *blocks = (const uint32_t *)(data + nblocks * 16);
  419. for (int i = -nblocks; i; i++)
  420. {
  421. uint32_t k1 = blocks[i * 4 + 0];
  422. uint32_t k2 = blocks[i * 4 + 1];
  423. uint32_t k3 = blocks[i * 4 + 2];
  424. uint32_t k4 = blocks[i * 4 + 3];
  425. k1 *= c1;
  426. k1 = ROTL32(k1, 15);
  427. k1 *= c2;
  428. h1 ^= k1;
  429. h1 = ROTL32(h1, 19);
  430. h1 += h2;
  431. h1 = h1 * 5 + 0x561ccd1b;
  432. k2 *= c2;
  433. k2 = ROTL32(k2, 16);
  434. k2 *= c3;
  435. h2 ^= k2;
  436. h2 = ROTL32(h2, 17);
  437. h2 += h3;
  438. h2 = h2 * 5 + 0x0bcaa747;
  439. k3 *= c3;
  440. k3 = ROTL32(k3, 17);
  441. k3 *= c4;
  442. h3 ^= k3;
  443. h3 = ROTL32(h3, 15);
  444. h3 += h4;
  445. h3 = h3 * 5 + 0x96cd1c35;
  446. k4 *= c4;
  447. k4 = ROTL32(k4, 18);
  448. k4 *= c1;
  449. h4 ^= k4;
  450. h4 = ROTL32(h4, 13);
  451. h4 += h1;
  452. h4 = h4 * 5 + 0x32ac3b17;
  453. }
  454. const uint8_t *tail = (const uint8_t *)(data + nblocks * 16);
  455. uint32_t k1 = 0;
  456. uint32_t k2 = 0;
  457. uint32_t k3 = 0;
  458. uint32_t k4 = 0;
  459. switch (len & 15)
  460. {
  461. case 15:
  462. k4 ^= tail[14] << 16;
  463. case 14:
  464. k4 ^= tail[13] << 8;
  465. case 13:
  466. k4 ^= tail[12] << 0;
  467. k4 *= c4;
  468. k4 = ROTL32(k4, 18);
  469. k4 *= c1;
  470. h4 ^= k4;
  471. case 12:
  472. k3 ^= tail[11] << 24;
  473. case 11:
  474. k3 ^= tail[10] << 16;
  475. case 10:
  476. k3 ^= tail[9] << 8;
  477. case 9:
  478. k3 ^= tail[8] << 0;
  479. k3 *= c3;
  480. k3 = ROTL32(k3, 17);
  481. k3 *= c4;
  482. h3 ^= k3;
  483. case 8:
  484. k2 ^= tail[7] << 24;
  485. case 7:
  486. k2 ^= tail[6] << 16;
  487. case 6:
  488. k2 ^= tail[5] << 8;
  489. case 5:
  490. k2 ^= tail[4] << 0;
  491. k2 *= c2;
  492. k2 = ROTL32(k2, 16);
  493. k2 *= c3;
  494. h2 ^= k2;
  495. case 4:
  496. k1 ^= tail[3] << 24;
  497. case 3:
  498. k1 ^= tail[2] << 16;
  499. case 2:
  500. k1 ^= tail[1] << 8;
  501. case 1:
  502. k1 ^= tail[0] << 0;
  503. k1 *= c1;
  504. k1 = ROTL32(k1, 15);
  505. k1 *= c2;
  506. h1 ^= k1;
  507. }
  508. h1 ^= len;
  509. h2 ^= len;
  510. h3 ^= len;
  511. h4 ^= len;
  512. h1 += h2;
  513. h1 += h3;
  514. h1 += h4;
  515. h2 += h1;
  516. h3 += h1;
  517. h4 += h1;
  518. FMIX32(h1);
  519. FMIX32(h2);
  520. FMIX32(h3);
  521. FMIX32(h4);
  522. h1 += h2;
  523. h1 += h3;
  524. h1 += h4;
  525. h2 += h1;
  526. h3 += h1;
  527. h4 += h1;
  528. return (((uint64_t)h2) << 32) | h1;
  529. }
  530. static uint32_t HASH_SEED = 0;
  531. void *table_get(table_t *table, char *key)
  532. {
  533. if (table_empty(table))
  534. return NULL;
  535. uint64_t hash = MM86128(key, strlen(key), HASH_SEED);
  536. size_t index = hash % table->capacity;
  537. size_t i = index;
  538. while (table->entries[i].key)
  539. {
  540. if (!table->entries[i].is_deleted &&
  541. strcmp(table->entries[i].key, key) == 0)
  542. return table->entries[i].value;
  543. i++;
  544. if (i >= table->capacity)
  545. i = 0;
  546. if (i == index)
  547. break;
  548. }
  549. return NULL;
  550. }
  551. bool table_has(table_t *table, char *key)
  552. {
  553. if (table_empty(table))
  554. return false;
  555. uint64_t hash = MM86128(key, strlen(key), HASH_SEED);
  556. size_t index = hash % table->capacity;
  557. size_t i = index;
  558. while (table->entries[i].key)
  559. {
  560. if (!table->entries[i].is_deleted &&
  561. strcmp(table->entries[i].key, key) == 0)
  562. return true;
  563. i++;
  564. if (i >= table->capacity)
  565. i = 0;
  566. if (i == index)
  567. break;
  568. }
  569. return false;
  570. }
  571. static void table_entry_set(table_entry_t *entries, char *key, void *value,
  572. size_t capacity, size_t *used)
  573. {
  574. uint64_t hash = MM86128(key, strlen(key), HASH_SEED);
  575. size_t index = hash % capacity;
  576. size_t i = index;
  577. while (entries[i].key)
  578. {
  579. if (strcmp(entries[i].key, key) == 0)
  580. {
  581. entries[i].value = value;
  582. if (entries[i].is_deleted)
  583. {
  584. if (used)
  585. (*used)++;
  586. entries[i].is_deleted = false;
  587. }
  588. return;
  589. }
  590. else if (entries[i].is_deleted)
  591. break;
  592. i++;
  593. if (i >= capacity)
  594. i = 0;
  595. if (i == index)
  596. break;
  597. }
  598. if (used)
  599. (*used)++;
  600. entries[i].key = key;
  601. entries[i].value = value;
  602. entries[i].is_deleted = false;
  603. }
  604. table_t *table_set(table_t *table, char *key, void *value)
  605. {
  606. if (table->used >= table->capacity)
  607. {
  608. size_t capacity = table->capacity + TABLE_MIN_SIZE;
  609. table_entry_t *entries = malloc_checked(capacity * sizeof(table_entry_t));
  610. for (size_t i = 0; i < table->capacity; i++)
  611. {
  612. table_entry_t entry = table->entries[i];
  613. if (entry.key && !entry.is_deleted)
  614. table_entry_set(entries, entry.key, entry.value, capacity, NULL);
  615. }
  616. GC_FREE(table->entries);
  617. table->entries = entries;
  618. table->capacity = capacity;
  619. }
  620. table_entry_set(table->entries, key, value, table->capacity, &table->used);
  621. return table;
  622. }
  623. bool table_delete(table_t *table, char *key)
  624. {
  625. uint64_t hash = MM86128(key, strlen(key), HASH_SEED);
  626. size_t index = hash % table->capacity;
  627. size_t i = index;
  628. while (table->entries[i].key)
  629. {
  630. if (!table->entries[i].is_deleted &&
  631. strcmp(table->entries[i].key, key) == 0)
  632. {
  633. table->entries[i].value = NULL;
  634. table->entries[i].is_deleted = true;
  635. table->used--;
  636. if (table->capacity > TABLE_MIN_SIZE &&
  637. table->used <= table->capacity - TABLE_MIN_SIZE)
  638. {
  639. size_t capacity = table->capacity - TABLE_MIN_SIZE;
  640. table_entry_t *entries =
  641. malloc_checked(capacity * sizeof(table_entry_t));
  642. for (size_t i = 0; i < table->capacity; i++)
  643. {
  644. table_entry_t entry = table->entries[i];
  645. if (entry.key && !entry.is_deleted)
  646. table_entry_set(entries, entry.key, entry.value, capacity, NULL);
  647. }
  648. GC_FREE(table->entries);
  649. table->entries = entries;
  650. table->capacity = capacity;
  651. }
  652. return true;
  653. }
  654. i++;
  655. if (i >= table->capacity)
  656. i = 0;
  657. if (i == index)
  658. break;
  659. }
  660. return false;
  661. }
  662. typedef struct _value_t value_t;
  663. typedef struct _interpreter_t interpreter_t;
  664. typedef struct _verb_t verb_t;
  665. struct _interpreter_t
  666. {
  667. table_t *env;
  668. list_t *args;
  669. list_t *selfrefs;
  670. value_t *nil;
  671. value_t *udf;
  672. value_t *unit;
  673. verb_t *at;
  674. bool bn;
  675. };
  676. struct _verb_t
  677. {
  678. char *name;
  679. unsigned int rank[3];
  680. list_t *bonds;
  681. bool mark;
  682. bool is_fun;
  683. value_t *(*monad)(interpreter_t *, verb_t *, value_t *);
  684. value_t *(*dyad)(interpreter_t *, verb_t *, value_t *, value_t *);
  685. };
  686. typedef struct
  687. {
  688. char *name;
  689. verb_t *(*adverb)(interpreter_t *, value_t *);
  690. verb_t *(*conjunction)(interpreter_t *, value_t *, value_t *);
  691. } adverb_t;
  692. struct _value_t
  693. {
  694. enum value_tag_t
  695. {
  696. ARRAY,
  697. VERB,
  698. SYMBOL,
  699. NUMBER,
  700. CHAR,
  701. NIL,
  702. UDF
  703. } tag;
  704. union
  705. {
  706. list_t *array;
  707. verb_t *verb;
  708. char *symbol;
  709. double number;
  710. unsigned char _char;
  711. } val;
  712. };
  713. verb_t *verb_new()
  714. {
  715. verb_t *verb = malloc_checked(sizeof(verb_t));
  716. return verb;
  717. }
  718. value_t *value_new(enum value_tag_t tag)
  719. {
  720. value_t *val;
  721. if (tag > SYMBOL)
  722. val = malloc_checked_atomic(sizeof(value_t));
  723. else
  724. val = malloc_checked(sizeof(value_t));
  725. val->tag = tag;
  726. return val;
  727. }
  728. value_t *value_new_const(enum value_tag_t tag)
  729. {
  730. value_t *val = malloc_checked_uncollectable(sizeof(value_t));
  731. val->tag = tag;
  732. return val;
  733. }
  734. value_t *_UNIT;
  735. value_t *value_new_array(list_t *array)
  736. {
  737. if (!array->data)
  738. {
  739. GC_FREE(array);
  740. return _UNIT;
  741. }
  742. value_t *val = value_new(ARRAY);
  743. val->val.array = array;
  744. return val;
  745. }
  746. table_t *VCACHE;
  747. value_t *value_new_verb(verb_t *verb)
  748. {
  749. value_t *val;
  750. if ((val = table_get(VCACHE, verb->name)))
  751. return val;
  752. val = value_new(VERB);
  753. val->val.verb = verb;
  754. return val;
  755. }
  756. table_t *SCACHE;
  757. value_t *value_new_symbol(char *symbol)
  758. {
  759. value_t *val;
  760. if ((val = table_get(SCACHE, symbol)))
  761. return val;
  762. val = value_new_const(SYMBOL);
  763. val->val.symbol = symbol;
  764. table_set(SCACHE, symbol, val);
  765. return val;
  766. }
  767. value_t *_NAN, *INF, *NINF;
  768. value_t *NNUMS[8];
  769. value_t *NUMS[256];
  770. value_t *CHARS[256];
  771. value_t *value_new_number(double number)
  772. {
  773. if (isnan(number))
  774. return _NAN;
  775. else if (number == INFINITY)
  776. return INF;
  777. else if (number == -INFINITY)
  778. return NINF;
  779. else if (number >= 0 && number < 256 && number == (double)((size_t)number))
  780. return NUMS[(size_t)number];
  781. else if (number < 0 && number >= -8 &&
  782. fabs(number) == (double)((size_t)fabs(number)))
  783. return NNUMS[((size_t)fabs(number)) - 1];
  784. value_t *val = value_new(NUMBER);
  785. val->val.number = number;
  786. return val;
  787. }
  788. value_t *value_new_char(unsigned char _char) { return CHARS[_char]; }
  789. bool value_equals(value_t *x, value_t *y)
  790. {
  791. if (x->tag != y->tag)
  792. return false;
  793. switch (x->tag)
  794. {
  795. case ARRAY:
  796. {
  797. list_t *tx = x->val.array;
  798. list_t *ty = y->val.array;
  799. if (tx->length == 0 && ty->length == 0)
  800. break;
  801. if (tx->length != ty->length)
  802. return false;
  803. for (size_t i = 0; i < tx->length; i++)
  804. if (!value_equals(tx->data[i], ty->data[i]))
  805. return false;
  806. }
  807. case VERB:
  808. return strcmp(x->val.verb->name, x->val.verb->name) == 0;
  809. case SYMBOL:
  810. return strcmp(x->val.symbol, y->val.symbol) == 0;
  811. case NUMBER:
  812. if (isnan(x->val.number) && isnan(y->val.number))
  813. break;
  814. return x->val.number == y->val.number;
  815. case CHAR:
  816. return x == y;
  817. case NIL:
  818. case UDF:
  819. break;
  820. }
  821. return true;
  822. }
  823. bool is_char_array(list_t *a)
  824. {
  825. for (size_t i = 0; i < a->length; i++)
  826. {
  827. value_t *v = a->data[i];
  828. if (v->tag != CHAR || !isprint(v->val._char))
  829. return false;
  830. }
  831. return true;
  832. }
  833. bool is_bytes_array(list_t *a)
  834. {
  835. for (size_t i = 0; i < a->length; i++)
  836. {
  837. value_t *v = a->data[i];
  838. if (v->tag != CHAR)
  839. return false;
  840. }
  841. return true;
  842. }
  843. bool is_arrays_array(list_t *a)
  844. {
  845. for (size_t i = 0; i < a->length; i++)
  846. {
  847. value_t *v = a->data[i];
  848. if (v->tag != ARRAY)
  849. return false;
  850. }
  851. return true;
  852. }
  853. bool is_not_arrays_array(list_t *a)
  854. {
  855. if (!a->data)
  856. return true;
  857. for (size_t i = 1; i < a->length; i++)
  858. {
  859. value_t *v = a->data[i];
  860. if (v->tag == ARRAY)
  861. return false;
  862. }
  863. return true;
  864. }
  865. bool is_matrix(list_t *a)
  866. {
  867. if (a->length < 2)
  868. return false;
  869. size_t rwl = ((value_t *)a->data[0])->val.array->length;
  870. if (rwl < 1)
  871. return false;
  872. for (size_t i = 0; i < a->length; i++)
  873. {
  874. value_t *v = a->data[i];
  875. if (v->tag != ARRAY || v->val.array->length != rwl ||
  876. !is_not_arrays_array(v->val.array) || is_char_array(v->val.array))
  877. return false;
  878. }
  879. return true;
  880. }
  881. char *value_show(value_t *v);
  882. char *show_array(value_t *v)
  883. {
  884. if (v->tag != ARRAY)
  885. return value_show(v);
  886. list_t *t = v->val.array;
  887. if (!t->data)
  888. return strdup_checked("()");
  889. buffer_t *buf = buffer_new();
  890. if (t->length == 1)
  891. {
  892. buffer_append(buf, ',');
  893. char *ts = value_show(t->data[0]);
  894. buffer_append_str(buf, ts);
  895. GC_FREE(ts);
  896. return buffer_read(buf);
  897. }
  898. if (is_char_array(t))
  899. {
  900. for (size_t i = 0; i < t->length; i++)
  901. buffer_append(buf, ((value_t *)t->data[i])->val._char);
  902. return buffer_read(buf);
  903. }
  904. if (!is_arrays_array(t))
  905. for (size_t i = 0; i < t->length; i++)
  906. {
  907. char *ts = value_show(t->data[i]);
  908. buffer_append_str(buf, ts);
  909. GC_FREE(ts);
  910. if (i != t->length - 1)
  911. buffer_append(buf, ' ');
  912. }
  913. else if (is_matrix(t))
  914. {
  915. size_t rwl = 0;
  916. size_t pad = 0;
  917. size_t padl = 0;
  918. list_t *ss = list_new();
  919. for (size_t i = 0; i < t->length; i++)
  920. {
  921. value_t *rw = t->data[i];
  922. list_t *rwt = rw->val.array;
  923. if (rwl < 1)
  924. rwl = rwt->length;
  925. for (size_t j = 0; j < rwt->length; j++)
  926. {
  927. char *s = value_show(rwt->data[j]);
  928. size_t z = strlen(s);
  929. if (z > pad)
  930. pad = z;
  931. if (j == 0 && z > padl)
  932. padl = z;
  933. list_push(ss, s);
  934. }
  935. }
  936. size_t k = 0;
  937. for (size_t i = 0; i < ss->length; i++)
  938. {
  939. char *s = ss->data[i];
  940. size_t mp = (k == 0 ? padl : pad) - strlen(s);
  941. while (mp--)
  942. buffer_append(buf, ' ');
  943. buffer_append_str(buf, s);
  944. GC_FREE(s);
  945. if (i != ss->length - 1)
  946. {
  947. if (k == rwl - 1)
  948. {
  949. k = 0;
  950. buffer_append(buf, '\n');
  951. }
  952. else
  953. {
  954. buffer_append(buf, ' ');
  955. k++;
  956. }
  957. }
  958. }
  959. GC_FREE(ss->data);
  960. GC_FREE(ss);
  961. }
  962. else
  963. for (size_t i = 0; i < t->length; i++)
  964. {
  965. value_t *rw = t->data[i];
  966. char *ts = show_array(rw);
  967. buffer_append_str(buf, ts);
  968. GC_FREE(ts);
  969. if (i != t->length - 1)
  970. buffer_append(buf, '\n');
  971. }
  972. return buffer_read(buf);
  973. }
  974. char *value_show(value_t *v)
  975. {
  976. switch (v->tag)
  977. {
  978. case ARRAY:
  979. return show_array(v);
  980. case VERB:
  981. return strdup_checked(v->val.verb->name);
  982. case SYMBOL:
  983. return strdup_checked(v->val.symbol);
  984. case NUMBER:
  985. {
  986. char buf[128];
  987. snprintf(buf, sizeof(buf), "%.15g", v->val.number);
  988. return strdup_checked(buf);
  989. }
  990. case CHAR:
  991. {
  992. if (!isprint(v->val._char))
  993. {
  994. char buf[16];
  995. snprintf(buf, sizeof(buf), "4t.%d", v->val._char);
  996. return strdup_checked(buf);
  997. }
  998. char buf[2];
  999. buf[0] = v->val._char;
  1000. buf[1] = 0;
  1001. return strdup_checked(buf);
  1002. }
  1003. case NIL:
  1004. return strdup_checked("nil");
  1005. case UDF:
  1006. return strdup_checked("udf");
  1007. }
  1008. return strdup_checked("<?>");
  1009. }
  1010. char *value_str(value_t *v)
  1011. {
  1012. if (v->tag == ARRAY && v->val.array->length == 1 &&
  1013. ((value_t *)v->val.array->data[0])->tag == CHAR)
  1014. return value_show(v->val.array->data[0]);
  1015. else if (v->tag == ARRAY && is_bytes_array(v->val.array))
  1016. {
  1017. buffer_t *buf = buffer_new();
  1018. for (size_t i = 0; i < v->val.array->length; i++)
  1019. buffer_append(buf, ((value_t *)v->val.array->data[i])->val._char);
  1020. return buffer_read(buf);
  1021. }
  1022. return value_show(v);
  1023. }
  1024. double get_numeric(value_t *v)
  1025. {
  1026. if (v->tag == CHAR)
  1027. return v->val._char;
  1028. return v->val.number;
  1029. }
  1030. bool value_is_truthy(value_t *x)
  1031. {
  1032. switch (x->tag)
  1033. {
  1034. case ARRAY:
  1035. return x->val.array->length != 0;
  1036. case NUMBER:
  1037. case CHAR:
  1038. return get_numeric(x) != 0;
  1039. case NIL:
  1040. case UDF:
  1041. return false;
  1042. default:
  1043. return true;
  1044. }
  1045. }
  1046. verb_t *find_verb(char *s);
  1047. interpreter_t *interpreter_new(void)
  1048. {
  1049. interpreter_t *state = malloc_checked(sizeof(interpreter_t));
  1050. state->env = table_new();
  1051. state->args = list_new();
  1052. state->selfrefs = list_new();
  1053. state->nil = value_new(NIL);
  1054. state->udf = value_new(UDF);
  1055. state->unit = _UNIT;
  1056. state->at = find_verb("@");
  1057. return state;
  1058. }
  1059. value_t *each_rank(interpreter_t *state, verb_t *f, value_t *x, unsigned int d,
  1060. unsigned int rm)
  1061. {
  1062. if (!f->monad)
  1063. return state->udf;
  1064. if (rec_depth >= max_rec_depth)
  1065. fatal("recursion-depth");
  1066. rec_depth++;
  1067. if (d >= rm || x->tag != ARRAY)
  1068. {
  1069. if (f->mark)
  1070. list_push(state->selfrefs, f);
  1071. value_t *r = f->monad(state, f, x);
  1072. if (f->mark)
  1073. list_pop(state->selfrefs);
  1074. if (rec_depth > 0)
  1075. rec_depth--;
  1076. return r;
  1077. }
  1078. list_t *t = x->val.array;
  1079. if (!t->data)
  1080. {
  1081. if (rec_depth > 0)
  1082. rec_depth--;
  1083. return x;
  1084. }
  1085. list_t *l = list_newk(t->length);
  1086. for (size_t i = 0; i < t->length; i++)
  1087. l->data[i] = each_rank(state, f, t->data[i], d + 1, rm);
  1088. if (rec_depth > 0)
  1089. rec_depth--;
  1090. return value_new_array(l);
  1091. }
  1092. value_t *verb_at(interpreter_t *state, verb_t *self, value_t *x, value_t *y);
  1093. value_t *apply_monad(interpreter_t *state, value_t *f, value_t *x)
  1094. {
  1095. if (f->tag == ARRAY)
  1096. return verb_at(state, NULL, f, x);
  1097. if (f->tag != VERB)
  1098. return state->udf;
  1099. if (!f->val.verb->monad)
  1100. return state->udf;
  1101. return each_rank(state, f->val.verb, x, 0, f->val.verb->rank[0]);
  1102. }
  1103. value_t *together(interpreter_t *state, verb_t *f, value_t *x, value_t *y,
  1104. unsigned int dl, unsigned int dr, unsigned int rl,
  1105. unsigned int rr)
  1106. {
  1107. if (!f->dyad)
  1108. return state->udf;
  1109. if (rec_depth >= max_rec_depth)
  1110. fatal("recursion-depth");
  1111. rec_depth++;
  1112. if (dl >= rl && dr >= rr)
  1113. {
  1114. if (f->mark)
  1115. list_push(state->selfrefs, f);
  1116. value_t *r = f->dyad(state, f, x, y);
  1117. if (f->mark)
  1118. list_pop(state->selfrefs);
  1119. if (rec_depth > 0)
  1120. rec_depth--;
  1121. return r;
  1122. }
  1123. if (dl < rl && dr < rr && x->tag == ARRAY && y->tag == ARRAY)
  1124. {
  1125. list_t *tx = x->val.array;
  1126. list_t *ty = y->val.array;
  1127. if (!tx->data || !ty->data)
  1128. {
  1129. if (rec_depth > 0)
  1130. rec_depth--;
  1131. return !tx->data ? x : y;
  1132. }
  1133. list_t *t = list_newk(ty->length < tx->length ? ty->length : tx->length);
  1134. for (size_t i = 0; i < tx->length; i++)
  1135. {
  1136. if (i >= ty->length)
  1137. break;
  1138. t->data[i] =
  1139. together(state, f, tx->data[i], ty->data[i], dl + 1, dr + 1, rl, rr);
  1140. }
  1141. if (rec_depth > 0)
  1142. rec_depth--;
  1143. return value_new_array(t);
  1144. }
  1145. else if ((x->tag != ARRAY || dl >= rl) && y->tag == ARRAY && dr < rr)
  1146. {
  1147. list_t *ty = y->val.array;
  1148. if (!ty->data)
  1149. {
  1150. if (rec_depth > 0)
  1151. rec_depth--;
  1152. return y;
  1153. }
  1154. list_t *t = list_newk(ty->length);
  1155. for (size_t i = 0; i < ty->length; i++)
  1156. t->data[i] = together(state, f, x, ty->data[i], dl, dr + 1, rl, rr);
  1157. return value_new_array(t);
  1158. }
  1159. else if ((y->tag != ARRAY || dr >= rr) && x->tag == ARRAY && dl < rl)
  1160. {
  1161. list_t *tx = x->val.array;
  1162. if (!tx->data)
  1163. {
  1164. if (rec_depth > 0)
  1165. rec_depth--;
  1166. return x;
  1167. }
  1168. list_t *t = list_newk(tx->length);
  1169. for (size_t i = 0; i < tx->length; i++)
  1170. t->data[i] = together(state, f, tx->data[i], y, dl + 1, dr, rl, rr);
  1171. if (rec_depth > 0)
  1172. rec_depth--;
  1173. return value_new_array(t);
  1174. }
  1175. if (f->mark)
  1176. list_push(state->selfrefs, f);
  1177. value_t *r = f->dyad(state, f, x, y);
  1178. if (f->mark)
  1179. list_pop(state->selfrefs);
  1180. if (rec_depth > 0)
  1181. rec_depth--;
  1182. return r;
  1183. }
  1184. value_t *apply_dyad(interpreter_t *state, value_t *f, value_t *x, value_t *y)
  1185. {
  1186. if (f->tag == ARRAY)
  1187. return verb_at(state, NULL, verb_at(state, NULL, f, x), y);
  1188. if (f->tag != VERB)
  1189. return state->nil;
  1190. return together(state, f->val.verb, x, y, 0, 0, f->val.verb->rank[1],
  1191. f->val.verb->rank[2]);
  1192. }
  1193. typedef struct _node_t node_t;
  1194. struct _node_t
  1195. {
  1196. enum node_tag_t
  1197. {
  1198. N_STRAND,
  1199. N_LITERAL,
  1200. N_INDEX1,
  1201. N_INDEX2,
  1202. N_FUN,
  1203. N_MONAD,
  1204. N_DYAD,
  1205. N_ADV,
  1206. N_CONJ,
  1207. N_PARTIAL_CONJ,
  1208. N_FORK,
  1209. N_HOOK,
  1210. N_BOND,
  1211. N_OVER,
  1212. N_BIND
  1213. } tag;
  1214. adverb_t *av;
  1215. value_t *v;
  1216. list_t *l;
  1217. node_t *a;
  1218. node_t *b;
  1219. node_t *c;
  1220. size_t dp;
  1221. };
  1222. char *node_show(node_t *n)
  1223. {
  1224. switch (n->tag)
  1225. {
  1226. case N_STRAND:
  1227. {
  1228. buffer_t *buf = buffer_new();
  1229. for (size_t i = 0; i < n->l->length; i++)
  1230. {
  1231. if (i != 0)
  1232. buffer_append_str(buf, ",:");
  1233. char *s = node_show(n->l->data[i]);
  1234. buffer_append_str(buf, s);
  1235. GC_FREE(s);
  1236. }
  1237. return buffer_read(buf);
  1238. }
  1239. case N_LITERAL:
  1240. return value_show(n->v);
  1241. case N_INDEX1:
  1242. {
  1243. char *s;
  1244. buffer_t *buf = buffer_new();
  1245. s = node_show(n->a);
  1246. buffer_append_str(buf, s);
  1247. GC_FREE(s);
  1248. buffer_append(buf, ' ');
  1249. s = node_show(n->b);
  1250. buffer_append_str(buf, s);
  1251. GC_FREE(s);
  1252. return buffer_read(buf);
  1253. }
  1254. case N_INDEX2:
  1255. {
  1256. char *s;
  1257. buffer_t *buf = buffer_new();
  1258. s = node_show(n->a);
  1259. buffer_append_str(buf, s);
  1260. GC_FREE(s);
  1261. buffer_append(buf, ' ');
  1262. s = node_show(n->b);
  1263. buffer_append_str(buf, s);
  1264. GC_FREE(s);
  1265. buffer_append(buf, ' ');
  1266. s = node_show(n->c);
  1267. buffer_append_str(buf, s);
  1268. GC_FREE(s);
  1269. return buffer_read(buf);
  1270. }
  1271. case N_FUN:
  1272. {
  1273. buffer_t *buf = buffer_new();
  1274. buffer_append(buf, ':');
  1275. char *s = node_show(n->a);
  1276. buffer_append_str(buf, s);
  1277. GC_FREE(s);
  1278. return buffer_read(buf);
  1279. }
  1280. case N_MONAD:
  1281. case N_HOOK:
  1282. case N_BOND:
  1283. case N_OVER:
  1284. {
  1285. char *s;
  1286. buffer_t *buf = buffer_new();
  1287. s = node_show(n->a);
  1288. buffer_append_str(buf, s);
  1289. GC_FREE(s);
  1290. s = node_show(n->b);
  1291. buffer_append_str(buf, s);
  1292. GC_FREE(s);
  1293. return buffer_read(buf);
  1294. }
  1295. case N_DYAD:
  1296. {
  1297. char *s;
  1298. buffer_t *buf = buffer_new();
  1299. s = node_show(n->b);
  1300. buffer_append_str(buf, s);
  1301. GC_FREE(s);
  1302. s = node_show(n->a);
  1303. buffer_append_str(buf, s);
  1304. GC_FREE(s);
  1305. s = node_show(n->c);
  1306. buffer_append_str(buf, s);
  1307. GC_FREE(s);
  1308. return buffer_read(buf);
  1309. }
  1310. case N_ADV:
  1311. case N_PARTIAL_CONJ:
  1312. {
  1313. buffer_t *buf = buffer_new();
  1314. char *s = node_show(n->a);
  1315. buffer_append_str(buf, s);
  1316. GC_FREE(s);
  1317. buffer_append_str(buf, n->av->name);
  1318. return buffer_read(buf);
  1319. }
  1320. case N_CONJ:
  1321. {
  1322. char *s;
  1323. buffer_t *buf = buffer_new();
  1324. s = node_show(n->a);
  1325. buffer_append_str(buf, s);
  1326. GC_FREE(s);
  1327. buffer_append_str(buf, n->av->name);
  1328. s = node_show(n->b);
  1329. buffer_append_str(buf, s);
  1330. GC_FREE(s);
  1331. return buffer_read(buf);
  1332. }
  1333. case N_FORK:
  1334. {
  1335. char *s;
  1336. buffer_t *buf = buffer_new();
  1337. s = node_show(n->a);
  1338. buffer_append_str(buf, s);
  1339. GC_FREE(s);
  1340. s = node_show(n->b);
  1341. buffer_append_str(buf, s);
  1342. GC_FREE(s);
  1343. s = node_show(n->c);
  1344. buffer_append_str(buf, s);
  1345. GC_FREE(s);
  1346. return buffer_read(buf);
  1347. }
  1348. case N_BIND:
  1349. {
  1350. char *s;
  1351. buffer_t *buf = buffer_new();
  1352. s = node_show(n->a);
  1353. buffer_append_str(buf, s);
  1354. GC_FREE(s);
  1355. buffer_append(buf, ':');
  1356. s = node_show(n->b);
  1357. buffer_append_str(buf, s);
  1358. GC_FREE(s);
  1359. return buffer_read(buf);
  1360. }
  1361. }
  1362. return strdup_checked("<?>");
  1363. }
  1364. value_t *_fork_monad(interpreter_t *state, verb_t *self, value_t *x)
  1365. {
  1366. verb_t *f = list_index(self->bonds, 0);
  1367. verb_t *g = list_index(self->bonds, 1);
  1368. verb_t *h = list_index(self->bonds, 2);
  1369. value_t *l = each_rank(state, f, x, 0, f->rank[0]);
  1370. value_t *r = each_rank(state, h, x, 0, f->rank[0]);
  1371. return together(state, g, l, r, 0, 0, g->rank[1], g->rank[2]);
  1372. }
  1373. value_t *_fork_dyad(interpreter_t *state, verb_t *self, value_t *x,
  1374. value_t *y)
  1375. {
  1376. verb_t *f = list_index(self->bonds, 0);
  1377. verb_t *g = list_index(self->bonds, 1);
  1378. verb_t *h = list_index(self->bonds, 2);
  1379. value_t *l = each_rank(state, f, x, 0, f->rank[0]);
  1380. value_t *r = each_rank(state, h, y, 0, f->rank[0]);
  1381. return together(state, g, l, r, 0, 0, g->rank[1], g->rank[2]);
  1382. }
  1383. value_t *_hook_monad(interpreter_t *state, verb_t *self, value_t *x)
  1384. {
  1385. verb_t *f = list_index(self->bonds, 0);
  1386. verb_t *g = list_index(self->bonds, 1);
  1387. value_t *r = each_rank(state, g, x, 0, g->rank[0]);
  1388. return each_rank(state, f, r, 0, f->rank[0]);
  1389. }
  1390. value_t *_hook_dyad(interpreter_t *state, verb_t *self, value_t *x,
  1391. value_t *y)
  1392. {
  1393. verb_t *f = list_index(self->bonds, 0);
  1394. verb_t *g = list_index(self->bonds, 1);
  1395. value_t *r = together(state, g, x, y, 0, 0, g->rank[1], g->rank[2]);
  1396. return each_rank(state, f, r, 0, f->rank[0]);
  1397. }
  1398. value_t *_bond_monad(interpreter_t *state, verb_t *self, value_t *x)
  1399. {
  1400. verb_t *f = list_index(self->bonds, 0);
  1401. value_t *g = list_index(self->bonds, 1);
  1402. return together(state, f, g, x, 0, 0, f->rank[1], f->rank[2]);
  1403. }
  1404. value_t *_bond_dyad(interpreter_t *state, verb_t *self, value_t *x,
  1405. value_t *y)
  1406. {
  1407. verb_t *f = list_index(self->bonds, 0);
  1408. value_t *g = list_index(self->bonds, 1);
  1409. value_t *r = together(state, f, x, y, 0, 0, f->rank[1], f->rank[2]);
  1410. return together(state, f, g, r, 0, 0, f->rank[1], f->rank[2]);
  1411. }
  1412. value_t *_over_monad(interpreter_t *state, verb_t *self, value_t *x)
  1413. {
  1414. value_t *f = list_index(self->bonds, 0);
  1415. verb_t *g = list_index(self->bonds, 1);
  1416. verb_t *h = list_index(self->bonds, 2);
  1417. value_t *l = each_rank(state, h, x, 0, h->rank[0]);
  1418. return together(state, g, f, l, 0, 0, g->rank[1], g->rank[2]);
  1419. }
  1420. value_t *_over_dyad(interpreter_t *state, verb_t *self, value_t *x,
  1421. value_t *y)
  1422. {
  1423. value_t *f = list_index(self->bonds, 0);
  1424. verb_t *g = list_index(self->bonds, 1);
  1425. verb_t *h = list_index(self->bonds, 2);
  1426. value_t *l = together(state, h, x, y, 0, 0, h->rank[1], h->rank[2]);
  1427. return together(state, g, f, l, 0, 0, g->rank[1], g->rank[2]);
  1428. }
  1429. bool function_collect_args(node_t *node, unsigned int *argc)
  1430. {
  1431. if (!node)
  1432. return false;
  1433. if (node->tag == N_LITERAL && node->v->tag == SYMBOL &&
  1434. strcmp(node->v->val.symbol, "y") == 0)
  1435. {
  1436. *argc = 2;
  1437. return true;
  1438. }
  1439. else if (node->tag == N_LITERAL && node->v->tag == SYMBOL &&
  1440. strcmp(node->v->val.symbol, "x") == 0)
  1441. {
  1442. if (*argc < 2)
  1443. *argc = 1;
  1444. }
  1445. else if (node->tag == N_MONAD || node->tag == N_CONJ ||
  1446. node->tag == N_HOOK || node->tag == N_BOND ||
  1447. node->tag == N_INDEX1)
  1448. {
  1449. if (function_collect_args(node->a, argc))
  1450. return true;
  1451. if (function_collect_args(node->b, argc))
  1452. return true;
  1453. }
  1454. else if (node->tag == N_DYAD || node->tag == N_FORK ||
  1455. node->tag == N_OVER || node->tag == N_INDEX2)
  1456. {
  1457. if (function_collect_args(node->a, argc))
  1458. return true;
  1459. if (function_collect_args(node->b, argc))
  1460. return true;
  1461. if (function_collect_args(node->c, argc))
  1462. return true;
  1463. }
  1464. else if (node->tag == N_ADV)
  1465. {
  1466. if (function_collect_args(node->a, argc))
  1467. return true;
  1468. }
  1469. else if (node->tag == N_STRAND)
  1470. {
  1471. list_t *t = node->l;
  1472. for (size_t i = 0; i < t->length; i++)
  1473. if (function_collect_args(t->data[i], argc))
  1474. return true;
  1475. }
  1476. else if (node->tag == N_BIND)
  1477. {
  1478. if (function_collect_args(node->b, argc))
  1479. return true;
  1480. }
  1481. return false;
  1482. }
  1483. value_t *interpreter_walk(interpreter_t *state, node_t *node);
  1484. value_t *_const_monad(interpreter_t *state, verb_t *self, value_t *x)
  1485. {
  1486. return interpreter_walk(state, self->bonds->data[0]);
  1487. }
  1488. value_t *_const_dyad(interpreter_t *state, verb_t *self, value_t *x,
  1489. value_t *y)
  1490. {
  1491. return interpreter_walk(state, self->bonds->data[0]);
  1492. }
  1493. value_t *_constv_monad(interpreter_t *state, verb_t *self, value_t *x)
  1494. {
  1495. return self->bonds->data[0];
  1496. }
  1497. value_t *_constv_dyad(interpreter_t *state, verb_t *self, value_t *x,
  1498. value_t *y)
  1499. {
  1500. return self->bonds->data[0];
  1501. }
  1502. value_t *_fun_monad(interpreter_t *state, verb_t *self, value_t *x)
  1503. {
  1504. list_t *args = list_new();
  1505. list_push(args, x);
  1506. list_push(args, self);
  1507. list_push(state->args, args);
  1508. value_t *r = interpreter_walk(state, self->bonds->data[0]);
  1509. list_pop(state->args);
  1510. GC_FREE(args);
  1511. return r;
  1512. }
  1513. value_t *_fun_dyad(interpreter_t *state, verb_t *self, value_t *x, value_t *y)
  1514. {
  1515. list_t *args = list_new();
  1516. list_push(args, x);
  1517. list_push(args, y);
  1518. list_push(args, self);
  1519. list_push(state->args, args);
  1520. value_t *r = interpreter_walk(state, self->bonds->data[1]);
  1521. list_pop(state->args);
  1522. GC_FREE(args);
  1523. return r;
  1524. }
  1525. value_t *_partial_conjunction(interpreter_t *state, verb_t *self, value_t *x)
  1526. {
  1527. adverb_t *av = self->bonds->data[0];
  1528. value_t *a = self->bonds->data[1];
  1529. return value_new_verb(av->conjunction(state, a, x));
  1530. }
  1531. node_t *node_new1(enum node_tag_t tag, node_t *a);
  1532. value_t *interpreter_walk(interpreter_t *state, node_t *node)
  1533. {
  1534. if (!node)
  1535. return state->nil;
  1536. switch (node->tag)
  1537. {
  1538. case N_STRAND:
  1539. {
  1540. list_t *t = list_copy(node->l);
  1541. for (size_t i = 0; i < t->length; i++)
  1542. t->data[i] = interpreter_walk(state, t->data[i]);
  1543. return value_new_array(t);
  1544. }
  1545. case N_LITERAL:
  1546. {
  1547. value_t *v = node->v;
  1548. value_t *t = NULL;
  1549. if (v->tag == SYMBOL)
  1550. {
  1551. char *n = v->val.symbol;
  1552. if (state->args->data)
  1553. {
  1554. list_t *args = list_index(state->args, -1);
  1555. size_t argc = args->length - 1;
  1556. if (argc == 2 && strcmp(n, "y") == 0)
  1557. return args->data[1];
  1558. else if (strcmp(n, "x") == 0)
  1559. return args->data[0];
  1560. }
  1561. if ((t = table_get(state->env, n)))
  1562. return t;
  1563. if (strcmp(n, "T") == 0)
  1564. return value_new_number(time(NULL));
  1565. }
  1566. return v;
  1567. }
  1568. case N_INDEX1:
  1569. return together(state, state->at, interpreter_walk(state, node->a),
  1570. interpreter_walk(state, node->b), 0, 0, state->at->rank[1],
  1571. state->at->rank[2]);
  1572. case N_INDEX2:
  1573. return together(state, state->at,
  1574. together(state, state->at, interpreter_walk(state, node->a),
  1575. interpreter_walk(state, node->b), 0, 0,
  1576. state->at->rank[1], state->at->rank[2]),
  1577. interpreter_walk(state, node->c), 0, 0, state->at->rank[1],
  1578. state->at->rank[2]);
  1579. case N_FUN:
  1580. {
  1581. unsigned int argc = 0;
  1582. function_collect_args(node->a, &argc);
  1583. verb_t *nv = verb_new();
  1584. if (argc > 0)
  1585. nv->is_fun = true;
  1586. nv->bonds = list_new();
  1587. char *s = node_show(node->a);
  1588. size_t z = strlen(s) + 2;
  1589. nv->name = malloc_checked_atomic(z);
  1590. snprintf(nv->name, z, ":%s", s);
  1591. GC_FREE(s);
  1592. nv->rank[0] = 0;
  1593. nv->rank[1] = 0;
  1594. nv->rank[2] = 0;
  1595. if (argc == 0)
  1596. {
  1597. list_push(nv->bonds, node->a);
  1598. nv->monad = _const_monad;
  1599. nv->dyad = _const_dyad;
  1600. }
  1601. else if (argc == 1)
  1602. {
  1603. list_push(nv->bonds, node->a);
  1604. nv->monad = _fun_monad;
  1605. nv->dyad = NULL;
  1606. }
  1607. else
  1608. {
  1609. nv->monad = NULL;
  1610. list_push(nv->bonds, state->udf);
  1611. list_push(nv->bonds, node->a);
  1612. nv->dyad = _fun_dyad;
  1613. }
  1614. return value_new_verb(nv);
  1615. }
  1616. case N_MONAD:
  1617. return apply_monad(state, interpreter_walk(state, node->a),
  1618. interpreter_walk(state, node->b));
  1619. case N_DYAD:
  1620. return apply_dyad(state, interpreter_walk(state, node->a),
  1621. interpreter_walk(state, node->b),
  1622. interpreter_walk(state, node->c));
  1623. case N_ADV:
  1624. {
  1625. value_t *v = interpreter_walk(state, node->a);
  1626. verb_t *nv = node->av->adverb(state, v);
  1627. if (node->dp < 2)
  1628. nv->mark = true;
  1629. return value_new_verb(nv);
  1630. }
  1631. case N_CONJ:
  1632. {
  1633. value_t *v1 = interpreter_walk(state, node->a);
  1634. value_t *v2 = interpreter_walk(state, node->b);
  1635. verb_t *nv = node->av->conjunction(state, v1, v2);
  1636. if (node->dp < 2)
  1637. nv->mark = true;
  1638. return value_new_verb(nv);
  1639. }
  1640. case N_PARTIAL_CONJ:
  1641. {
  1642. verb_t *nv = verb_new();
  1643. value_t *a = interpreter_walk(state, node->a);
  1644. char *r = value_show(a);
  1645. size_t l = strlen(r) + strlen(node->av->name) + 1;
  1646. nv->name = malloc_checked_atomic(l);
  1647. snprintf(nv->name, l, "%s%s", r, node->av->name);
  1648. GC_FREE(r);
  1649. nv->bonds = list_new();
  1650. list_push(nv->bonds, node->av);
  1651. list_push(nv->bonds, a);
  1652. nv->rank[0] = 0;
  1653. nv->rank[1] = 0;
  1654. nv->rank[2] = 0;
  1655. nv->monad = _partial_conjunction;
  1656. nv->dyad = NULL;
  1657. if (node->dp < 2)
  1658. nv->mark = true;
  1659. return value_new_verb(nv);
  1660. }
  1661. case N_FORK:
  1662. {
  1663. value_t *_f = interpreter_walk(state, node->a);
  1664. if (_f->tag != VERB)
  1665. return state->udf;
  1666. value_t *_g = interpreter_walk(state, node->b);
  1667. if (_g->tag != VERB)
  1668. return state->udf;
  1669. value_t *_h = interpreter_walk(state, node->c);
  1670. if (_h->tag != VERB)
  1671. return state->udf;
  1672. verb_t *f = _f->val.verb;
  1673. verb_t *g = _g->val.verb;
  1674. verb_t *h = _h->val.verb;
  1675. verb_t *nv = verb_new();
  1676. nv->bonds = list_newk(3);
  1677. nv->bonds->data[0] = f;
  1678. nv->bonds->data[1] = g;
  1679. nv->bonds->data[2] = h;
  1680. size_t l = strlen(f->name) + strlen(g->name) + strlen(h->name) + 1;
  1681. nv->name = malloc_checked_atomic(l);
  1682. snprintf(nv->name, l, "%s%s%s", f->name, g->name, h->name);
  1683. nv->rank[0] = 0;
  1684. nv->rank[1] = 0;
  1685. nv->rank[2] = 0;
  1686. nv->monad = _fork_monad;
  1687. nv->dyad = _fork_dyad;
  1688. if (node->dp < 2)
  1689. nv->mark = true;
  1690. return value_new_verb(nv);
  1691. }
  1692. case N_HOOK:
  1693. {
  1694. value_t *_f = interpreter_walk(state, node->a);
  1695. if (_f->tag != VERB)
  1696. return state->udf;
  1697. value_t *_g = interpreter_walk(state, node->b);
  1698. if (_g->tag != VERB)
  1699. return state->udf;
  1700. verb_t *f = _f->val.verb;
  1701. verb_t *g = _g->val.verb;
  1702. verb_t *nv = verb_new();
  1703. nv->bonds = list_newk(2);
  1704. nv->bonds->data[0] = f;
  1705. nv->bonds->data[1] = g;
  1706. size_t l = strlen(f->name) + strlen(g->name) + 1;
  1707. nv->name = malloc_checked_atomic(l);
  1708. snprintf(nv->name, l, "%s%s", f->name, g->name);
  1709. nv->rank[0] = 0;
  1710. nv->rank[1] = 0;
  1711. nv->rank[2] = 0;
  1712. nv->monad = _hook_monad;
  1713. nv->dyad = _hook_dyad;
  1714. if (node->dp < 2)
  1715. nv->mark = true;
  1716. return value_new_verb(nv);
  1717. }
  1718. case N_BOND:
  1719. {
  1720. value_t *_f = interpreter_walk(state, node->a);
  1721. if (_f->tag != VERB)
  1722. return state->udf;
  1723. value_t *g = interpreter_walk(state, node->b);
  1724. verb_t *f = _f->val.verb;
  1725. verb_t *nv = verb_new();
  1726. nv->bonds = list_newk(2);
  1727. nv->bonds->data[0] = f;
  1728. nv->bonds->data[1] = g;
  1729. char *r = value_show(g);
  1730. size_t l = strlen(r) + strlen(f->name) + 1;
  1731. nv->name = malloc_checked_atomic(l);
  1732. snprintf(nv->name, l, "%s%s", r, f->name);
  1733. GC_FREE(r);
  1734. nv->rank[0] = 0;
  1735. nv->rank[1] = 0;
  1736. nv->rank[2] = 0;
  1737. nv->monad = _bond_monad;
  1738. nv->dyad = _bond_dyad;
  1739. if (node->dp < 2)
  1740. nv->mark = true;
  1741. return value_new_verb(nv);
  1742. }
  1743. case N_OVER:
  1744. {
  1745. value_t *f = interpreter_walk(state, node->a);
  1746. value_t *_g = interpreter_walk(state, node->b);
  1747. if (_g->tag != VERB)
  1748. return state->udf;
  1749. value_t *_h = interpreter_walk(state, node->c);
  1750. if (_h->tag != VERB)
  1751. return state->udf;
  1752. verb_t *g = _g->val.verb;
  1753. verb_t *h = _h->val.verb;
  1754. verb_t *nv = verb_new();
  1755. nv->bonds = list_newk(3);
  1756. nv->bonds->data[0] = f;
  1757. nv->bonds->data[1] = g;
  1758. nv->bonds->data[2] = h;
  1759. char *r = value_show(f);
  1760. size_t l = strlen(r) + strlen(g->name) + strlen(h->name) + 1;
  1761. nv->name = malloc_checked_atomic(l);
  1762. snprintf(nv->name, l, "%s%s%s", r, g->name, h->name);
  1763. GC_FREE(r);
  1764. nv->rank[0] = 0;
  1765. nv->rank[1] = 0;
  1766. nv->rank[2] = 0;
  1767. nv->monad = _over_monad;
  1768. nv->dyad = _over_dyad;
  1769. if (node->dp < 2)
  1770. nv->mark = true;
  1771. return value_new_verb(nv);
  1772. }
  1773. case N_BIND:
  1774. {
  1775. value_t *l = node->a->v;
  1776. node_t *b = node->b;
  1777. if (state->bn || state->args->data || node->dp != 0)
  1778. {
  1779. table_set(state->env, l->val.symbol, interpreter_walk(state, b));
  1780. break;
  1781. }
  1782. unsigned int argc = 0;
  1783. function_collect_args(b, &argc);
  1784. if (argc != 0)
  1785. b = node_new1(N_FUN, b);
  1786. bool t = state->bn;
  1787. state->bn = true;
  1788. value_t *r = interpreter_walk(state, b);
  1789. state->bn = t;
  1790. if (argc != 0)
  1791. {
  1792. GC_FREE(r->val.verb->name);
  1793. r->val.verb->name = l->val.symbol;
  1794. }
  1795. if (r->tag == VERB && argc == 0)
  1796. r->val.verb->mark = true;
  1797. value_t *ov = table_get(state->env, l->val.symbol);
  1798. if (ov && ov->tag == VERB && ov->val.verb->is_fun && r->tag == VERB &&
  1799. r->val.verb->is_fun)
  1800. {
  1801. if (!ov->val.verb->monad && r->val.verb->monad)
  1802. {
  1803. list_set(ov->val.verb->bonds, 0, r->val.verb->bonds->data[0]);
  1804. ov->val.verb->monad = r->val.verb->monad;
  1805. break;
  1806. }
  1807. if (!ov->val.verb->dyad && r->val.verb->dyad)
  1808. {
  1809. list_push(ov->val.verb->bonds, r->val.verb->bonds->data[1]);
  1810. ov->val.verb->dyad = r->val.verb->dyad;
  1811. break;
  1812. }
  1813. }
  1814. table_set(state->env, l->val.symbol, r);
  1815. }
  1816. break;
  1817. }
  1818. return state->nil;
  1819. }
  1820. value_t *verb_const(interpreter_t *state, verb_t *self, value_t *x)
  1821. {
  1822. verb_t *nv = verb_new();
  1823. nv->bonds = list_newk(1);
  1824. nv->bonds->data[0] = x;
  1825. char *r = value_show(x);
  1826. size_t l = strlen(r) + 2;
  1827. nv->name = malloc_checked_atomic(l);
  1828. snprintf(nv->name, l, ":%s", r);
  1829. nv->rank[0] = 0;
  1830. nv->rank[1] = 0;
  1831. nv->rank[2] = 0;
  1832. nv->monad = _constv_monad;
  1833. nv->dyad = _constv_dyad;
  1834. return value_new_verb(nv);
  1835. }
  1836. value_t *verb_bind(interpreter_t *state, verb_t *self, value_t *x, value_t *y)
  1837. {
  1838. if (x->tag == SYMBOL)
  1839. {
  1840. if (y->tag == VERB)
  1841. y->val.verb->mark = true;
  1842. table_set(state->env, x->val.symbol, y);
  1843. }
  1844. return state->udf;
  1845. }
  1846. table_t *Inverses;
  1847. value_t *verb_unbind(interpreter_t *state, verb_t *self, value_t *x)
  1848. {
  1849. if (x->tag == SYMBOL)
  1850. {
  1851. table_delete(state->env, x->val.symbol);
  1852. return state->nil;
  1853. }
  1854. return state->udf;
  1855. }
  1856. value_t *verb_obverse(interpreter_t *state, verb_t *self, value_t *x,
  1857. value_t *y)
  1858. {
  1859. if (x->tag == VERB && y->tag == VERB)
  1860. {
  1861. verb_t *vx = x->val.verb;
  1862. if (!y->val.verb->monad)
  1863. return state->udf;
  1864. if (vx->is_fun)
  1865. return state->udf;
  1866. if (table_has(Inverses, vx->name))
  1867. return state->udf;
  1868. table_set(Inverses, vx->name, y->val.verb);
  1869. return state->nil;
  1870. }
  1871. return state->udf;
  1872. }
  1873. value_t *verb_flip(interpreter_t *state, verb_t *self, value_t *x)
  1874. {
  1875. if (x->tag != ARRAY || !x->val.array->data)
  1876. return state->udf;
  1877. if (!is_arrays_array(x->val.array))
  1878. return state->udf;
  1879. list_t *r = list_new();
  1880. value_t *c0 = x->val.array->data[0];
  1881. list_t *c0t = c0->val.array;
  1882. size_t c0l = c0t->length;
  1883. for (size_t i = 0; i < c0l; i++)
  1884. {
  1885. list_t *nc = list_new();
  1886. for (size_t j = 0; j < x->val.array->length; j++)
  1887. {
  1888. value_t *rw = x->val.array->data[j];
  1889. list_t *rwt = rw->val.array;
  1890. if (!rwt->data)
  1891. return state->udf;
  1892. value_t *v = list_index(rwt, i);
  1893. if (!v)
  1894. v = rwt->data[0];
  1895. list_push(nc, v);
  1896. }
  1897. list_push(r, value_new_array(nc));
  1898. }
  1899. return value_new_array(r);
  1900. }
  1901. value_t *verb_plus(interpreter_t *state, verb_t *self, value_t *x, value_t *y)
  1902. {
  1903. if ((x->tag == NUMBER || x->tag == CHAR) &&
  1904. (y->tag == NUMBER || y->tag == CHAR))
  1905. {
  1906. if (x->tag == CHAR || y->tag == CHAR)
  1907. return value_new_char(get_numeric(x) + get_numeric(y));
  1908. return value_new_number(get_numeric(x) + get_numeric(y));
  1909. }
  1910. return _NAN;
  1911. }
  1912. value_t *verb_sign(interpreter_t *state, verb_t *self, value_t *x)
  1913. {
  1914. if (x->tag == NUMBER)
  1915. return x->val.number < 0 ? NNUMS[0] : x->val.number > 0 ? NUMS[1]
  1916. : NUMS[0];
  1917. return _NAN;
  1918. }
  1919. double gcd(double a, double b)
  1920. {
  1921. if (b != 0)
  1922. return gcd(b, fmod(a, b));
  1923. else
  1924. return fabs(a);
  1925. }
  1926. value_t *verb_gcd(interpreter_t *state, verb_t *self, value_t *x, value_t *y)
  1927. {
  1928. if (x->tag == NUMBER && y->tag == NUMBER)
  1929. return value_new_number(gcd(x->val.number, y->val.number));
  1930. return _NAN;
  1931. }
  1932. value_t *verb_sin(interpreter_t *state, verb_t *self, value_t *x)
  1933. {
  1934. if (x->tag == NUMBER)
  1935. return value_new_number(sin(x->val.number));
  1936. return _NAN;
  1937. }
  1938. value_t *verb_square(interpreter_t *state, verb_t *self, value_t *x)
  1939. {
  1940. if (x->tag == NUMBER)
  1941. return value_new_number(x->val.number * x->val.number);
  1942. return _NAN;
  1943. }
  1944. value_t *verb_negate(interpreter_t *state, verb_t *self, value_t *x)
  1945. {
  1946. if (x->tag == NUMBER)
  1947. return value_new_number(-x->val.number);
  1948. return _NAN;
  1949. }
  1950. value_t *verb_minus(interpreter_t *state, verb_t *self, value_t *x,
  1951. value_t *y)
  1952. {
  1953. if ((x->tag == NUMBER || x->tag == CHAR) &&
  1954. (y->tag == NUMBER || y->tag == CHAR))
  1955. {
  1956. if (x->tag == CHAR || y->tag == CHAR)
  1957. return value_new_char(get_numeric(x) - get_numeric(y));
  1958. return value_new_number(get_numeric(x) - get_numeric(y));
  1959. }
  1960. return _NAN;
  1961. }
  1962. value_t *verb_atan(interpreter_t *state, verb_t *self, value_t *x)
  1963. {
  1964. if (x->tag == NUMBER)
  1965. return value_new_number(atan(x->val.number));
  1966. return _NAN;
  1967. }
  1968. value_t *verb_atan2(interpreter_t *state, verb_t *self, value_t *x,
  1969. value_t *y)
  1970. {
  1971. if (x->tag == NUMBER && y->tag == NUMBER)
  1972. return value_new_number(atan2(x->val.number, y->val.number));
  1973. return _NAN;
  1974. }
  1975. value_t *verb_first(interpreter_t *state, verb_t *self, value_t *x)
  1976. {
  1977. if (x->tag != ARRAY)
  1978. return x;
  1979. if (!x->val.array->data)
  1980. return state->udf;
  1981. return x->val.array->data[0];
  1982. }
  1983. value_t *verb_times(interpreter_t *state, verb_t *self, value_t *x,
  1984. value_t *y)
  1985. {
  1986. if ((x->tag == NUMBER || x->tag == CHAR) &&
  1987. (y->tag == NUMBER || y->tag == CHAR))
  1988. {
  1989. if (x->tag == CHAR || y->tag == CHAR)
  1990. return value_new_char(get_numeric(x) * get_numeric(y));
  1991. return value_new_number(get_numeric(x) * get_numeric(y));
  1992. }
  1993. return _NAN;
  1994. }
  1995. double lcm(double a, double b) { return (a * b) / gcd(a, b); }
  1996. uint64_t factorial(uint64_t n)
  1997. {
  1998. uint64_t r = 1;
  1999. while (n > 0)
  2000. r *= n--;
  2001. return r;
  2002. }
  2003. value_t *verb_factorial(interpreter_t *state, verb_t *self, value_t *x)
  2004. {
  2005. if (x->tag == NUMBER)
  2006. return value_new_number(factorial((uint64_t)fabs(x->val.number)));
  2007. return _NAN;
  2008. }
  2009. value_t *verb_lcm(interpreter_t *state, verb_t *self, value_t *x, value_t *y)
  2010. {
  2011. if (x->tag == NUMBER && y->tag == NUMBER)
  2012. return value_new_number(lcm(x->val.number, y->val.number));
  2013. return _NAN;
  2014. }
  2015. value_t *verb_double(interpreter_t *state, verb_t *self, value_t *x)
  2016. {
  2017. if (x->tag == NUMBER)
  2018. return value_new_number(x->val.number * 2);
  2019. return _NAN;
  2020. }
  2021. value_t *verb_replicate(interpreter_t *state, verb_t *self, value_t *x,
  2022. value_t *y)
  2023. {
  2024. if (x->tag == NUMBER)
  2025. {
  2026. size_t k = fabs(x->val.number);
  2027. list_t *r = list_new();
  2028. while (k--)
  2029. list_push(r, y);
  2030. return value_new_array(r);
  2031. }
  2032. return state->udf;
  2033. }
  2034. value_t *verb_reciprocal(interpreter_t *state, verb_t *self, value_t *x)
  2035. {
  2036. if (x->tag == NUMBER)
  2037. return value_new_number(1 / x->val.number);
  2038. return _NAN;
  2039. }
  2040. value_t *verb_divide(interpreter_t *state, verb_t *self, value_t *x,
  2041. value_t *y)
  2042. {
  2043. if (x->tag == NUMBER && y->tag == NUMBER)
  2044. {
  2045. double ny = y->val.number;
  2046. if (ny == 0)
  2047. return INF;
  2048. return value_new_number(x->val.number / ny);
  2049. }
  2050. return _NAN;
  2051. }
  2052. double npower(double base, int n)
  2053. {
  2054. if (n < 0)
  2055. return npower(1 / base, -n);
  2056. else if (n == 0)
  2057. return 1.0;
  2058. else if (n == 1)
  2059. return base;
  2060. else if (n % 2)
  2061. return base * npower(base * base, n / 2);
  2062. else
  2063. return npower(base * base, n / 2);
  2064. }
  2065. double nroot(double base, int n)
  2066. {
  2067. if (n == 1)
  2068. return base;
  2069. else if (n <= 0 || base < 0)
  2070. return NAN;
  2071. else
  2072. {
  2073. double delta, x = base / n;
  2074. do
  2075. {
  2076. delta = (base / npower(x, n - 1) - x) / n;
  2077. x += delta;
  2078. } while (fabs(delta) >= 1e-8);
  2079. return x;
  2080. }
  2081. }
  2082. value_t *verb_sqrt(interpreter_t *state, verb_t *self, value_t *x)
  2083. {
  2084. if (x->tag == NUMBER)
  2085. return value_new_number(sqrt(x->val.number));
  2086. return _NAN;
  2087. }
  2088. value_t *verb_root(interpreter_t *state, verb_t *self, value_t *x, value_t *y)
  2089. {
  2090. if (x->tag == NUMBER && y->tag == NUMBER)
  2091. return value_new_number(nroot(y->val.number, x->val.number));
  2092. return _NAN;
  2093. }
  2094. value_t *verb_halve(interpreter_t *state, verb_t *self, value_t *x)
  2095. {
  2096. if (x->tag == NUMBER)
  2097. return value_new_number(x->val.number / 2);
  2098. return _NAN;
  2099. }
  2100. value_t *verb_idivide(interpreter_t *state, verb_t *self, value_t *x,
  2101. value_t *y)
  2102. {
  2103. if ((x->tag == NUMBER || x->tag == CHAR) &&
  2104. (y->tag == NUMBER || y->tag == CHAR))
  2105. {
  2106. double a = get_numeric(x);
  2107. double b = get_numeric(y);
  2108. if (x->tag == CHAR || y->tag == CHAR)
  2109. return b == 0 ? state->udf : value_new_char(fabs(trunc(a / b)));
  2110. if (b == 0)
  2111. return INF;
  2112. return value_new_number(trunc(a / b));
  2113. }
  2114. return _NAN;
  2115. }
  2116. value_t *verb_enlist(interpreter_t *state, verb_t *self, value_t *x);
  2117. value_t *verb_pred(interpreter_t *state, verb_t *self, value_t *x);
  2118. value_t *verb_range(interpreter_t *state, verb_t *self, value_t *x, value_t *y);
  2119. value_t *verb_enum(interpreter_t *state, verb_t *self, value_t *x)
  2120. {
  2121. if (value_equals(x, NUMS[1]))
  2122. return verb_enlist(state, NULL, NUMS[0]);
  2123. else if (value_equals(x, NUMS[0]))
  2124. return state->unit;
  2125. return verb_range(state, self, NUMS[0], verb_pred(state, self, x));
  2126. }
  2127. value_t *verb_mod(interpreter_t *state, verb_t *self, value_t *x, value_t *y)
  2128. {
  2129. if (x->tag == NUMBER && y->tag == NUMBER)
  2130. {
  2131. double ny = y->val.number;
  2132. if (ny == 0)
  2133. return _NAN;
  2134. return value_new_number(fmod(x->val.number, ny));
  2135. }
  2136. return _NAN;
  2137. }
  2138. value_t *verb_take(interpreter_t *state, verb_t *self, value_t *x, value_t *y);
  2139. value_t *verb_drop(interpreter_t *state, verb_t *self, value_t *x, value_t *y);
  2140. bool is_bad_num(double v)
  2141. {
  2142. return isnan(v) || v == INFINITY || v == -INFINITY;
  2143. }
  2144. value_t *verb_odometer(interpreter_t *state, verb_t *self, value_t *x)
  2145. {
  2146. if (x->tag != ARRAY)
  2147. x = verb_enlist(state, NULL, x);
  2148. else if (x->val.array->length < 2)
  2149. return state->udf;
  2150. size_t p = 1;
  2151. size_t xl = x->val.array->length;
  2152. for (size_t i = 0; i < xl; i++)
  2153. {
  2154. value_t *it = x->val.array->data[i];
  2155. if (it->tag != NUMBER || is_bad_num(it->val.number))
  2156. return state->udf;
  2157. p *= (size_t)(it->val.number);
  2158. }
  2159. if (p < 1)
  2160. return state->unit;
  2161. uint64_t *lims = malloc_checked_atomic(sizeof(uint64_t) * xl);
  2162. for (size_t i = 0; i < xl; i++)
  2163. lims[i] = (size_t)(((value_t *)x->val.array->data[i])->val.number);
  2164. uint64_t **z = malloc_checked(sizeof(uint64_t *) * p);
  2165. for (size_t i = 0; i < p; i++)
  2166. z[i] = malloc_checked_atomic(sizeof(uint64_t) * xl);
  2167. for (size_t i = 0; i < p - 1; i++)
  2168. {
  2169. uint64_t *r = z[i];
  2170. uint64_t *s = z[i + 1];
  2171. bool carry = true;
  2172. for (size_t j = 0; j < xl; j++)
  2173. {
  2174. uint64_t a = xl - 1 - j;
  2175. s[a] = r[a];
  2176. if (carry)
  2177. {
  2178. s[a]++;
  2179. carry = false;
  2180. }
  2181. if (s[a] >= lims[a])
  2182. {
  2183. s[a] = 0;
  2184. carry = true;
  2185. }
  2186. }
  2187. }
  2188. GC_FREE(lims);
  2189. list_t *r = list_newk(p);
  2190. for (size_t i = 0; i < p; i++)
  2191. {
  2192. list_t *rw = list_newk(xl);
  2193. for (size_t j = 0; j < xl; j++)
  2194. rw->data[j] = value_new_number(z[i][j]);
  2195. r->data[i] = value_new_array(rw);
  2196. GC_FREE(z[i]);
  2197. }
  2198. GC_FREE(z);
  2199. return value_new_array(r);
  2200. }
  2201. value_t *verb_chunks(interpreter_t *state, verb_t *self, value_t *x,
  2202. value_t *y)
  2203. {
  2204. if (x->tag != NUMBER)
  2205. return state->udf;
  2206. if (y->tag != ARRAY)
  2207. y = verb_enlist(state, NULL, y);
  2208. else if (!y->val.array->data)
  2209. return y;
  2210. list_t *r = list_new();
  2211. size_t cl = fabs(x->val.number);
  2212. for (size_t i = 0; i < y->val.array->length; i += cl)
  2213. list_push(r, verb_take(state, NULL, value_new_number(cl),
  2214. verb_drop(state, NULL, value_new_number(i), y)));
  2215. return value_new_array(r);
  2216. }
  2217. value_t *verb_exp(interpreter_t *state, verb_t *self, value_t *x)
  2218. {
  2219. if (x->tag == NUMBER)
  2220. return value_new_number(exp(x->val.number));
  2221. return _NAN;
  2222. }
  2223. value_t *verb_power(interpreter_t *state, verb_t *self, value_t *x,
  2224. value_t *y)
  2225. {
  2226. if (x->tag == NUMBER && y->tag == NUMBER)
  2227. return value_new_number(pow(x->val.number, y->val.number));
  2228. return _NAN;
  2229. }
  2230. value_t *verb_nlog(interpreter_t *state, verb_t *self, value_t *x)
  2231. {
  2232. if (x->tag == NUMBER)
  2233. return value_new_number(log(x->val.number));
  2234. return _NAN;
  2235. }
  2236. value_t *verb_log(interpreter_t *state, verb_t *self, value_t *x, value_t *y)
  2237. {
  2238. if (x->tag == NUMBER && y->tag == NUMBER)
  2239. return value_new_number(log(y->val.number) / log(x->val.number));
  2240. return _NAN;
  2241. }
  2242. int bits_needed(uint32_t value)
  2243. {
  2244. int bits = 0;
  2245. for (int bit_test = 16; bit_test > 0; bit_test >>= 1)
  2246. {
  2247. if (value >> bit_test != 0)
  2248. {
  2249. bits += bit_test;
  2250. value >>= bit_test;
  2251. }
  2252. }
  2253. return bits + value;
  2254. }
  2255. value_t *verb_bits(interpreter_t *state, verb_t *self, value_t *x)
  2256. {
  2257. if (x->tag == NUMBER)
  2258. {
  2259. int n = x->val.number;
  2260. int bk = bits_needed(n);
  2261. list_t *r = list_newk(bk);
  2262. for (int i = 0; i < bk; i++)
  2263. if ((n & (1 << i)) >> i)
  2264. r->data[i] = NUMS[1];
  2265. else
  2266. r->data[i] = NUMS[0];
  2267. return value_new_array(r);
  2268. }
  2269. return state->udf;
  2270. }
  2271. value_t *verb_reverse(interpreter_t *state, verb_t *self, value_t *x);
  2272. value_t *verb_base(interpreter_t *state, verb_t *self, value_t *x, value_t *y)
  2273. {
  2274. if (x->tag == NUMBER && y->tag == NUMBER)
  2275. {
  2276. size_t v = fabs(y->val.number);
  2277. size_t b = fabs(x->val.number);
  2278. if (b < 2)
  2279. return state->udf;
  2280. list_t *r = list_new();
  2281. while (v > 0)
  2282. {
  2283. list_push(r, value_new_number(v % b));
  2284. v /= b;
  2285. }
  2286. return verb_reverse(state, NULL, value_new_array(r));
  2287. }
  2288. return state->udf;
  2289. }
  2290. ssize_t indexOf(list_t *l, value_t *x)
  2291. {
  2292. if (!l->data)
  2293. return -1;
  2294. for (size_t i = 0; i < l->length; i++)
  2295. if (value_equals(l->data[i], x))
  2296. return i;
  2297. return -1;
  2298. }
  2299. value_t *verb_group(interpreter_t *state, verb_t *self, value_t *x)
  2300. {
  2301. if (x->tag != ARRAY)
  2302. x = verb_enlist(state, NULL, x);
  2303. else if (!x->val.array->data)
  2304. return x;
  2305. list_t *r = list_new();
  2306. list_t *is = list_new();
  2307. for (size_t i = 0; i < x->val.array->length; i++)
  2308. {
  2309. value_t *v = x->val.array->data[i];
  2310. ssize_t n = indexOf(is, v);
  2311. if (n < 0)
  2312. {
  2313. list_push(r, verb_enlist(state, NULL, value_new_number(i)));
  2314. list_push(is, v);
  2315. }
  2316. else
  2317. {
  2318. value_t *tmp = list_index(r, n);
  2319. list_push(tmp->val.array, value_new_number(i));
  2320. }
  2321. }
  2322. GC_FREE(is->data);
  2323. GC_FREE(is);
  2324. return value_new_array(r);
  2325. }
  2326. value_t *verb_buckets(interpreter_t *state, verb_t *self, value_t *x,
  2327. value_t *y)
  2328. {
  2329. if (x->tag != ARRAY)
  2330. x = verb_enlist(state, NULL, x);
  2331. else if (!x->val.array->data)
  2332. return y;
  2333. if (y->tag != ARRAY)
  2334. y = verb_enlist(state, NULL, x);
  2335. else if (!y->val.array->data)
  2336. return y;
  2337. list_t *r = list_new();
  2338. size_t mx = 0;
  2339. for (size_t i = 0; i < x->val.array->length; i++)
  2340. {
  2341. value_t *v = x->val.array->data[i];
  2342. if (v->tag != NUMBER)
  2343. break;
  2344. ssize_t j = v->val.number;
  2345. if (j >= 0 && j > mx)
  2346. mx = j;
  2347. }
  2348. for (size_t i = 0; i < mx + 1; i++)
  2349. list_push(r, list_new());
  2350. if (!r->data)
  2351. {
  2352. GC_FREE(r);
  2353. return state->unit;
  2354. }
  2355. for (size_t i = 0; i < x->val.array->length; i++)
  2356. {
  2357. if (i >= y->val.array->length)
  2358. break;
  2359. value_t *v = x->val.array->data[i];
  2360. if (v->tag != NUMBER)
  2361. break;
  2362. ssize_t j = v->val.number;
  2363. if (j >= 0)
  2364. {
  2365. list_t *b = list_index(r, j);
  2366. if (b)
  2367. list_push(b, y->val.array->data[i]);
  2368. }
  2369. }
  2370. if (x->val.array->length < y->val.array->length)
  2371. {
  2372. list_t *lb = list_new();
  2373. for (size_t i = x->val.array->length; i < y->val.array->length; i++)
  2374. list_push(lb, y->val.array->data[i]);
  2375. list_push(r, lb);
  2376. }
  2377. for (size_t i = 0; i < r->length; i++)
  2378. r->data[i] = value_new_array(r->data[i]);
  2379. return value_new_array(r);
  2380. }
  2381. value_t *verb_equals(interpreter_t *state, verb_t *self, value_t *x,
  2382. value_t *y)
  2383. {
  2384. return value_equals(x, y) ? NUMS[1] : NUMS[0];
  2385. }
  2386. value_t *verb_permute(interpreter_t *state, verb_t *self, value_t *x)
  2387. {
  2388. if (x->tag != ARRAY || x->val.array->length < 2)
  2389. return x;
  2390. list_t *permutation = list_copy(x->val.array);
  2391. size_t length = permutation->length;
  2392. list_t *result = list_new();
  2393. list_push(result, list_copy(permutation));
  2394. list_t *c = list_new();
  2395. for (size_t i = 0; i < length; i++)
  2396. {
  2397. size_t *n = malloc_checked_atomic(sizeof(size_t));
  2398. list_push(c, n);
  2399. }
  2400. size_t k;
  2401. list_t *p;
  2402. size_t i = 0;
  2403. while (i < length)
  2404. {
  2405. size_t *n = list_index(c, i);
  2406. if ((*n) < i)
  2407. {
  2408. k = i % 2 && (*n);
  2409. p = list_index(permutation, i);
  2410. list_set(permutation, i, list_index(permutation, k));
  2411. list_set(permutation, k, p);
  2412. *n = (*n) + 1;
  2413. i = 1;
  2414. list_push(result, list_copy(permutation));
  2415. }
  2416. else
  2417. {
  2418. *n = 0;
  2419. i++;
  2420. }
  2421. }
  2422. for (size_t i = 0; i < c->length; i++)
  2423. GC_FREE(c->data[i]);
  2424. GC_FREE(c->data);
  2425. GC_FREE(c);
  2426. GC_FREE(permutation->data);
  2427. GC_FREE(permutation);
  2428. for (size_t i = 0; i < result->length; i++)
  2429. result->data[i] = value_new_array(result->data[i]);
  2430. return value_new_array(result);
  2431. }
  2432. value_t *verb_occurences(interpreter_t *state, verb_t *self, value_t *x)
  2433. {
  2434. if (x->tag != ARRAY)
  2435. x = verb_enlist(state, NULL, x);
  2436. else if (!x->val.array->data)
  2437. return x;
  2438. list_t *table = list_new();
  2439. list_t *r = list_new();
  2440. for (size_t i = 0; i < x->val.array->length; i++)
  2441. {
  2442. bool f = false;
  2443. value_t *it = x->val.array->data[i];
  2444. for (size_t j = 0; j < table->length; j++)
  2445. {
  2446. list_t *p = table->data[j];
  2447. if (value_equals(p->data[0], it))
  2448. {
  2449. size_t *n = p->data[1];
  2450. *n = (*n) + 1;
  2451. list_push(r, value_new_number(*n));
  2452. f = true;
  2453. break;
  2454. }
  2455. }
  2456. if (!f)
  2457. {
  2458. list_t *p = list_newk(2);
  2459. p->data[0] = it;
  2460. size_t *n = malloc_checked_atomic(sizeof(size_t));
  2461. p->data[1] = n;
  2462. list_push(table, p);
  2463. list_push(r, NUMS[0]);
  2464. }
  2465. }
  2466. for (size_t i = 0; i < table->length; i++)
  2467. {
  2468. list_t *p = table->data[i];
  2469. GC_FREE(p->data[1]);
  2470. GC_FREE(p->data);
  2471. GC_FREE(p);
  2472. }
  2473. GC_FREE(table->data);
  2474. GC_FREE(table);
  2475. return value_new_array(r);
  2476. }
  2477. value_t *verb_mask(interpreter_t *state, verb_t *self, value_t *x, value_t *y)
  2478. {
  2479. if (x->tag != ARRAY)
  2480. x = verb_enlist(state, NULL, x);
  2481. else if (!x->val.array->data)
  2482. return x;
  2483. if (y->tag != ARRAY)
  2484. y = verb_enlist(state, NULL, y);
  2485. list_t *r = list_new();
  2486. value_t *l = value_new_number(y->val.array->length);
  2487. size_t n = 0;
  2488. size_t k = x->val.array->length;
  2489. for (size_t i = 0; i < k; i++)
  2490. {
  2491. value_t *s = verb_take(state, NULL, l,
  2492. verb_drop(state, NULL, value_new_number(i), x));
  2493. if (value_equals(s, y))
  2494. {
  2495. n++;
  2496. for (size_t j = 0; j < l->val.number; j++, i++)
  2497. list_push(r, value_new_number(n));
  2498. i--;
  2499. }
  2500. else
  2501. list_push(r, NUMS[0]);
  2502. }
  2503. return value_new_array(r);
  2504. }
  2505. value_t *verb_classify(interpreter_t *state, verb_t *self, value_t *x)
  2506. {
  2507. if (x->tag != ARRAY)
  2508. x = verb_enlist(state, NULL, x);
  2509. else if (!x->val.array->data)
  2510. return x;
  2511. list_t *table = list_new();
  2512. list_t *r = list_new();
  2513. for (size_t i = 0; i < x->val.array->length; i++)
  2514. {
  2515. bool f = false;
  2516. value_t *it = x->val.array->data[i];
  2517. for (size_t j = 0; j < table->length; j++)
  2518. {
  2519. list_t *p = table->data[j];
  2520. if (value_equals(p->data[0], it))
  2521. {
  2522. size_t *n = p->data[1];
  2523. list_push(r, value_new_number(*n));
  2524. f = true;
  2525. break;
  2526. }
  2527. }
  2528. if (!f)
  2529. {
  2530. list_t *p = list_newk(2);
  2531. p->data[0] = it;
  2532. size_t *n = malloc_checked_atomic(sizeof(size_t));
  2533. *n = i++;
  2534. p->data[1] = n;
  2535. list_push(table, p);
  2536. list_push(r, value_new_number(*n));
  2537. }
  2538. }
  2539. for (size_t i = 0; i < table->length; i++)
  2540. {
  2541. list_t *p = table->data[i];
  2542. GC_FREE(p->data[1]);
  2543. GC_FREE(p->data);
  2544. GC_FREE(p);
  2545. }
  2546. GC_FREE(table->data);
  2547. GC_FREE(table);
  2548. return value_new_array(r);
  2549. }
  2550. value_t *verb_unbits(interpreter_t *state, verb_t *self, value_t *x)
  2551. {
  2552. if (x->tag != ARRAY)
  2553. x = verb_enlist(state, NULL, x);
  2554. int n = 0;
  2555. for (size_t i = 0; i < x->val.array->length; i++)
  2556. {
  2557. if (value_is_truthy(x->val.array->data[i]))
  2558. n |= (int)1 << (int)i;
  2559. else
  2560. n &= ~((int)1 << (int)i);
  2561. }
  2562. return value_new_number(n);
  2563. }
  2564. value_t *verb_unbase(interpreter_t *state, verb_t *self, value_t *x,
  2565. value_t *y)
  2566. {
  2567. if (x->tag == NUMBER)
  2568. {
  2569. size_t b = fabs(x->val.number);
  2570. if (b < 2)
  2571. return state->udf;
  2572. if (y->tag != ARRAY)
  2573. y = verb_enlist(state, NULL, y);
  2574. size_t n = 0;
  2575. if (!y->val.array->data)
  2576. return state->udf;
  2577. for (size_t i = 0; i < y->val.array->length; i++)
  2578. {
  2579. value_t *v = y->val.array->data[i];
  2580. if (v->tag != NUMBER)
  2581. break;
  2582. size_t k = fabs(v->val.number);
  2583. n = n * b + k;
  2584. }
  2585. return value_new_number(n);
  2586. }
  2587. return state->udf;
  2588. }
  2589. value_t *verb_not(interpreter_t *state, verb_t *self, value_t *x)
  2590. {
  2591. return value_is_truthy(x) ? NUMS[0] : NUMS[1];
  2592. }
  2593. value_t *verb_not_equals(interpreter_t *state, verb_t *self, value_t *x,
  2594. value_t *y)
  2595. {
  2596. return !value_equals(x, y) ? NUMS[1] : NUMS[0];
  2597. }
  2598. value_t *verb_pred(interpreter_t *state, verb_t *self, value_t *x)
  2599. {
  2600. if (x->tag == NUMBER)
  2601. return value_new_number(x->val.number - 1);
  2602. else if (x->tag == CHAR)
  2603. return value_new_char(x->val._char - 1);
  2604. return _NAN;
  2605. }
  2606. value_t *verb_less(interpreter_t *state, verb_t *self, value_t *x, value_t *y)
  2607. {
  2608. if ((x->tag == NUMBER || x->tag == CHAR) &&
  2609. (y->tag == NUMBER || y->tag == CHAR))
  2610. {
  2611. if (get_numeric(x) < get_numeric(y))
  2612. return NUMS[1];
  2613. return NUMS[0];
  2614. }
  2615. return _NAN;
  2616. }
  2617. value_t *verb_floor(interpreter_t *state, verb_t *self, value_t *x)
  2618. {
  2619. if (x->tag == NUMBER)
  2620. return value_new_number(floor(x->val.number));
  2621. return _NAN;
  2622. }
  2623. int _compare_up(const void *a, const void *b)
  2624. {
  2625. value_t *x = (*(list_t **)a)->data[0];
  2626. value_t *y = (*(list_t **)b)->data[0];
  2627. if ((x->tag == NUMBER || x->tag == CHAR) &&
  2628. (y->tag == NUMBER || y->tag == CHAR))
  2629. {
  2630. if (get_numeric(x) > get_numeric(y))
  2631. return 1;
  2632. else if (get_numeric(x) < get_numeric(y))
  2633. return -1;
  2634. return 0;
  2635. }
  2636. return 0;
  2637. }
  2638. int _compare_down(const void *a, const void *b)
  2639. {
  2640. value_t *x = (*(list_t **)a)->data[0];
  2641. value_t *y = (*(list_t **)b)->data[0];
  2642. if ((x->tag == NUMBER || x->tag == CHAR) &&
  2643. (y->tag == NUMBER || y->tag == CHAR))
  2644. {
  2645. if (get_numeric(x) > get_numeric(y))
  2646. return -1;
  2647. else if (get_numeric(x) < get_numeric(y))
  2648. return 1;
  2649. return 0;
  2650. }
  2651. return 0;
  2652. }
  2653. value_t *_grade(value_t *x, bool down)
  2654. {
  2655. if (x->tag != ARRAY || x->val.array->length < 2)
  2656. return x;
  2657. list_t *ps = list_newk(x->val.array->length);
  2658. for (size_t i = 0; i < x->val.array->length; i++)
  2659. {
  2660. list_t *p = list_newk(2);
  2661. p->data[0] = x->val.array->data[i];
  2662. p->data[1] = value_new_number(i);
  2663. ps->data[i] = p;
  2664. }
  2665. qsort(ps->data, ps->length, sizeof(void *),
  2666. down ? _compare_down : _compare_up);
  2667. for (size_t i = 0; i < ps->length; i++)
  2668. {
  2669. list_t *p = ps->data[i];
  2670. ps->data[i] = p->data[1];
  2671. GC_FREE(p->data);
  2672. GC_FREE(p);
  2673. }
  2674. return value_new_array(ps);
  2675. }
  2676. value_t *verb_gradedown(interpreter_t *state, verb_t *self, value_t *x)
  2677. {
  2678. return _grade(x, true);
  2679. }
  2680. value_t *verb_nudge_left(interpreter_t *state, verb_t *self, value_t *x,
  2681. value_t *y)
  2682. {
  2683. if (y->tag != ARRAY)
  2684. return verb_enlist(state, NULL, x);
  2685. else if (!y->val.array->data)
  2686. return y;
  2687. else if (y->val.array->length < 2)
  2688. return verb_enlist(state, NULL, x);
  2689. list_t *r = list_new();
  2690. for (size_t i = 1; i < y->val.array->length; i++)
  2691. list_push(r, y->val.array->data[i]);
  2692. list_push(r, x);
  2693. return value_new_array(r);
  2694. }
  2695. value_t *verb_lesseq(interpreter_t *state, verb_t *self, value_t *x,
  2696. value_t *y)
  2697. {
  2698. if (value_equals(x, y))
  2699. return NUMS[1];
  2700. if ((x->tag == NUMBER || x->tag == CHAR) &&
  2701. (y->tag == NUMBER || y->tag == CHAR))
  2702. {
  2703. if (get_numeric(x) < get_numeric(y))
  2704. return NUMS[1];
  2705. return NUMS[0];
  2706. }
  2707. return _NAN;
  2708. }
  2709. value_t *verb_succ(interpreter_t *state, verb_t *self, value_t *x)
  2710. {
  2711. if (x->tag == NUMBER)
  2712. return value_new_number(x->val.number + 1);
  2713. else if (x->tag == CHAR)
  2714. return value_new_char(x->val._char + 1);
  2715. return _NAN;
  2716. }
  2717. value_t *verb_ceil(interpreter_t *state, verb_t *self, value_t *x)
  2718. {
  2719. if (x->tag == NUMBER)
  2720. return value_new_number(ceil(x->val.number));
  2721. return _NAN;
  2722. }
  2723. value_t *verb_greater(interpreter_t *state, verb_t *self, value_t *x,
  2724. value_t *y)
  2725. {
  2726. if ((x->tag == NUMBER || x->tag == CHAR) &&
  2727. (y->tag == NUMBER || y->tag == CHAR))
  2728. {
  2729. if (get_numeric(x) > get_numeric(y))
  2730. return NUMS[1];
  2731. return NUMS[0];
  2732. }
  2733. return _NAN;
  2734. }
  2735. value_t *verb_greatereq(interpreter_t *state, verb_t *self, value_t *x,
  2736. value_t *y)
  2737. {
  2738. if (value_equals(x, y))
  2739. return NUMS[1];
  2740. if ((x->tag == NUMBER || x->tag == CHAR) &&
  2741. (y->tag == NUMBER || y->tag == CHAR))
  2742. {
  2743. if (get_numeric(x) > get_numeric(y))
  2744. return NUMS[1];
  2745. return NUMS[0];
  2746. }
  2747. return _NAN;
  2748. }
  2749. value_t *verb_gradeup(interpreter_t *state, verb_t *self, value_t *x)
  2750. {
  2751. return _grade(x, false);
  2752. }
  2753. value_t *verb_nudge_right(interpreter_t *state, verb_t *self, value_t *x,
  2754. value_t *y)
  2755. {
  2756. if (y->tag != ARRAY)
  2757. return verb_enlist(state, NULL, x);
  2758. else if (!y->val.array->data)
  2759. return y;
  2760. else if (y->val.array->length < 2)
  2761. return verb_enlist(state, NULL, x);
  2762. list_t *r = list_new();
  2763. list_push(r, x);
  2764. for (size_t i = 0; i < y->val.array->length - 1; i++)
  2765. list_push(r, y->val.array->data[i]);
  2766. return value_new_array(r);
  2767. }
  2768. value_t *verb_enlist(interpreter_t *state, verb_t *self, value_t *x)
  2769. {
  2770. list_t *l = list_new();
  2771. list_push(l, x);
  2772. return value_new_array(l);
  2773. }
  2774. value_t *verb_enpair(interpreter_t *state, verb_t *self, value_t *x,
  2775. value_t *y);
  2776. value_t *verb_join(interpreter_t *state, verb_t *self, value_t *x, value_t *y)
  2777. {
  2778. list_t *l;
  2779. if (x->tag == ARRAY && y->tag == ARRAY)
  2780. {
  2781. if (!x->val.array->data && !y->val.array->data)
  2782. return state->unit;
  2783. else if (!x->val.array->data)
  2784. return y;
  2785. else if (!y->val.array->data)
  2786. return x;
  2787. l = list_newk(x->val.array->length + y->val.array->length);
  2788. size_t lp = 0;
  2789. for (size_t i = 0; i < x->val.array->length; i++)
  2790. l->data[lp++] = x->val.array->data[i];
  2791. for (size_t i = 0; i < y->val.array->length; i++)
  2792. l->data[lp++] = y->val.array->data[i];
  2793. }
  2794. else if (x->tag == ARRAY && y->tag != ARRAY)
  2795. {
  2796. if (!x->val.array->data)
  2797. return verb_enlist(state, NULL, y);
  2798. l = list_newk(x->val.array->length + 1);
  2799. size_t lp = 0;
  2800. for (size_t i = 0; i < x->val.array->length; i++)
  2801. l->data[lp++] = x->val.array->data[i];
  2802. l->data[lp++] = y;
  2803. }
  2804. else if (x->tag != ARRAY && y->tag == ARRAY)
  2805. {
  2806. if (!y->val.array->data)
  2807. return verb_enlist(state, NULL, x);
  2808. l = list_newk(y->val.array->length + 1);
  2809. size_t lp = 0;
  2810. l->data[lp++] = x;
  2811. for (size_t i = 0; i < y->val.array->length; i++)
  2812. l->data[lp++] = y->val.array->data[i];
  2813. }
  2814. else
  2815. return verb_enpair(state, NULL, x, y);
  2816. return value_new_array(l);
  2817. }
  2818. value_t *verb_enpair(interpreter_t *state, verb_t *self, value_t *x,
  2819. value_t *y)
  2820. {
  2821. list_t *l = list_newk(2);
  2822. l->data[0] = x;
  2823. l->data[1] = y;
  2824. return value_new_array(l);
  2825. }
  2826. value_t *verb_selfref1(interpreter_t *state, verb_t *self, value_t *x)
  2827. {
  2828. verb_t *v;
  2829. if (state->args->data)
  2830. v = list_index(list_index(state->args, -1), -1);
  2831. else if (state->selfrefs->data)
  2832. v = list_index(state->selfrefs, -1);
  2833. else
  2834. return state->udf;
  2835. return each_rank(state, v, x, 0, v->rank[0]);
  2836. }
  2837. value_t *verb_selfref2(interpreter_t *state, verb_t *self, value_t *x,
  2838. value_t *y)
  2839. {
  2840. verb_t *v;
  2841. if (state->args->data)
  2842. v = list_index(list_index(state->args, -1), -1);
  2843. else if (state->selfrefs->data)
  2844. v = list_index(state->selfrefs, -1);
  2845. else
  2846. return state->udf;
  2847. return together(state, v, x, y, 0, 0, v->rank[1], v->rank[2]);
  2848. }
  2849. value_t *verb_take(interpreter_t *state, verb_t *self, value_t *x, value_t *y)
  2850. {
  2851. if (x->tag == NUMBER)
  2852. {
  2853. if (y->tag != ARRAY)
  2854. {
  2855. if (x->val.number == 0)
  2856. return state->unit;
  2857. else
  2858. return x;
  2859. }
  2860. if (x->val.number == 0 || !y->val.array->data)
  2861. return state->unit;
  2862. bool rev = x->val.number < 0;
  2863. size_t k = (size_t)fabs(x->val.number);
  2864. list_t *r = list_newk(y->val.array->length < k ? y->val.array->length : k);
  2865. size_t p = 0;
  2866. if (rev)
  2867. for (ssize_t i = k; i > 0; i--)
  2868. {
  2869. value_t *v = list_index(y->val.array, -i);
  2870. if (!v)
  2871. continue;
  2872. r->data[p++] = v;
  2873. }
  2874. else
  2875. for (size_t i = 0; i < y->val.array->length && k; i++, k--)
  2876. r->data[p++] = y->val.array->data[i];
  2877. return value_new_array(r);
  2878. }
  2879. return state->udf;
  2880. }
  2881. value_t *verb_where(interpreter_t *state, verb_t *self, value_t *x)
  2882. {
  2883. if (x->tag != ARRAY)
  2884. x = verb_enlist(state, NULL, x);
  2885. else if (!x->val.array->data)
  2886. return x;
  2887. list_t *r = list_new();
  2888. for (size_t i = 0; i < x->val.array->length; i++)
  2889. {
  2890. value_t *a = x->val.array->data[i];
  2891. if (a->tag != NUMBER)
  2892. break;
  2893. size_t k = fabs(a->val.number);
  2894. for (size_t j = 0; j < k; j++)
  2895. list_push(r, value_new_number(i));
  2896. }
  2897. return value_new_array(r);
  2898. }
  2899. value_t *verb_copy(interpreter_t *state, verb_t *self, value_t *x, value_t *y)
  2900. {
  2901. if (x->tag != ARRAY)
  2902. x = verb_enlist(state, NULL, x);
  2903. if (y->tag != ARRAY)
  2904. y = verb_enlist(state, NULL, y);
  2905. list_t *tx = x->val.array;
  2906. list_t *ty = y->val.array;
  2907. if (!tx->data || !ty->data)
  2908. return state->unit;
  2909. list_t *r = list_new();
  2910. for (size_t i = 0; i < tx->length; i++)
  2911. {
  2912. value_t *a = tx->data[i];
  2913. value_t *b = ty->data[i >= ty->length ? ty->length - 1 : i];
  2914. if (b->tag != NUMBER)
  2915. break;
  2916. size_t k = fabs(b->val.number);
  2917. for (size_t i = 0; i < k; i++)
  2918. list_push(r, a);
  2919. }
  2920. return value_new_array(r);
  2921. }
  2922. value_t *verb_nub(interpreter_t *state, verb_t *self, value_t *x)
  2923. {
  2924. if (x->tag != ARRAY || !x->val.array->data)
  2925. return x;
  2926. list_t *n = list_newk(x->val.array->length);
  2927. list_t *r = list_new();
  2928. for (size_t i = 0; i < x->val.array->length; i++)
  2929. {
  2930. bool u = true;
  2931. for (size_t j = 0; j < r->length; j++)
  2932. if (value_equals(x->val.array->data[i], r->data[j]))
  2933. {
  2934. u = false;
  2935. break;
  2936. }
  2937. if (u)
  2938. list_push(r, x->val.array->data[i]);
  2939. n->data[i] = u ? NUMS[1] : NUMS[0];
  2940. }
  2941. GC_FREE(r->data);
  2942. GC_FREE(r);
  2943. return value_new_array(n);
  2944. }
  2945. value_t *verb_drop(interpreter_t *state, verb_t *self, value_t *x, value_t *y)
  2946. {
  2947. if (x->tag == NUMBER)
  2948. {
  2949. if (y->tag != ARRAY)
  2950. {
  2951. if (x->val.number == 0)
  2952. return y;
  2953. else
  2954. return state->unit;
  2955. }
  2956. if (x->val.number == 0)
  2957. return y;
  2958. if (!y->val.array->data)
  2959. return state->unit;
  2960. bool rev = x->val.number < 0;
  2961. size_t k = (size_t)fabs(x->val.number);
  2962. if (k >= y->val.array->length)
  2963. return state->unit;
  2964. if (rev)
  2965. {
  2966. size_t l = y->val.array->length;
  2967. if (k >= l)
  2968. return state->unit;
  2969. return verb_take(state, NULL, value_new_number(l - k), y);
  2970. }
  2971. list_t *r = list_newk(y->val.array->length - k);
  2972. size_t rp = 0;
  2973. for (size_t i = k; i < y->val.array->length; i++)
  2974. r->data[rp++] = y->val.array->data[i];
  2975. return value_new_array(r);
  2976. }
  2977. return state->udf;
  2978. }
  2979. value_t *verb_unique(interpreter_t *state, verb_t *self, value_t *x)
  2980. {
  2981. if (x->tag != ARRAY || !x->val.array->data)
  2982. return x;
  2983. list_t *r = list_new();
  2984. for (size_t i = 0; i < x->val.array->length; i++)
  2985. {
  2986. bool u = true;
  2987. for (size_t j = 0; j < r->length; j++)
  2988. if (value_equals(x->val.array->data[i], r->data[j]))
  2989. {
  2990. u = false;
  2991. break;
  2992. }
  2993. if (u)
  2994. list_push(r, x->val.array->data[i]);
  2995. }
  2996. return value_new_array(r);
  2997. }
  2998. value_t *verb_find(interpreter_t *state, verb_t *self, value_t *x, value_t *y)
  2999. {
  3000. if (y->tag != ARRAY)
  3001. y = verb_enlist(state, self, y);
  3002. else if (!y->val.array->data)
  3003. return state->unit;
  3004. list_t *r = list_new();
  3005. for (size_t i = 0; i < y->val.array->length; i++)
  3006. if (value_equals(y->val.array->data[i], x))
  3007. list_push(r, value_new_number(i));
  3008. return value_new_array(r);
  3009. }
  3010. value_t *verb_indexof(interpreter_t *state, verb_t *self, value_t *x,
  3011. value_t *y)
  3012. {
  3013. if (y->tag != ARRAY)
  3014. y = verb_enlist(state, self, y);
  3015. else if (!y->val.array->data)
  3016. return state->unit;
  3017. ssize_t n = indexOf(y->val.array, x);
  3018. if (n < 0)
  3019. n = y->val.array->length;
  3020. return value_new_number(n);
  3021. }
  3022. value_t *verb_count(interpreter_t *state, verb_t *self, value_t *x)
  3023. {
  3024. if (x->tag != ARRAY)
  3025. return NUMS[1];
  3026. return value_new_number(x->val.array->length);
  3027. }
  3028. void flatten(value_t *x, list_t *r)
  3029. {
  3030. if (x->tag == ARRAY)
  3031. for (size_t i = 0; i < x->val.array->length; i++)
  3032. flatten(x->val.array->data[i], r);
  3033. else
  3034. list_push(r, x);
  3035. }
  3036. value_t *verb_flatten(interpreter_t *state, verb_t *self, value_t *x)
  3037. {
  3038. if (x->tag != ARRAY || !x->val.array->data)
  3039. return x;
  3040. list_t *r = list_new();
  3041. flatten(x, r);
  3042. return value_new_array(r);
  3043. }
  3044. value_t *verb_minand(interpreter_t *state, verb_t *self, value_t *x,
  3045. value_t *y)
  3046. {
  3047. if ((x->tag == NUMBER || x->tag == CHAR) &&
  3048. (y->tag == NUMBER || y->tag == CHAR))
  3049. {
  3050. if (get_numeric(x) < get_numeric(y))
  3051. return x;
  3052. return y;
  3053. }
  3054. return _NAN;
  3055. }
  3056. value_t *verb_reverse(interpreter_t *state, verb_t *self, value_t *x)
  3057. {
  3058. if (x->tag != ARRAY)
  3059. return x;
  3060. if (x->val.array->length < 2)
  3061. return x;
  3062. list_t *r = list_newk(x->val.array->length);
  3063. size_t rp = 0;
  3064. for (ssize_t i = x->val.array->length - 1; i >= 0; i--)
  3065. r->data[rp++] = x->val.array->data[i];
  3066. return value_new_array(r);
  3067. }
  3068. value_t *verb_maxor(interpreter_t *state, verb_t *self, value_t *x,
  3069. value_t *y)
  3070. {
  3071. if ((x->tag == NUMBER || x->tag == CHAR) &&
  3072. (y->tag == NUMBER || y->tag == CHAR))
  3073. {
  3074. if (get_numeric(x) > get_numeric(y))
  3075. return x;
  3076. return y;
  3077. }
  3078. return _NAN;
  3079. }
  3080. value_t *verb_rotate(interpreter_t *state, verb_t *self, value_t *x,
  3081. value_t *y)
  3082. {
  3083. if (y->tag != ARRAY || y->val.array->length < 2)
  3084. return x;
  3085. if (x->tag != NUMBER)
  3086. return state->udf;
  3087. bool rev = x->val.number < 0;
  3088. size_t k = fabs(x->val.number);
  3089. list_t *r = list_copy(y->val.array);
  3090. for (size_t i = 0; i < k; i++)
  3091. {
  3092. value_t *v;
  3093. if (rev)
  3094. {
  3095. v = r->data[0];
  3096. for (size_t j = 0; j < r->length - 1; j++)
  3097. r->data[j] = r->data[j + 1];
  3098. r->data[r->length - 1] = v;
  3099. }
  3100. else
  3101. {
  3102. v = r->data[r->length - 1];
  3103. for (size_t j = r->length - 1; j > 0; j--)
  3104. r->data[j] = r->data[j - 1];
  3105. r->data[0] = v;
  3106. }
  3107. }
  3108. return value_new_array(r);
  3109. }
  3110. value_t *verb_windows(interpreter_t *state, verb_t *self, value_t *x,
  3111. value_t *y)
  3112. {
  3113. if (y->tag != ARRAY)
  3114. y = verb_enlist(state, NULL, y);
  3115. else if (!y->val.array->data)
  3116. return y;
  3117. size_t k = fabs(x->val.number);
  3118. size_t l = y->val.array->length;
  3119. list_t *r = list_new();
  3120. for (size_t i = 0; i < l; i++)
  3121. {
  3122. if (i + k > l)
  3123. break;
  3124. list_push(r, verb_take(state, NULL, value_new_number(k),
  3125. verb_drop(state, NULL, value_new_number(i), y)));
  3126. }
  3127. return value_new_array(r);
  3128. }
  3129. size_t depthOf(value_t *x, size_t d)
  3130. {
  3131. if (x->tag == ARRAY)
  3132. {
  3133. if (!x->val.array->data)
  3134. return 0;
  3135. for (size_t i = 0; i < x->val.array->length; i++)
  3136. {
  3137. size_t d2 = depthOf(x->val.array->data[i], d + 1);
  3138. if (d2 > d)
  3139. d = d2;
  3140. }
  3141. return d;
  3142. }
  3143. return 0;
  3144. }
  3145. value_t *verb_depth(interpreter_t *state, verb_t *self, value_t *x)
  3146. {
  3147. return value_new_number(depthOf(x, 1));
  3148. }
  3149. value_t *verb_round(interpreter_t *state, verb_t *self, value_t *x)
  3150. {
  3151. if (x->tag == NUMBER)
  3152. return value_new_number(round(x->val.number));
  3153. return _NAN;
  3154. }
  3155. value_t *verb_abs(interpreter_t *state, verb_t *self, value_t *x)
  3156. {
  3157. if (x->tag == NUMBER)
  3158. return value_new_number(fabs(x->val.number));
  3159. return _NAN;
  3160. }
  3161. value_t *verb_tail(interpreter_t *state, verb_t *self, value_t *x);
  3162. value_t *verb_at(interpreter_t *state, verb_t *self, value_t *x, value_t *y)
  3163. {
  3164. if (y->tag != NUMBER)
  3165. return state->udf;
  3166. if (x->tag != ARRAY)
  3167. {
  3168. if (y->val.number > -1 && y->val.number < 1)
  3169. return x;
  3170. else
  3171. return state->udf;
  3172. }
  3173. if (!x->val.array->data)
  3174. return state->nil;
  3175. value_t *v = list_index(x->val.array, (ssize_t)y->val.number);
  3176. if (!v)
  3177. return state->udf;
  3178. return v;
  3179. }
  3180. value_t *verb_member(interpreter_t *state, verb_t *self, value_t *x,
  3181. value_t *y)
  3182. {
  3183. if (y->tag != ARRAY)
  3184. y = verb_enlist(state, self, y);
  3185. else if (!y->val.array->data)
  3186. return NUMS[0];
  3187. for (size_t i = 0; i < y->val.array->length; i++)
  3188. if (value_equals(y->val.array->data[i], x))
  3189. return NUMS[1];
  3190. return NUMS[0];
  3191. }
  3192. value_t *verb_shuffle(interpreter_t *state, verb_t *self, value_t *x)
  3193. {
  3194. if (x->tag != ARRAY)
  3195. x = verb_enlist(state, self, x);
  3196. else if (!x->val.array->data)
  3197. return x;
  3198. list_t *r = list_copy(x->val.array);
  3199. for (size_t i = 0; i < r->length; i++)
  3200. {
  3201. size_t j = rand() % r->length;
  3202. value_t *tmp = r->data[i];
  3203. r->data[i] = r->data[j];
  3204. r->data[j] = tmp;
  3205. }
  3206. return value_new_array(r);
  3207. }
  3208. value_t *verb_head(interpreter_t *state, verb_t *self, value_t *x)
  3209. {
  3210. return verb_take(state, NULL, NUMS[2], x);
  3211. }
  3212. value_t *verb_bin(interpreter_t *state, verb_t *self, value_t *x, value_t *y)
  3213. {
  3214. if (x->tag != ARRAY)
  3215. x = verb_enlist(state, self, x);
  3216. else if (!x->val.array->data)
  3217. return x;
  3218. if (y->tag != ARRAY)
  3219. y = verb_enlist(state, self, x);
  3220. else if (!y->val.array->data)
  3221. return y;
  3222. size_t xl = x->val.array->length;
  3223. list_t *bins = list_new();
  3224. for (size_t i = 0; i < xl; i++)
  3225. {
  3226. double s;
  3227. double e;
  3228. value_t *vs = x->val.array->data[i];
  3229. if (vs->tag == NUMBER)
  3230. s = vs->val.number;
  3231. else if (vs->tag == CHAR)
  3232. s = vs->val._char;
  3233. else
  3234. return state->udf;
  3235. value_t *ve =
  3236. i == xl - 1 ? value_new_number(s + 1) : x->val.array->data[i + 1];
  3237. if (ve->tag == NUMBER)
  3238. e = fabs(ve->val.number);
  3239. else if (ve->tag == CHAR)
  3240. e = ve->val._char;
  3241. else
  3242. return state->udf;
  3243. if (bins->data)
  3244. {
  3245. list_t *pp = list_index(bins, -1);
  3246. double *pe = pp->data[0];
  3247. if (s <= (*pe))
  3248. return state->udf;
  3249. }
  3250. double *sn = malloc_checked(sizeof(double));
  3251. *sn = s;
  3252. double *en = malloc_checked(sizeof(double));
  3253. *en = e;
  3254. list_t *p = list_new();
  3255. list_push(p, sn);
  3256. list_push(p, en);
  3257. list_push(bins, p);
  3258. }
  3259. size_t bl = bins->length;
  3260. list_t *r = list_new();
  3261. size_t yl = y->val.array->length;
  3262. for (size_t i = 0; i < yl; i++)
  3263. {
  3264. value_t *it = y->val.array->data[i];
  3265. double itv;
  3266. if (it->tag == NUMBER)
  3267. itv = it->val.number;
  3268. else if (it->tag == CHAR)
  3269. itv = it->val._char;
  3270. else
  3271. return state->udf;
  3272. list_t *b = bins->data[0];
  3273. double *s = b->data[0];
  3274. if (itv < (*s))
  3275. {
  3276. list_push(r, NNUMS[0]);
  3277. continue;
  3278. }
  3279. b = list_index(bins, -1);
  3280. s = b->data[1];
  3281. if (itv >= (*s))
  3282. {
  3283. list_push(r, value_new_number(bl - 1));
  3284. continue;
  3285. }
  3286. double v = NAN;
  3287. for (size_t j = 0; j < bl; j++)
  3288. {
  3289. b = bins->data[j];
  3290. double *s = b->data[0];
  3291. double *e = b->data[1];
  3292. if (itv >= (*s) && itv < (*e))
  3293. {
  3294. v = j;
  3295. break;
  3296. }
  3297. }
  3298. if (!isnan(v))
  3299. list_push(r, value_new_number(v));
  3300. }
  3301. for (size_t j = 0; j < bl; j++)
  3302. {
  3303. list_t *b = bins->data[j];
  3304. GC_FREE(b->data[0]);
  3305. GC_FREE(b->data[1]);
  3306. GC_FREE(b->data);
  3307. GC_FREE(b);
  3308. }
  3309. GC_FREE(bins->data);
  3310. GC_FREE(bins);
  3311. return value_new_array(r);
  3312. }
  3313. value_t *verb_tail(interpreter_t *state, verb_t *self, value_t *x)
  3314. {
  3315. if (x->tag != ARRAY)
  3316. return x;
  3317. if (!x->val.array->data)
  3318. return state->udf;
  3319. return list_index(x->val.array, -1);
  3320. }
  3321. value_t *verb_cut(interpreter_t *state, verb_t *self, value_t *x, value_t *y)
  3322. {
  3323. if (x->tag != ARRAY)
  3324. x = verb_enlist(state, self, x);
  3325. else if (!x->val.array->data)
  3326. return x;
  3327. if (y->tag != ARRAY)
  3328. y = verb_enlist(state, self, x);
  3329. else if (!y->val.array->data)
  3330. return x;
  3331. if (x->val.array->length != 2)
  3332. return state->udf;
  3333. value_t *vs = x->val.array->data[0];
  3334. value_t *ve = x->val.array->data[1];
  3335. if (vs->tag != NUMBER || ve->tag != NUMBER)
  3336. return state->udf;
  3337. size_t s = fabs(vs->val.number);
  3338. size_t e = fabs(ve->val.number);
  3339. list_t *r = list_new();
  3340. size_t l = y->val.array->length;
  3341. list_t *pa = list_new();
  3342. for (size_t i = s; i < e && i < l; i++)
  3343. {
  3344. value_t *v = list_index(y->val.array, i);
  3345. if (!v)
  3346. break;
  3347. list_push(pa, v);
  3348. }
  3349. list_t *pb = list_new();
  3350. for (size_t i = e; i < l; i++)
  3351. {
  3352. value_t *v = list_index(y->val.array, i);
  3353. if (!v)
  3354. break;
  3355. list_push(pb, v);
  3356. }
  3357. list_push(r, value_new_array(pa));
  3358. list_push(r, value_new_array(pb));
  3359. return value_new_array(r);
  3360. }
  3361. value_t *verb_prefixes(interpreter_t *state, verb_t *self, value_t *x)
  3362. {
  3363. if (x->tag != ARRAY)
  3364. x = verb_enlist(state, NULL, x);
  3365. list_t *r = list_new();
  3366. for (size_t i = 0; i < x->val.array->length; i++)
  3367. list_push(r, verb_take(state, NULL, value_new_number(i), x));
  3368. list_push(r, x);
  3369. return value_new_array(r);
  3370. }
  3371. value_t *verb_behead(interpreter_t *state, verb_t *self, value_t *x)
  3372. {
  3373. return verb_drop(state, NULL, NUMS[1], x);
  3374. }
  3375. value_t *verb_curtail(interpreter_t *state, verb_t *self, value_t *x)
  3376. {
  3377. return verb_drop(state, NULL, NNUMS[0], x);
  3378. }
  3379. value_t *verb_suffixes(interpreter_t *state, verb_t *self, value_t *x)
  3380. {
  3381. if (x->tag != ARRAY)
  3382. x = verb_enlist(state, NULL, x);
  3383. list_t *r = list_new();
  3384. for (size_t i = 0; i < x->val.array->length; i++)
  3385. list_push(r, verb_drop(state, NULL, value_new_number(i), x));
  3386. list_push(r, state->unit);
  3387. return value_new_array(r);
  3388. }
  3389. value_t *verb_left(interpreter_t *state, verb_t *self, value_t *x, value_t *y)
  3390. {
  3391. return x;
  3392. }
  3393. value_t *verb_same(interpreter_t *state, verb_t *self, value_t *x) { return x; }
  3394. value_t *verb_right(interpreter_t *state, verb_t *self, value_t *x,
  3395. value_t *y)
  3396. {
  3397. return y;
  3398. }
  3399. value_t *verb_symbol(interpreter_t *state, verb_t *self, value_t *x)
  3400. {
  3401. char *s = value_str(x);
  3402. return value_new_symbol(s);
  3403. }
  3404. value_t *verb_apply1(interpreter_t *state, verb_t *self, value_t *x,
  3405. value_t *y)
  3406. {
  3407. return apply_monad(state, x, y);
  3408. }
  3409. value_t *verb_apply2(interpreter_t *state, verb_t *self, value_t *x,
  3410. value_t *y)
  3411. {
  3412. if (y->tag != ARRAY || y->val.array->length < 2)
  3413. return state->udf;
  3414. return apply_dyad(state, x, y->val.array->data[0], y->val.array->data[1]);
  3415. }
  3416. value_t *verb_shape(interpreter_t *state, verb_t *self, value_t *x)
  3417. {
  3418. if (x->tag != ARRAY || !x->val.array->data)
  3419. return state->unit;
  3420. if (!is_arrays_array(x->val.array))
  3421. return verb_enlist(state, NULL, verb_count(state, NULL, x));
  3422. if (x->val.array->length < 2)
  3423. return verb_enlist(state, NULL,
  3424. verb_shape(state, NULL, x->val.array->data[0]));
  3425. return verb_enpair(state, NULL, verb_count(state, NULL, x),
  3426. verb_count(state, NULL, x->val.array->data[0]));
  3427. }
  3428. value_t *verb_reshape(interpreter_t *state, verb_t *self, value_t *x,
  3429. value_t *y)
  3430. {
  3431. if (y->tag != ARRAY)
  3432. y = verb_enlist(state, NULL, y);
  3433. else if (!y->val.array->data)
  3434. return y;
  3435. if (x->tag != ARRAY)
  3436. x = verb_enlist(state, NULL, x);
  3437. else if (!x->val.array->data)
  3438. return state->unit;
  3439. list_t *r;
  3440. if (x->val.array->length < 2)
  3441. {
  3442. value_t *a = x->val.array->data[0];
  3443. if (a->tag != NUMBER)
  3444. return state->udf;
  3445. size_t k = fabs(a->val.number);
  3446. list_t *t = list_new();
  3447. flatten(y, t);
  3448. r = list_newk(k);
  3449. for (size_t i = 0; i < k; i++)
  3450. r->data[i] = t->data[i % t->length];
  3451. }
  3452. else if (x->val.array->length > 1)
  3453. {
  3454. value_t *a = x->val.array->data[0];
  3455. if (a->tag != NUMBER)
  3456. return state->udf;
  3457. value_t *b = x->val.array->data[1];
  3458. if (b->tag != NUMBER)
  3459. return state->udf;
  3460. size_t k = fabs(a->val.number);
  3461. size_t l = fabs(b->val.number);
  3462. y = verb_reshape(state, self,
  3463. verb_enlist(state, NULL, value_new_number(k * l)), y);
  3464. r = list_new();
  3465. size_t yp = 0;
  3466. while (k--)
  3467. {
  3468. list_t *rw = list_new();
  3469. for (size_t i = 0; i < l; i++)
  3470. list_push(rw, y->val.array->data[yp++]);
  3471. list_push(r, value_new_array(rw));
  3472. }
  3473. }
  3474. else
  3475. return state->udf;
  3476. return value_new_array(r);
  3477. }
  3478. value_t *verb_repr(interpreter_t *state, verb_t *self, value_t *x)
  3479. {
  3480. char *s = value_show(x);
  3481. list_t *r = list_new();
  3482. for (size_t i = 0; i < strlen(s); i++)
  3483. list_push(r, value_new_char(s[i]));
  3484. GC_FREE(s);
  3485. return value_new_array(r);
  3486. }
  3487. char *format(char *template, list_t *replaces)
  3488. {
  3489. buffer_t *text = buffer_new();
  3490. bool skip = false;
  3491. size_t ri = 0;
  3492. size_t tl = strlen(template);
  3493. size_t rl = replaces->length;
  3494. for (size_t i = 0; i < tl; i++)
  3495. {
  3496. char c = template[i];
  3497. if (skip)
  3498. {
  3499. buffer_append(text, c);
  3500. skip = false;
  3501. continue;
  3502. }
  3503. if (c == '_')
  3504. {
  3505. char *s = value_show(list_index(replaces, ri));
  3506. buffer_append_str(text, s);
  3507. GC_FREE(s);
  3508. if (ri < rl - 1)
  3509. ri++;
  3510. continue;
  3511. }
  3512. else if (c == '{')
  3513. {
  3514. size_t bi = i;
  3515. buffer_t *n = buffer_new();
  3516. i++;
  3517. while (i < tl && template[i] != '}')
  3518. buffer_append(n, template[i++]);
  3519. if (i >= tl || template[i] != '}')
  3520. {
  3521. GC_FREE(buffer_read(n));
  3522. buffer_append(text, '{');
  3523. i = bi;
  3524. continue;
  3525. }
  3526. char *s = buffer_read(n);
  3527. ssize_t ind = atoi(s);
  3528. GC_FREE(s);
  3529. value_t *v = list_index(replaces, ind);
  3530. if (!v)
  3531. continue;
  3532. s = value_show(v);
  3533. buffer_append_str(text, s);
  3534. GC_FREE(s);
  3535. continue;
  3536. }
  3537. else if (c == '~')
  3538. {
  3539. skip = true;
  3540. continue;
  3541. }
  3542. buffer_append(text, c);
  3543. }
  3544. return buffer_read(text);
  3545. }
  3546. value_t *verb_format(interpreter_t *state, verb_t *self, value_t *x,
  3547. value_t *y)
  3548. {
  3549. if (y->tag != ARRAY)
  3550. y = verb_enlist(state, NULL, x);
  3551. else if (!y->val.array->data)
  3552. return y;
  3553. char *fmt = value_show(x);
  3554. char *s = format(fmt, y->val.array);
  3555. GC_FREE(fmt);
  3556. size_t z = strlen(s);
  3557. list_t *r = list_newk(z);
  3558. for (size_t i = 0; i < z; i++)
  3559. r->data[i] = CHARS[(int)s[i]];
  3560. return value_new_array(r);
  3561. }
  3562. value_t *verb_insert(interpreter_t *state, verb_t *self, value_t *x,
  3563. value_t *y)
  3564. {
  3565. if (y->tag != ARRAY)
  3566. y = verb_enlist(state, NULL, y);
  3567. else if (!y->val.array->data)
  3568. return y;
  3569. list_t *r = list_newk(y->val.array->length * 2 - 1);
  3570. size_t rp = 0;
  3571. for (size_t i = 0; i < y->val.array->length; i++)
  3572. {
  3573. r->data[rp++] = y->val.array->data[i];
  3574. if (i != y->val.array->length - 1)
  3575. r->data[rp++] = x;
  3576. }
  3577. return value_new_array(r);
  3578. }
  3579. uint64_t fibonacci(uint64_t n)
  3580. {
  3581. uint64_t a = 0;
  3582. uint64_t b = 1;
  3583. while (n-- > 1)
  3584. {
  3585. uint64_t t = a;
  3586. a = b;
  3587. b += t;
  3588. }
  3589. return b;
  3590. }
  3591. value_t *verb_fibonacci(interpreter_t *state, verb_t *self, value_t *x)
  3592. {
  3593. if (x->tag == NUMBER)
  3594. return value_new_number(fibonacci((uint64_t)fabs(x->val.number)));
  3595. return _NAN;
  3596. }
  3597. value_t *verb_iota(interpreter_t *state, verb_t *self, value_t *x)
  3598. {
  3599. if (value_equals(x, NUMS[1]))
  3600. return verb_enlist(state, NULL, NUMS[1]);
  3601. else if (value_equals(x, NUMS[0]))
  3602. return state->unit;
  3603. return verb_range(state, self, NUMS[1], x);
  3604. }
  3605. value_t *verb_range(interpreter_t *state, verb_t *self, value_t *x,
  3606. value_t *y)
  3607. {
  3608. if ((x->tag == NUMBER || x->tag == CHAR) &&
  3609. (y->tag == NUMBER || y->tag == CHAR))
  3610. {
  3611. if (x->tag == NUMBER && is_bad_num(x->val.number))
  3612. return state->udf;
  3613. if (y->tag == NUMBER && is_bad_num(y->val.number))
  3614. return state->udf;
  3615. ssize_t s = get_numeric(x);
  3616. ssize_t e = get_numeric(y);
  3617. if (s == e)
  3618. return verb_enlist(state, NULL, x);
  3619. size_t p = 0;
  3620. list_t *r = list_newk((s > e ? s - e : e - s) + 1);
  3621. if (s > e)
  3622. for (ssize_t i = s; i >= e; i--)
  3623. {
  3624. if (x->tag == CHAR || y->tag == CHAR)
  3625. r->data[p++] = CHARS[i];
  3626. else
  3627. r->data[p++] = value_new_number(i);
  3628. }
  3629. else
  3630. for (ssize_t i = s; i <= e; i++)
  3631. {
  3632. if (x->tag == CHAR || y->tag == CHAR)
  3633. r->data[p++] = CHARS[i];
  3634. else
  3635. r->data[p++] = value_new_number(i);
  3636. }
  3637. return value_new_array(r);
  3638. }
  3639. return _NAN;
  3640. }
  3641. value_t *verb_deal(interpreter_t *state, verb_t *self, value_t *x)
  3642. {
  3643. if (x->tag != ARRAY)
  3644. return x;
  3645. if (!x->val.array->data)
  3646. return state->udf;
  3647. return x->val.array->data[rand() % x->val.array->length];
  3648. }
  3649. value_t *verb_roll(interpreter_t *state, verb_t *self, value_t *x, value_t *y)
  3650. {
  3651. if (x->tag == NUMBER && y->tag == NUMBER)
  3652. {
  3653. size_t k = fabs(x->val.number);
  3654. size_t d = fabs(y->val.number);
  3655. list_t *r = list_newk(k);
  3656. for (size_t i = 0; i < k; i++)
  3657. r->data[i] = value_new_number(rand() % d);
  3658. return value_new_array(r);
  3659. }
  3660. return state->udf;
  3661. }
  3662. value_t *verb_type(interpreter_t *state, verb_t *self, value_t *x)
  3663. {
  3664. return NUMS[x->tag];
  3665. }
  3666. value_t *verb_cast(interpreter_t *state, verb_t *self, value_t *x, value_t *y)
  3667. {
  3668. if (x->tag == NUMBER)
  3669. {
  3670. int t = fabs(x->val.number);
  3671. if (y->tag == t)
  3672. return y;
  3673. switch (t)
  3674. {
  3675. case ARRAY:
  3676. if (y->tag == SYMBOL)
  3677. {
  3678. char *s = y->val.symbol;
  3679. size_t z = strlen(s);
  3680. list_t *r = list_newk(z);
  3681. for (size_t i = 0; i < z; i++)
  3682. r->data[i] = CHARS[(int)s[i]];
  3683. return value_new_array(r);
  3684. }
  3685. break;
  3686. case NUMBER:
  3687. if (y->tag == CHAR)
  3688. return value_new_number(y->val._char);
  3689. else if (y->tag == ARRAY && y->val.array->data &&
  3690. is_char_array(y->val.array))
  3691. {
  3692. buffer_t *buf = buffer_new();
  3693. for (size_t i = 0; i < y->val.array->length; i++)
  3694. buffer_append(buf, ((value_t *)y->val.array->data[i])->val._char);
  3695. char *s = buffer_read(buf);
  3696. double r = strtod(s, NULL);
  3697. GC_FREE(s);
  3698. return value_new_number(r);
  3699. }
  3700. break;
  3701. case CHAR:
  3702. if (y->tag == NUMBER)
  3703. return value_new_char(y->val.number);
  3704. break;
  3705. }
  3706. }
  3707. return state->udf;
  3708. }
  3709. value_t *verb_print(interpreter_t *state, verb_t *self, value_t *x)
  3710. {
  3711. char *s = value_str(x);
  3712. fprintf(stdout, "%s", s);
  3713. GC_FREE(s);
  3714. return state->nil;
  3715. }
  3716. value_t *verb_println(interpreter_t *state, verb_t *self, value_t *x)
  3717. {
  3718. char *s = value_str(x);
  3719. fprintf(stdout, "%s\n", s);
  3720. GC_FREE(s);
  3721. return state->nil;
  3722. }
  3723. value_t *verb_putch(interpreter_t *state, verb_t *self, value_t *x)
  3724. {
  3725. if (x->tag != CHAR)
  3726. return state->udf;
  3727. fputc(x->val._char, stdout);
  3728. return state->nil;
  3729. }
  3730. value_t *verb_exit(interpreter_t *state, verb_t *self, value_t *x)
  3731. {
  3732. if (x->tag != NUMBER)
  3733. return state->udf;
  3734. int code = x->val.number;
  3735. exit(code);
  3736. return state->nil;
  3737. }
  3738. value_t *verb_read(interpreter_t *state, verb_t *self, value_t *x)
  3739. {
  3740. if (x == NUMS[0])
  3741. {
  3742. buffer_t *buf = buffer_new();
  3743. size_t size = 0;
  3744. for (;;)
  3745. {
  3746. int c = fgetc(stdin);
  3747. if (c < 0)
  3748. break;
  3749. buffer_append(buf, c);
  3750. size++;
  3751. }
  3752. char *s = buffer_read(buf);
  3753. list_t *r = list_newk(size);
  3754. for (size_t i = 0; i < size; i++)
  3755. r->data[i] = CHARS[(int)s[i]];
  3756. GC_FREE(s);
  3757. return value_new_array(r);
  3758. }
  3759. else if (x == NUMS[1])
  3760. return value_new_char((unsigned char)fgetc(stdin));
  3761. else if (x == NUMS[2])
  3762. {
  3763. char line[512];
  3764. if (!fgets(line, sizeof(line), stdin))
  3765. return state->udf;
  3766. size_t z = strlen(line);
  3767. list_t *r = list_newk(z);
  3768. for (size_t i = 0; i < z; i++)
  3769. r->data[i] = CHARS[(int)line[i]];
  3770. return value_new_array(r);
  3771. }
  3772. char *path = value_str(x);
  3773. FILE *fd = fopen(path, "rb");
  3774. if (!fd)
  3775. {
  3776. GC_FREE(path);
  3777. return state->udf;
  3778. }
  3779. fseek(fd, 0, SEEK_END);
  3780. size_t size = ftell(fd);
  3781. fseek(fd, 0, SEEK_SET);
  3782. unsigned char *buf = malloc_checked(size + 1);
  3783. size = fread(buf, sizeof(unsigned char), size, fd);
  3784. fclose(fd);
  3785. GC_FREE(path);
  3786. list_t *r = list_newk(size);
  3787. for (size_t i = 0; i < size; i++)
  3788. r->data[i] = CHARS[buf[i]];
  3789. GC_FREE(buf);
  3790. return value_new_array(r);
  3791. }
  3792. value_t *verb_write(interpreter_t *state, verb_t *self, value_t *x,
  3793. value_t *y)
  3794. {
  3795. FILE *fd;
  3796. char *path = NULL;
  3797. if (x->tag != ARRAY)
  3798. x = verb_enlist(state, NULL, x);
  3799. if (y == NUMS[0])
  3800. fd = stderr;
  3801. else
  3802. {
  3803. path = value_str(y);
  3804. fd = fopen(path, "wb");
  3805. if (!fd)
  3806. {
  3807. GC_FREE(path);
  3808. return NNUMS[0];
  3809. }
  3810. }
  3811. size_t k = 0;
  3812. for (size_t i = 0; i < x->val.array->length; i++)
  3813. {
  3814. unsigned char c;
  3815. value_t *v = x->val.array->data[i];
  3816. if (v->tag == NUMBER)
  3817. c = fabs(v->val.number);
  3818. else if (v->tag == CHAR)
  3819. c = v->val._char;
  3820. else
  3821. break;
  3822. fputc(c, fd);
  3823. k++;
  3824. }
  3825. fclose(fd);
  3826. if (path)
  3827. GC_FREE(path);
  3828. return value_new_number(k);
  3829. }
  3830. value_t *verb_system(interpreter_t *state, verb_t *self, value_t *x)
  3831. {
  3832. char *cmd = value_str(x);
  3833. FILE *pd;
  3834. pd = popen(cmd, "r");
  3835. if (!pd)
  3836. {
  3837. GC_FREE(cmd);
  3838. return state->udf;
  3839. }
  3840. unsigned char *buffer = NULL;
  3841. size_t buffer_size = 0;
  3842. size_t buffer_allocated = 0;
  3843. size_t bytes_received;
  3844. unsigned char chunk[1024];
  3845. for (;;)
  3846. {
  3847. bytes_received = fread(chunk, 1, 1024, pd);
  3848. if (bytes_received == 0)
  3849. break;
  3850. size_t head = buffer_size;
  3851. buffer_size += bytes_received;
  3852. if (buffer_size > buffer_allocated)
  3853. {
  3854. buffer_allocated = buffer_size;
  3855. buffer = realloc_checked(buffer, buffer_allocated);
  3856. }
  3857. for (size_t i = 0; i < bytes_received; i++)
  3858. buffer[head + i] = chunk[i];
  3859. if (feof(pd))
  3860. break;
  3861. }
  3862. pclose(pd);
  3863. GC_FREE(cmd);
  3864. list_t *r = list_newk(buffer_size);
  3865. for (size_t i = 0; i < buffer_size; i++)
  3866. r->data[i] = CHARS[buffer[i]];
  3867. GC_FREE(buffer);
  3868. return value_new_array(r);
  3869. }
  3870. struct files_t
  3871. {
  3872. FILE *in;
  3873. FILE *out;
  3874. };
  3875. typedef struct files_t files_t;
  3876. struct files_chain_t
  3877. {
  3878. files_t files;
  3879. pid_t pid;
  3880. struct files_chain_t *next;
  3881. };
  3882. typedef struct files_chain_t files_chain_t;
  3883. static files_chain_t *files_chain;
  3884. void _cleanup_pipe(int *pipe)
  3885. {
  3886. close(pipe[0]);
  3887. close(pipe[1]);
  3888. }
  3889. static int _do_popen2(files_chain_t *link, const char *command)
  3890. {
  3891. int child_in[2];
  3892. int child_out[2];
  3893. if (0 != pipe(child_in))
  3894. return -1;
  3895. if (0 != pipe(child_out))
  3896. {
  3897. _cleanup_pipe(child_in);
  3898. return -1;
  3899. }
  3900. pid_t cpid = link->pid = fork();
  3901. if (0 > cpid)
  3902. {
  3903. _cleanup_pipe(child_in);
  3904. _cleanup_pipe(child_out);
  3905. return -1;
  3906. }
  3907. if (0 == cpid)
  3908. {
  3909. if (0 > dup2(child_in[0], 0) || 0 > dup2(child_out[1], 1))
  3910. _Exit(127);
  3911. _cleanup_pipe(child_in);
  3912. _cleanup_pipe(child_out);
  3913. for (files_chain_t *p = files_chain; p; p = p->next)
  3914. {
  3915. int fd_in = fileno(p->files.in);
  3916. if (fd_in != 0)
  3917. close(fd_in);
  3918. int fd_out = fileno(p->files.out);
  3919. if (fd_out != 1)
  3920. close(fd_out);
  3921. }
  3922. execl("/bin/sh", "sh", "-c", command, (char *)NULL);
  3923. _Exit(127);
  3924. }
  3925. close(child_in[0]);
  3926. close(child_out[1]);
  3927. link->files.in = fdopen(child_in[1], "w");
  3928. link->files.out = fdopen(child_out[0], "r");
  3929. return 0;
  3930. }
  3931. files_t *popen2(const char *command)
  3932. {
  3933. files_chain_t *link = (files_chain_t *)malloc(sizeof(files_chain_t));
  3934. if (NULL == link)
  3935. return NULL;
  3936. if (0 > _do_popen2(link, command))
  3937. {
  3938. free(link);
  3939. return NULL;
  3940. }
  3941. link->next = files_chain;
  3942. files_chain = link;
  3943. return (files_t *)link;
  3944. }
  3945. int pclose2(files_t *fp)
  3946. {
  3947. files_chain_t **p = &files_chain;
  3948. int found = 0;
  3949. while (*p)
  3950. {
  3951. if (*p == (files_chain_t *)fp)
  3952. {
  3953. *p = (*p)->next;
  3954. found = 1;
  3955. break;
  3956. }
  3957. p = &(*p)->next;
  3958. }
  3959. if (!found)
  3960. return -1;
  3961. if (0 > fclose(fp->out))
  3962. {
  3963. free((files_chain_t *)fp);
  3964. return -1;
  3965. }
  3966. int status = -1;
  3967. pid_t wait_pid;
  3968. do
  3969. {
  3970. wait_pid = waitpid(((files_chain_t *)fp)->pid, &status, 0);
  3971. } while (-1 == wait_pid && EINTR == errno);
  3972. free((files_chain_t *)fp);
  3973. if (wait_pid == -1)
  3974. return -1;
  3975. return status;
  3976. }
  3977. value_t *verb_system2(interpreter_t *state, verb_t *self, value_t *x,
  3978. value_t *y)
  3979. {
  3980. char *cmd = value_str(y);
  3981. files_t *pd;
  3982. pd = popen2(cmd);
  3983. if (pd == NULL)
  3984. {
  3985. GC_FREE(cmd);
  3986. return state->udf;
  3987. }
  3988. for (size_t i = 0; i < x->val.array->length; i++)
  3989. {
  3990. unsigned char c;
  3991. value_t *v = x->val.array->data[i];
  3992. if (v->tag == NUMBER)
  3993. c = fabs(v->val.number);
  3994. else if (v->tag == CHAR)
  3995. c = v->val._char;
  3996. else
  3997. break;
  3998. fputc(c, pd->in);
  3999. }
  4000. fflush(pd->in);
  4001. fclose(pd->in);
  4002. unsigned char *buffer = NULL;
  4003. size_t buffer_size = 0;
  4004. size_t buffer_allocated = 0;
  4005. size_t bytes_received;
  4006. unsigned char chunk[1024];
  4007. for (;;)
  4008. {
  4009. bytes_received = fread(chunk, 1, 1024, pd->out);
  4010. if (bytes_received == 0)
  4011. break;
  4012. size_t head = buffer_size;
  4013. buffer_size += bytes_received;
  4014. if (buffer_size > buffer_allocated)
  4015. {
  4016. buffer_allocated = buffer_size;
  4017. buffer = realloc_checked(buffer, buffer_allocated);
  4018. }
  4019. for (size_t i = 0; i < bytes_received; i++)
  4020. buffer[head + i] = chunk[i];
  4021. if (feof(pd->out))
  4022. break;
  4023. }
  4024. pclose2(pd);
  4025. GC_FREE(cmd);
  4026. list_t *r = list_newk(buffer_size);
  4027. for (size_t i = 0; i < buffer_size; i++)
  4028. r->data[i] = CHARS[buffer[i]];
  4029. GC_FREE(buffer);
  4030. return value_new_array(r);
  4031. }
  4032. value_t *verb_shl(interpreter_t *state, verb_t *self, value_t *x, value_t *y)
  4033. {
  4034. if (x->tag == NUMBER && y->tag == NUMBER)
  4035. return value_new_number(((int)x->val.number) << ((int)y->val.number));
  4036. return _NAN;
  4037. }
  4038. value_t *verb_shr(interpreter_t *state, verb_t *self, value_t *x, value_t *y)
  4039. {
  4040. if (x->tag == NUMBER && y->tag == NUMBER)
  4041. return value_new_number(((int)x->val.number) >> ((int)y->val.number));
  4042. return _NAN;
  4043. }
  4044. value_t *verb_xor(interpreter_t *state, verb_t *self, value_t *x, value_t *y)
  4045. {
  4046. if (x->tag == NUMBER && y->tag == NUMBER)
  4047. return value_new_number(((int)x->val.number) ^ ((int)y->val.number));
  4048. return _NAN;
  4049. }
  4050. value_t *verb_band(interpreter_t *state, verb_t *self, value_t *x, value_t *y)
  4051. {
  4052. if (x->tag == NUMBER && y->tag == NUMBER)
  4053. return value_new_number(((int)x->val.number) & ((int)y->val.number));
  4054. return _NAN;
  4055. }
  4056. list_t *find_primes(uint64_t limit)
  4057. {
  4058. bool sieve[limit + 1];
  4059. for (uint64_t i = 0; i <= limit; i++)
  4060. sieve[i] = false;
  4061. if (limit > 2)
  4062. sieve[2] = true;
  4063. if (limit > 3)
  4064. sieve[3] = true;
  4065. for (uint64_t x = 1; x * x <= limit; x++)
  4066. for (uint64_t y = 1; y * y <= limit; y++)
  4067. {
  4068. uint64_t n = (4 * x * x) + (y * y);
  4069. if (n <= limit && (n % 12 == 1 || n % 12 == 5))
  4070. sieve[n] ^= true;
  4071. n = (3 * x * x) + (y * y);
  4072. if (n <= limit && n % 12 == 7)
  4073. sieve[n] ^= true;
  4074. n = (3 * x * x) - (y * y);
  4075. if (x > y && n <= limit && n % 12 == 11)
  4076. sieve[n] ^= true;
  4077. }
  4078. for (uint64_t r = 5; r * r <= limit; r++)
  4079. if (sieve[r])
  4080. for (int i = r * r; i <= limit; i += r * r)
  4081. sieve[i] = false;
  4082. list_t *r = list_new();
  4083. for (uint64_t a = 1; a <= limit; a++)
  4084. if (sieve[a])
  4085. list_push(r, value_new_number(a));
  4086. return r;
  4087. }
  4088. value_t *verb_primes(interpreter_t *state, verb_t *self, value_t *x)
  4089. {
  4090. if (x->tag == NUMBER && !is_bad_num(x->val.number))
  4091. return value_new_array(find_primes(fabs(x->val.number) + 1));
  4092. return state->udf;
  4093. }
  4094. value_t *verb_parts(interpreter_t *state, verb_t *self, value_t *x,
  4095. value_t *y)
  4096. {
  4097. if (x->tag != NUMBER)
  4098. return state->udf;
  4099. if (y->tag != ARRAY)
  4100. y = verb_enlist(state, NULL, y);
  4101. else if (!y->val.array->data)
  4102. return y;
  4103. if (is_bad_num(x->val.number) || x->val.number < 1)
  4104. return y;
  4105. size_t np = fabs(x->val.number);
  4106. list_t *r = list_newk(np);
  4107. size_t rp = 0;
  4108. for (ssize_t i = np; i > 0; i--)
  4109. {
  4110. size_t k = ceil(((double)y->val.array->length) / (double)i);
  4111. r->data[rp++] = verb_take(state, NULL, value_new_number(k), y);
  4112. y = verb_drop(state, NULL, value_new_number(k), y);
  4113. }
  4114. return value_new_array(r);
  4115. }
  4116. value_t *verb_bor(interpreter_t *state, verb_t *self, value_t *x, value_t *y)
  4117. {
  4118. if (x->tag == NUMBER && y->tag == NUMBER)
  4119. return value_new_number(((int)x->val.number) | ((int)y->val.number));
  4120. return _NAN;
  4121. }
  4122. value_t *verb_bnot(interpreter_t *state, verb_t *self, value_t *x)
  4123. {
  4124. if (x->tag == NUMBER)
  4125. return value_new_number(~(int)x->val.number);
  4126. return _NAN;
  4127. }
  4128. list_t *prime_factors(double n)
  4129. {
  4130. list_t *factors = list_new();
  4131. double divisor = 2;
  4132. while (n >= 2)
  4133. {
  4134. if (fmod(n, divisor) == 0)
  4135. {
  4136. list_push(factors, value_new_number(divisor));
  4137. n /= divisor;
  4138. }
  4139. else
  4140. divisor++;
  4141. }
  4142. return factors;
  4143. }
  4144. value_t *verb_factors(interpreter_t *state, verb_t *self, value_t *x)
  4145. {
  4146. if (x->tag == NUMBER && !is_bad_num(x->val.number))
  4147. return value_new_array(prime_factors(x->val.number));
  4148. return state->udf;
  4149. }
  4150. value_t *verb_combine(interpreter_t *state, verb_t *self, value_t *x,
  4151. value_t *y)
  4152. {
  4153. if (x->tag == NUMBER && y->tag == NUMBER && !is_bad_num(x->val.number) &&
  4154. !is_bad_num(y->val.number))
  4155. {
  4156. x = verb_base(state, NULL, NUMS[10], x);
  4157. y = verb_base(state, NULL, NUMS[10], y);
  4158. value_t *n = verb_join(state, NULL, x, y);
  4159. return verb_unbase(state, NULL, NUMS[10], n);
  4160. }
  4161. return _NAN;
  4162. }
  4163. value_t *verb_outof(interpreter_t *state, verb_t *self, value_t *x,
  4164. value_t *y)
  4165. {
  4166. if (x->tag == NUMBER && y->tag == NUMBER && !is_bad_num(x->val.number) &&
  4167. !is_bad_num(y->val.number))
  4168. {
  4169. uint64_t a = (uint64_t)fabs(x->val.number);
  4170. uint64_t b = (uint64_t)fabs(y->val.number);
  4171. if (a == 0)
  4172. return NUMS[1];
  4173. if (b == 0)
  4174. return NUMS[0];
  4175. return value_new_number((double)factorial(b) /
  4176. (factorial(a) * (a >= b ? 1 : factorial(b - a))));
  4177. }
  4178. return _NAN;
  4179. }
  4180. value_t *verb_sort(interpreter_t *state, verb_t *self, value_t *x)
  4181. {
  4182. value_t *i = verb_gradeup(state, NULL, x);
  4183. return together(state, state->at, x, i, 0, 0, state->at->rank[1],
  4184. state->at->rank[2]);
  4185. }
  4186. value_t *verb_unsort(interpreter_t *state, verb_t *self, value_t *x)
  4187. {
  4188. value_t *i = verb_gradedown(state, NULL, x);
  4189. return together(state, state->at, x, i, 0, 0, state->at->rank[1],
  4190. state->at->rank[2]);
  4191. }
  4192. value_t *interpreter_run(interpreter_t *state, char *program);
  4193. value_t *verb_eval(interpreter_t *state, verb_t *self, value_t *x)
  4194. {
  4195. char *s = value_str(x);
  4196. guard_t *g = guard();
  4197. if (setjmp(g->lb))
  4198. {
  4199. unguard();
  4200. GC_FREE(s);
  4201. return state->udf;
  4202. }
  4203. value_t *v = interpreter_run(state, s);
  4204. GC_FREE(s);
  4205. unguard();
  4206. return v;
  4207. }
  4208. void jkexec(interpreter_t *state, FILE *fd, bool isrepl, char **s);
  4209. value_t *verb_import(interpreter_t *state, verb_t *self, value_t *x)
  4210. {
  4211. char *path = value_str(x);
  4212. FILE *fd = fopen(path, "rb");
  4213. if (!fd)
  4214. {
  4215. GC_FREE(path);
  4216. return state->udf;
  4217. }
  4218. char *s = NULL;
  4219. jkexec(state, fd, false, &s);
  4220. if (s)
  4221. GC_FREE(s);
  4222. fclose(fd);
  4223. GC_FREE(path);
  4224. return state->nil;
  4225. }
  4226. value_t *verb_foreign(interpreter_t *state, verb_t *self, value_t *x,
  4227. value_t *y)
  4228. {
  4229. if (x->tag != ARRAY)
  4230. x = verb_enlist(state, NULL, x);
  4231. char *pth = value_str(y);
  4232. char *lib;
  4233. char *sig;
  4234. char *fun;
  4235. lib = strtok(pth, ":");
  4236. if (!lib)
  4237. return state->udf;
  4238. sig = strtok(NULL, ":");
  4239. if (!sig)
  4240. return state->udf;
  4241. fun = strtok(NULL, ":");
  4242. if (!fun)
  4243. return state->udf;
  4244. size_t argc = strlen(sig);
  4245. if (argc < 1)
  4246. return state->udf;
  4247. argc--;
  4248. if (argc != x->val.array->length)
  4249. return state->udf;
  4250. ffi_cif cif;
  4251. ffi_type *ret;
  4252. ffi_type *args[argc];
  4253. void *values[argc];
  4254. void *pool[argc];
  4255. size_t fc = 0;
  4256. void *retv = NULL;
  4257. char rett;
  4258. size_t retvsz = 0;
  4259. for (int i = 0; i < strlen(sig); i++)
  4260. {
  4261. ffi_type *t;
  4262. void *v;
  4263. switch (sig[i])
  4264. {
  4265. case '$':
  4266. t = &ffi_type_pointer;
  4267. break;
  4268. case 'p':
  4269. t = &ffi_type_pointer;
  4270. break;
  4271. case 'v':
  4272. if (i != 0)
  4273. goto cleanup;
  4274. t = &ffi_type_void;
  4275. break;
  4276. case 'i':
  4277. t = &ffi_type_sint;
  4278. break;
  4279. case 'l':
  4280. t = &ffi_type_slong;
  4281. break;
  4282. case 'f':
  4283. t = &ffi_type_float;
  4284. break;
  4285. case 'd':
  4286. t = &ffi_type_double;
  4287. break;
  4288. case 'c':
  4289. t = &ffi_type_uchar;
  4290. break;
  4291. default:
  4292. goto cleanup;
  4293. }
  4294. if (i == 0)
  4295. {
  4296. rett = sig[0];
  4297. ret = t;
  4298. switch (rett)
  4299. {
  4300. case '$':
  4301. case '@':
  4302. retvsz = sizeof(char *);
  4303. break;
  4304. case 'p':
  4305. retvsz = sizeof(void *);
  4306. break;
  4307. case 'v':
  4308. retvsz = 0;
  4309. break;
  4310. case 'i':
  4311. retvsz = sizeof(int);
  4312. break;
  4313. case 'l':
  4314. retvsz = sizeof(long);
  4315. break;
  4316. case 'f':
  4317. retvsz = sizeof(float);
  4318. break;
  4319. case 'd':
  4320. retvsz = sizeof(double);
  4321. break;
  4322. case 'c':
  4323. retvsz = sizeof(unsigned char);
  4324. break;
  4325. }
  4326. }
  4327. else
  4328. {
  4329. switch (sig[i])
  4330. {
  4331. case '$':
  4332. case '@':
  4333. {
  4334. value_t *vt = x->val.array->data[i - 1];
  4335. pool[i - 1] = value_str(vt);
  4336. v = pool[i - 1];
  4337. fc++;
  4338. }
  4339. break;
  4340. case 'p':
  4341. {
  4342. void *_pv;
  4343. value_t *vt = x->val.array->data[i - 1];
  4344. if (vt->tag != NUMBER)
  4345. goto cleanup;
  4346. _pv = (void *)(size_t)fabs(vt->val.number);
  4347. pool[i - 1] = malloc_checked(sizeof(void *));
  4348. memcpy(pool[i - 1], &_pv, sizeof(void *));
  4349. v = pool[i - 1];
  4350. fc++;
  4351. }
  4352. break;
  4353. case 'i':
  4354. {
  4355. int _iv;
  4356. value_t *vt = x->val.array->data[i - 1];
  4357. if (vt->tag != NUMBER)
  4358. goto cleanup;
  4359. _iv = (int)vt->val.number;
  4360. pool[i - 1] = malloc_checked(sizeof(int));
  4361. memcpy(pool[i - 1], &_iv, sizeof(int));
  4362. v = pool[i - 1];
  4363. fc++;
  4364. }
  4365. break;
  4366. case 'l':
  4367. {
  4368. long _lv;
  4369. value_t *_vt = x->val.array->data[i - 1];
  4370. if (_vt->tag != NUMBER)
  4371. goto cleanup;
  4372. _lv = (long)_vt->val.number;
  4373. pool[i - 1] = malloc_checked(sizeof(long));
  4374. memcpy(pool[i - 1], &_lv, sizeof(long));
  4375. v = pool[i - 1];
  4376. fc++;
  4377. }
  4378. break;
  4379. case 'f':
  4380. {
  4381. float _fv;
  4382. value_t *_vt = x->val.array->data[i - 1];
  4383. if (_vt->tag != NUMBER)
  4384. goto cleanup;
  4385. _fv = (float)_vt->val.number;
  4386. pool[i - 1] = malloc_checked(sizeof(float));
  4387. memcpy(pool[i - 1], &_fv, sizeof(float));
  4388. v = pool[i - 1];
  4389. fc++;
  4390. }
  4391. break;
  4392. case 'd':
  4393. {
  4394. double _dv;
  4395. value_t *_vt = x->val.array->data[i - 1];
  4396. if (_vt->tag != NUMBER)
  4397. goto cleanup;
  4398. _dv = (double)_vt->val.number;
  4399. pool[i - 1] = malloc_checked(sizeof(double));
  4400. memcpy(pool[i - 1], &_dv, sizeof(double));
  4401. v = pool[i - 1];
  4402. fc++;
  4403. }
  4404. break;
  4405. case 'c':
  4406. {
  4407. unsigned char _cv;
  4408. value_t *_vt = x->val.array->data[i - 1];
  4409. if (_vt->tag != CHAR)
  4410. goto cleanup;
  4411. _cv = (unsigned char)_vt->val._char;
  4412. pool[i - 1] = malloc_checked(sizeof(unsigned char));
  4413. memcpy(pool[i - 1], &_cv, sizeof(unsigned char));
  4414. v = pool[i - 1];
  4415. fc++;
  4416. }
  4417. break;
  4418. }
  4419. args[i - 1] = t;
  4420. values[i - 1] = v;
  4421. }
  4422. }
  4423. void *dlh = dlopen(lib, RTLD_LAZY);
  4424. if (!dlh)
  4425. goto cleanup;
  4426. void *exfn = dlsym(dlh, fun);
  4427. char *e = dlerror();
  4428. if (!exfn || e)
  4429. goto cleanup;
  4430. if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, argc, ret, args) != FFI_OK)
  4431. goto cleanup;
  4432. if (retvsz)
  4433. retv = malloc_checked(retvsz);
  4434. ffi_call(&cif, exfn, retv, values);
  4435. dlclose(dlh);
  4436. value_t *rv = state->nil;
  4437. switch (rett)
  4438. {
  4439. case 'v':
  4440. break;
  4441. case '$':
  4442. {
  4443. char *s = *(char **)retv;
  4444. size_t z = strlen(s);
  4445. list_t *l = list_newk(z);
  4446. for (size_t i = 0; i < z; i++)
  4447. l->data[i] = CHARS[(int)s[i]];
  4448. rv = value_new_array(l);
  4449. }
  4450. break;
  4451. case '@':
  4452. {
  4453. char *s = *(char **)retv;
  4454. size_t z = strlen(s);
  4455. list_t *l = list_newk(z);
  4456. for (size_t i = 0; i < z; i++)
  4457. l->data[i] = CHARS[(int)s[i]];
  4458. rv = value_new_array(l);
  4459. free(s);
  4460. }
  4461. break;
  4462. case 'p':
  4463. rv = value_new_number((size_t)*(void **)retv);
  4464. break;
  4465. case 'i':
  4466. rv = value_new_number(*(int *)retv);
  4467. break;
  4468. case 'l':
  4469. rv = value_new_number(*(long *)retv);
  4470. break;
  4471. case 'f':
  4472. rv = value_new_number(*(float *)retv);
  4473. break;
  4474. case 'd':
  4475. rv = value_new_number(*(double *)retv);
  4476. break;
  4477. case 'c':
  4478. rv = value_new_char(*(unsigned char *)retv);
  4479. break;
  4480. }
  4481. GC_FREE(retv);
  4482. for (size_t i = 0; i < fc; i++)
  4483. GC_FREE(pool[i]);
  4484. return rv;
  4485. cleanup:
  4486. for (size_t i = 0; i < fc; i++)
  4487. GC_FREE(pool[i]);
  4488. return state->udf;
  4489. }
  4490. value_t *verb_explode(interpreter_t *state, verb_t *self, value_t *x,
  4491. value_t *y)
  4492. {
  4493. char *del = value_show(x);
  4494. char *s = value_str(y);
  4495. size_t dell = strlen(del);
  4496. size_t sl = strlen(s);
  4497. list_t *r = list_new();
  4498. list_t *t = list_new();
  4499. for (size_t i = 0; i < sl; i++)
  4500. {
  4501. if (strncmp(&s[i], del, dell) == 0)
  4502. {
  4503. list_push(r, value_new_array(t));
  4504. t = list_new();
  4505. i += dell - 1;
  4506. continue;
  4507. }
  4508. list_push(t, CHARS[(int)s[i]]);
  4509. }
  4510. GC_FREE(s);
  4511. GC_FREE(del);
  4512. list_push(r, value_new_array(t));
  4513. return value_new_array(r);
  4514. }
  4515. value_t *verb_implode(interpreter_t *state, verb_t *self, value_t *x,
  4516. value_t *y)
  4517. {
  4518. if (y->tag != ARRAY || !y->val.array->data)
  4519. return y;
  4520. char *del = value_show(x);
  4521. list_t *r = list_new();
  4522. for (size_t i = 0; i < y->val.array->length; i++)
  4523. {
  4524. char *s = value_show(y->val.array->data[i]);
  4525. char *_s = s;
  4526. while (*_s)
  4527. list_push(r, CHARS[(int)(*_s++)]);
  4528. GC_FREE(s);
  4529. if (i != y->val.array->length - 1)
  4530. {
  4531. char *s = del;
  4532. while (*s)
  4533. list_push(r, CHARS[(int)(*s++)]);
  4534. }
  4535. }
  4536. GC_FREE(del);
  4537. return value_new_array(r);
  4538. }
  4539. value_t *verb_tackleft(interpreter_t *state, verb_t *self, value_t *x,
  4540. value_t *y)
  4541. {
  4542. if (y->tag != ARRAY)
  4543. y = verb_enlist(state, NULL, y);
  4544. list_t *r = list_newk(y->val.array->length + 1);
  4545. r->data[0] = x;
  4546. for (size_t i = 0; i < y->val.array->length; i++)
  4547. r->data[i + 1] = y->val.array->data[i];
  4548. return value_new_array(r);
  4549. }
  4550. value_t *verb_setrecdepth(interpreter_t *state, verb_t *self, value_t *x)
  4551. {
  4552. if (x->tag != NUMBER)
  4553. return state->udf;
  4554. size_t ov = max_rec_depth;
  4555. size_t v = (size_t)fabs(x->val.number);
  4556. if (v < 1)
  4557. v = 1;
  4558. max_rec_depth = v;
  4559. return value_new_number(ov);
  4560. }
  4561. value_t *verb_tackright(interpreter_t *state, verb_t *self, value_t *x,
  4562. value_t *y)
  4563. {
  4564. if (y->tag != ARRAY)
  4565. y = verb_enlist(state, NULL, y);
  4566. list_t *r = list_newk(y->val.array->length + 1);
  4567. for (size_t i = 0; i < y->val.array->length; i++)
  4568. r->data[i] = y->val.array->data[i];
  4569. r->data[y->val.array->length] = x;
  4570. return value_new_array(r);
  4571. }
  4572. value_t *verb_eye(interpreter_t *state, verb_t *self, value_t *x)
  4573. {
  4574. if (x->tag == NUMBER && !is_bad_num(x->val.number))
  4575. {
  4576. size_t k = fabs(x->val.number);
  4577. list_t *r = list_newk(k);
  4578. for (size_t i = 0; i < k; i++)
  4579. {
  4580. list_t *rw = list_newk(k);
  4581. for (size_t j = 0; j < k; j++)
  4582. rw->data[j] = NUMS[i == j];
  4583. r->data[i] = value_new_array(rw);
  4584. }
  4585. return value_new_array(r);
  4586. }
  4587. return state->udf;
  4588. }
  4589. value_t *verb_infix(interpreter_t *state, verb_t *self, value_t *x)
  4590. {
  4591. return verb_behead(state, NULL, verb_prefixes(state, NULL, x));
  4592. }
  4593. value_t *verb_value(interpreter_t *state, verb_t *self, value_t *x)
  4594. {
  4595. char *s = value_str(x);
  4596. value_t *r = table_get(state->env, s);
  4597. GC_FREE(s);
  4598. return r ? r : state->udf;
  4599. }
  4600. value_t *verb_hex(interpreter_t *state, verb_t *self, value_t *x)
  4601. {
  4602. if (x->tag == NUMBER)
  4603. {
  4604. char buf[64];
  4605. snprintf(buf, sizeof(buf), "%lx", (long)x->val.number);
  4606. list_t *r = list_new();
  4607. for (size_t i = 0; i < strlen(buf); i++)
  4608. list_push(r, value_new_char(buf[i]));
  4609. return value_new_array(r);
  4610. }
  4611. return state->udf;
  4612. }
  4613. value_t *verb_lines(interpreter_t *state, verb_t *self, value_t *x)
  4614. {
  4615. char *s = value_str(x);
  4616. size_t sl = strlen(s);
  4617. list_t *r = list_new();
  4618. list_t *t = list_new();
  4619. for (size_t i = 0; i < sl; i++)
  4620. {
  4621. if (s[i] == '\n')
  4622. {
  4623. list_push(r, value_new_array(t));
  4624. t = list_new();
  4625. continue;
  4626. }
  4627. list_push(t, CHARS[(int)s[i]]);
  4628. }
  4629. GC_FREE(s);
  4630. list_push(r, value_new_array(t));
  4631. return value_new_array(r);
  4632. }
  4633. list_t *list_delete(list_t *l, ssize_t index)
  4634. {
  4635. size_t z = l->length;
  4636. if (index < 0)
  4637. index += ((ssize_t)z);
  4638. if (index < 0 || index >= z)
  4639. return l;
  4640. list_t *r = list_newk(z - 1);
  4641. size_t ri = 0;
  4642. for (size_t i = 0; i < z; i++)
  4643. if (i == index)
  4644. continue;
  4645. else
  4646. r->data[ri++] = l->data[i];
  4647. return r;
  4648. }
  4649. value_t *verb_delete(interpreter_t *state, verb_t *self, value_t *x,
  4650. value_t *y)
  4651. {
  4652. if (x->tag != NUMBER)
  4653. return state->udf;
  4654. if (y->tag != ARRAY)
  4655. y = verb_enlist(state, NULL, y);
  4656. else if (!y->val.array->data)
  4657. return y;
  4658. return value_new_array(list_delete(y->val.array, trunc(x->val.number)));
  4659. }
  4660. value_t *verb_deleteInplace(interpreter_t *state, verb_t *self, value_t *x,
  4661. value_t *y)
  4662. {
  4663. if (x->tag != NUMBER)
  4664. return state->udf;
  4665. if (y->tag != ARRAY)
  4666. return state->udf;
  4667. else if (!y->val.array->data)
  4668. return y;
  4669. y->val.array = list_delete(y->val.array, trunc(x->val.number));
  4670. return y;
  4671. }
  4672. value_t *verb_rematch(interpreter_t *state, verb_t *self, value_t *x,
  4673. value_t *y)
  4674. {
  4675. char *pat = value_str(x);
  4676. char *s = value_str(y);
  4677. pcre *re;
  4678. const char *e;
  4679. int eo;
  4680. if (!(re = pcre_compile(pat, 0, &e, &eo, NULL)))
  4681. goto fail;
  4682. int rc = pcre_exec(re, NULL, s, strlen(s), 0, 0, NULL, 0);
  4683. pcre_free(re);
  4684. GC_FREE(pat);
  4685. GC_FREE(s);
  4686. return NUMS[rc >= 0];
  4687. fail:
  4688. GC_FREE(pat);
  4689. GC_FREE(s);
  4690. return state->udf;
  4691. }
  4692. value_t *verb_show(interpreter_t *state, verb_t *self, value_t *x)
  4693. {
  4694. char *s = value_str(x);
  4695. list_t *r = list_new();
  4696. for (size_t i = 0; i < strlen(s); i++)
  4697. list_push(r, value_new_char(s[i]));
  4698. GC_FREE(s);
  4699. return value_new_array(r);
  4700. }
  4701. value_t *verb_extract(interpreter_t *state, verb_t *self, value_t *x,
  4702. value_t *y)
  4703. {
  4704. char *pat = value_str(x);
  4705. char *s = value_str(y);
  4706. size_t len = strlen(s);
  4707. pcre *re;
  4708. const char *e;
  4709. int eo;
  4710. if (!(re = pcre_compile(pat, 0, &e, &eo, NULL)))
  4711. goto fail;
  4712. int ov[128 * 3];
  4713. int rc;
  4714. list_t *r = list_new();
  4715. unsigned int of = 0;
  4716. while (of < len &&
  4717. (rc = pcre_exec(re, 0, s, len, of, 0, ov, sizeof(ov))) >= 0)
  4718. {
  4719. if (rc == 0)
  4720. rc = sizeof(ov) / 3;
  4721. for (int i = 1; i < rc; i++)
  4722. {
  4723. char *ss = s + ov[2 * i];
  4724. int sl = ov[2 * i + 1] - ov[2 * i];
  4725. if (sl == 0)
  4726. {
  4727. list_push(r, _UNIT);
  4728. continue;
  4729. }
  4730. list_t *l = list_newk(sl);
  4731. for (int j = 0; j < sl; j++)
  4732. l->data[j] = CHARS[(int)ss[j]];
  4733. list_push(r, value_new_array(l));
  4734. }
  4735. of = ov[1];
  4736. }
  4737. pcre_free(re);
  4738. GC_FREE(pat);
  4739. GC_FREE(s);
  4740. return value_new_array(r);
  4741. fail:
  4742. GC_FREE(pat);
  4743. GC_FREE(s);
  4744. return state->udf;
  4745. }
  4746. value_t *verb_udf1(interpreter_t *state, verb_t *self, value_t *x)
  4747. {
  4748. return state->udf;
  4749. }
  4750. value_t *verb_udf2(interpreter_t *state, verb_t *self, value_t *x, value_t *y)
  4751. {
  4752. return state->udf;
  4753. }
  4754. #define X UINT_MAX
  4755. #define DEFVERB(__symb, __rm, __rl, __rr, __monad, __dyad) \
  4756. {__symb, {__rm, __rl, __rr}, NULL, false, false, verb_##__monad, verb_##__dyad}
  4757. #define DEFVERBD(__symb, __rm, __rl, __rr, __monad, __dyad) \
  4758. {__symb ".", {__rm, __rl, __rr}, NULL, false, false, verb_##__monad, verb_##__dyad}
  4759. #define DEFVERBC(__symb, __rm, __rl, __rr, __monad, __dyad) \
  4760. {__symb ":", {__rm, __rl, __rr}, NULL, false, false, verb_##__monad, verb_##__dyad}
  4761. verb_t VERBS[] = {DEFVERB(":", 0, 0, 0, const, bind),
  4762. DEFVERBC(":", X, 0, 0, unbind, obverse),
  4763. DEFVERB("+", 0, X, X, flip, plus),
  4764. DEFVERBD("+", X, X, X, fibonacci, gcd),
  4765. DEFVERBC("+", X, X, X, sin, combine),
  4766. DEFVERB("-", X, X, X, negate, minus),
  4767. DEFVERBD("-", X, X, X, atan, atan2),
  4768. DEFVERB("*", 0, X, X, first, times),
  4769. DEFVERBD("*", X, X, X, factorial, lcm),
  4770. DEFVERBC("*", X, X, 0, double, replicate),
  4771. DEFVERB("%", X, X, X, reciprocal, divide),
  4772. DEFVERBD("%", X, X, X, sqrt, root),
  4773. DEFVERBC("%", X, X, X, halve, idivide),
  4774. DEFVERB("!", X, X, X, enum, mod),
  4775. DEFVERBD("!", X, X, X, iota, range),
  4776. DEFVERBC("!", 0, X, 0, odometer, chunks),
  4777. DEFVERB("^", X, X, X, exp, power),
  4778. DEFVERBD("^", X, X, X, nlog, log),
  4779. DEFVERB("=", 0, X, X, permute, equals),
  4780. DEFVERBD("=", 0, 0, 0, occurences, mask),
  4781. DEFVERBC("=", 0, 0, 0, classify, equals),
  4782. DEFVERB("~", X, X, X, not, not_equals),
  4783. DEFVERBD("~", X, 0, 0, sign, insert),
  4784. DEFVERBC("~", 0, 0, 0, not, not_equals),
  4785. DEFVERB("<", X, X, X, pred, less),
  4786. DEFVERBD("<", X, X, X, floor, lesseq),
  4787. DEFVERBC("<", 0, X, 0, gradedown, nudge_left),
  4788. DEFVERB(">", X, X, X, succ, greater),
  4789. DEFVERBD(">", X, X, X, ceil, greatereq),
  4790. DEFVERBC(">", 0, X, 0, gradeup, nudge_right),
  4791. DEFVERB(",", 0, 0, 0, enlist, join),
  4792. DEFVERBD(",", X, 0, 0, enlist, enpair),
  4793. DEFVERB("#", 0, X, 0, count, take),
  4794. DEFVERBD("#", 0, 0, 0, where, copy),
  4795. DEFVERBC("#", 0, 0, 0, group, buckets),
  4796. DEFVERB("_", 0, X, 0, nub, drop),
  4797. DEFVERBD("_", 0, X, 0, unbits, unbase),
  4798. DEFVERBC("_", X, X, X, bits, base),
  4799. DEFVERB("?", 0, 0, 0, unique, find),
  4800. DEFVERB("&", 0, X, X, flatten, minand),
  4801. DEFVERB("|", 0, X, X, reverse, maxor),
  4802. DEFVERBD("|", X, X, 0, round, rotate),
  4803. DEFVERBC("|", 0, X, 0, depth, windows),
  4804. DEFVERB("@", X, 0, X, abs, at),
  4805. DEFVERBD("@", 0, 0, 0, shuffle, member),
  4806. DEFVERBC("@", 0, 0, 0, infix, indexof),
  4807. DEFVERB("{", 0, 0, 0, head, bin),
  4808. DEFVERBD("{", 0, 0, 0, tail, cut),
  4809. DEFVERBC("{", 0, X, X, prefixes, shl),
  4810. DEFVERB("}", 0, X, X, behead, xor),
  4811. DEFVERBD("}", 0, 0, 0, curtail, band),
  4812. DEFVERBC("}", 0, X, X, suffixes, shr),
  4813. DEFVERB("[", X, 0, 0, factors, left),
  4814. DEFVERBD("[", X, X, X, bnot, bor),
  4815. DEFVERBC("[", X, X, 0, primes, parts),
  4816. DEFVERB("]", 0, 0, 0, same, right),
  4817. DEFVERBD("]", 0, X, X, sort, outof),
  4818. DEFVERBC("]", 0, 0, 0, unsort, explode),
  4819. DEFVERBD("`", 0, 0, 0, symbol, apply1),
  4820. DEFVERBC("`", 0, 0, 0, square, apply2),
  4821. DEFVERB("$", 0, 0, 0, shape, reshape),
  4822. DEFVERBD("$", 0, 0, 0, repr, format),
  4823. DEFVERBC("$", X, 0, 0, eye, implode),
  4824. DEFVERBD("d", 0, X, 0, udf1, delete),
  4825. DEFVERBD("D", 0, X, 0, udf1, deleteInplace),
  4826. DEFVERBD("p", 0, 0, 0, print, udf2),
  4827. DEFVERBD("P", 0, 0, 0, println, udf2),
  4828. DEFVERBD("c", X, 0, 0, putch, udf2),
  4829. DEFVERBD("s", 0, 0, 0, selfref1, selfref2),
  4830. DEFVERBD("F", 0, 0, 0, read, write),
  4831. DEFVERBD("r", 0, X, X, deal, roll),
  4832. DEFVERBD("t", 0, 0, 0, type, cast),
  4833. DEFVERBD("E", 0, 0, 0, exit, udf2),
  4834. DEFVERBD("y", 0, 0, 0, system, system2),
  4835. DEFVERBD("e", 0, 0, 0, eval, udf2),
  4836. DEFVERBD("i", 0, 0, 0, import, foreign),
  4837. DEFVERBD("L", 0, 0, 0, lines, tackleft),
  4838. DEFVERBD("R", X, 0, 0, setrecdepth, tackright),
  4839. DEFVERBD("v", 0, 0, 0, value, udf2),
  4840. DEFVERBD("h", X, 0, 0, hex, udf2),
  4841. DEFVERBD("x", 0, 0, 0, show, rematch),
  4842. DEFVERBD("X", 0, 0, 0, udf1, extract)};
  4843. value_t *_adverb_fold_monad(interpreter_t *state, verb_t *self, value_t *x)
  4844. {
  4845. if (x->tag != ARRAY || !x->val.array->data)
  4846. return x;
  4847. value_t *_v = self->bonds->data[0];
  4848. if (_v->tag != VERB)
  4849. return state->udf;
  4850. verb_t *v = _v->val.verb;
  4851. value_t *t = x->val.array->data[0];
  4852. list_t *tx = x->val.array;
  4853. for (size_t i = 1; i < tx->length; i++)
  4854. t = together(state, v, t, tx->data[i], 0, 0, v->rank[1], v->rank[2]);
  4855. return t;
  4856. }
  4857. value_t *_adverb_fold_dyad(interpreter_t *state, verb_t *self, value_t *x,
  4858. value_t *y)
  4859. {
  4860. if (y->tag != ARRAY)
  4861. y = verb_enlist(state, NULL, y);
  4862. else if (!y->val.array->data)
  4863. return x;
  4864. value_t *_v = self->bonds->data[0];
  4865. if (_v->tag != VERB)
  4866. return state->udf;
  4867. verb_t *v = _v->val.verb;
  4868. value_t *t = x;
  4869. list_t *ty = y->val.array;
  4870. for (size_t i = 0; i < ty->length; i++)
  4871. t = together(state, v, t, ty->data[i], 0, 0, v->rank[1], v->rank[2]);
  4872. return t;
  4873. }
  4874. value_t *_adverb_scan_monad(interpreter_t *state, verb_t *self, value_t *x)
  4875. {
  4876. if (x->tag != ARRAY || !x->val.array->data)
  4877. return x;
  4878. value_t *_v = self->bonds->data[0];
  4879. if (_v->tag != VERB)
  4880. return state->udf;
  4881. verb_t *v = _v->val.verb;
  4882. list_t *r = list_new();
  4883. value_t *t = x->val.array->data[0];
  4884. list_t *tx = x->val.array;
  4885. list_push(r, t);
  4886. for (size_t i = 1; i < tx->length; i++)
  4887. {
  4888. t = together(state, v, t, tx->data[i], 0, 0, v->rank[1], v->rank[2]);
  4889. list_push(r, t);
  4890. }
  4891. return value_new_array(r);
  4892. }
  4893. value_t *_adverb_scan_dyad(interpreter_t *state, verb_t *self, value_t *x,
  4894. value_t *y)
  4895. {
  4896. if (y->tag != ARRAY || !y->val.array->data)
  4897. return y;
  4898. value_t *_v = self->bonds->data[0];
  4899. if (_v->tag != VERB)
  4900. return state->udf;
  4901. verb_t *v = _v->val.verb;
  4902. list_t *r = list_new();
  4903. value_t *t = x;
  4904. list_t *ty = y->val.array;
  4905. list_push(r, t);
  4906. for (size_t i = 1; i < ty->length; i++)
  4907. {
  4908. t = together(state, v, t, ty->data[i], 0, 0, v->rank[1], v->rank[2]);
  4909. list_push(r, t);
  4910. }
  4911. return value_new_array(r);
  4912. }
  4913. value_t *_adverb_each_monad(interpreter_t *state, verb_t *self, value_t *x)
  4914. {
  4915. value_t *_v = self->bonds->data[0];
  4916. if (_v->tag != VERB)
  4917. return state->udf;
  4918. verb_t *v = _v->val.verb;
  4919. if (x->tag != ARRAY)
  4920. return each_rank(state, v, x, 0, 1);
  4921. if (!x->val.array->data)
  4922. return x;
  4923. return each_rank(state, v, x, 0, 1);
  4924. }
  4925. value_t *_adverb_each_dyad(interpreter_t *state, verb_t *self, value_t *x,
  4926. value_t *y)
  4927. {
  4928. value_t *_v = self->bonds->data[0];
  4929. if (_v->tag != VERB)
  4930. return state->udf;
  4931. verb_t *v = _v->val.verb;
  4932. if (x->tag != ARRAY)
  4933. x = verb_enlist(state, NULL, x);
  4934. if (y->tag != ARRAY)
  4935. y = verb_enlist(state, NULL, y);
  4936. list_t *r = list_new();
  4937. list_t *tx = x->val.array;
  4938. list_t *ty = y->val.array;
  4939. for (size_t i = 0; i < tx->length && i < ty->length; i++)
  4940. list_push(r, together(state, v, tx->data[i], ty->data[i], 0, 0, v->rank[1],
  4941. v->rank[2]));
  4942. return value_new_array(r);
  4943. }
  4944. value_t *_adverb_converge_monad(interpreter_t *state, verb_t *self,
  4945. value_t *x)
  4946. {
  4947. value_t *_v = self->bonds->data[0];
  4948. if (_v->tag != VERB)
  4949. return state->udf;
  4950. verb_t *v = _v->val.verb;
  4951. value_t *t;
  4952. for (;;)
  4953. {
  4954. t = x;
  4955. x = each_rank(state, v, x, 0, v->rank[0]);
  4956. if (value_equals(x, t))
  4957. break;
  4958. }
  4959. return x;
  4960. }
  4961. verb_t *conjunction_bond(interpreter_t *state, value_t *x, value_t *y);
  4962. value_t *_adverb_converge_dyad(interpreter_t *state, verb_t *self, value_t *x,
  4963. value_t *y)
  4964. {
  4965. value_t *_v = self->bonds->data[0];
  4966. if (_v->tag != VERB)
  4967. return state->udf;
  4968. verb_t *v = _v->val.verb;
  4969. if (y->tag != ARRAY)
  4970. return together(state, v, y, x, 0, 0, v->rank[1], v->rank[2]);
  4971. if (!y->val.array->data)
  4972. return x;
  4973. v = conjunction_bond(state, value_new_verb(v), x);
  4974. return each_rank(state, v, y, 0, 1);
  4975. }
  4976. value_t *_adverb_converges_monad(interpreter_t *state, verb_t *self,
  4977. value_t *x)
  4978. {
  4979. value_t *_v = self->bonds->data[0];
  4980. if (_v->tag != VERB)
  4981. return state->udf;
  4982. list_t *r = list_new();
  4983. value_t *t;
  4984. list_push(r, x);
  4985. for (;;)
  4986. {
  4987. t = x;
  4988. x = apply_monad(state, _v, x);
  4989. if (value_equals(x, t))
  4990. break;
  4991. list_push(r, x);
  4992. }
  4993. return value_new_array(r);
  4994. }
  4995. value_t *_adverb_converges_dyad(interpreter_t *state, verb_t *self, value_t *x,
  4996. value_t *y)
  4997. {
  4998. value_t *_v = self->bonds->data[0];
  4999. if (_v->tag != VERB)
  5000. return state->udf;
  5001. verb_t *v = _v->val.verb;
  5002. if (y->tag != ARRAY)
  5003. return together(state, v, y, x, 0, 0, v->rank[1], v->rank[2]);
  5004. if (!y->val.array->data)
  5005. return x;
  5006. v = conjunction_bond(state, x, value_new_verb(v));
  5007. return each_rank(state, v, y, 0, 1);
  5008. }
  5009. value_t *_adverb_eachprior_monad(interpreter_t *state, verb_t *self,
  5010. value_t *x)
  5011. {
  5012. if (x->tag != ARRAY || x->val.array->length < 2)
  5013. return x;
  5014. value_t *_v = self->bonds->data[0];
  5015. if (_v->tag != VERB)
  5016. return state->udf;
  5017. verb_t *v = _v->val.verb;
  5018. list_t *r = list_new();
  5019. for (size_t i = 1; i < x->val.array->length; i++)
  5020. list_push(r, together(state, v, x->val.array->data[i],
  5021. x->val.array->data[i - 1], 0, 0, v->rank[1],
  5022. v->rank[2]));
  5023. return value_new_array(r);
  5024. }
  5025. value_t *_adverb_eachprior_dyad(interpreter_t *state, verb_t *self, value_t *x,
  5026. value_t *y)
  5027. {
  5028. if (y->tag != ARRAY || !y->val.array->data)
  5029. return y;
  5030. value_t *_v = self->bonds->data[0];
  5031. if (_v->tag != VERB)
  5032. return state->udf;
  5033. verb_t *v = _v->val.verb;
  5034. list_t *r = list_new();
  5035. for (size_t i = 0; i < y->val.array->length; i++)
  5036. list_push(r, together(state, v, y->val.array->data[i],
  5037. i == 0 ? x : y->val.array->data[i - 1], 0, 0,
  5038. v->rank[1], v->rank[2]));
  5039. return value_new_array(r);
  5040. }
  5041. value_t *_adverb_reflex_monad(interpreter_t *state, verb_t *self, value_t *x)
  5042. {
  5043. value_t *_v = self->bonds->data[0];
  5044. if (_v->tag != VERB)
  5045. return state->udf;
  5046. verb_t *v = _v->val.verb;
  5047. return together(state, v, x, x, 0, 0, v->rank[1], v->rank[2]);
  5048. }
  5049. value_t *_adverb_reflex_dyad(interpreter_t *state, verb_t *self, value_t *x,
  5050. value_t *y)
  5051. {
  5052. value_t *_v = self->bonds->data[0];
  5053. if (_v->tag != VERB)
  5054. return state->udf;
  5055. verb_t *v = _v->val.verb;
  5056. return together(state, v, y, x, 0, 0, v->rank[1], v->rank[2]);
  5057. }
  5058. value_t *_adverb_amend_monad(interpreter_t *state, verb_t *self, value_t *x)
  5059. {
  5060. return state->udf;
  5061. }
  5062. value_t *_adverb_amend_dyad(interpreter_t *state, verb_t *self, value_t *x,
  5063. value_t *y)
  5064. {
  5065. if (x->tag != ARRAY)
  5066. x = verb_enlist(state, NULL, x);
  5067. value_t *v = self->bonds->data[0];
  5068. if (v->tag != ARRAY && v->tag != VERB)
  5069. v = verb_enlist(state, NULL, v);
  5070. if (y->tag != ARRAY)
  5071. y = verb_enlist(state, NULL, y);
  5072. list_t *r = list_copy(y->val.array);
  5073. size_t l = x->val.array->length;
  5074. if (v->tag == VERB)
  5075. {
  5076. list_t *t = x->val.array;
  5077. for (size_t i = 0; i < t->length; i++)
  5078. {
  5079. value_t *n = t->data[i];
  5080. if (n->tag != NUMBER)
  5081. break;
  5082. value_t *e = list_index(r, n->val.number);
  5083. if (!e)
  5084. continue;
  5085. list_set(r, n->val.number, apply_monad(state, v, e));
  5086. }
  5087. }
  5088. else
  5089. {
  5090. list_t *t = v->val.array;
  5091. for (size_t i = 0; i < t->length; i++)
  5092. {
  5093. value_t *n = t->data[i];
  5094. if (n->tag != NUMBER)
  5095. break;
  5096. list_set(r, n->val.number, list_index(x->val.array, i < l ? i : l - 1));
  5097. }
  5098. }
  5099. return value_new_array(r);
  5100. }
  5101. value_t *_adverb_filter_monad(interpreter_t *state, verb_t *self, value_t *x)
  5102. {
  5103. value_t *_v = self->bonds->data[0];
  5104. if (_v->tag != VERB)
  5105. return state->udf;
  5106. if (x->tag != ARRAY)
  5107. x = verb_enlist(state, NULL, x);
  5108. else if (!x->val.array->data)
  5109. return x;
  5110. verb_t *v = _v->val.verb;
  5111. list_t *r = list_new();
  5112. for (size_t i = 0; i < x->val.array->length; i++)
  5113. {
  5114. value_t *b = each_rank(state, v, x->val.array->data[i], 0, v->rank[0]);
  5115. if (value_is_truthy(b))
  5116. list_push(r, x->val.array->data[i]);
  5117. }
  5118. return value_new_array(r);
  5119. }
  5120. value_t *_adverb_filter_dyad(interpreter_t *state, verb_t *self, value_t *x,
  5121. value_t *y)
  5122. {
  5123. return state->udf;
  5124. }
  5125. value_t *_adverb_span_monad(interpreter_t *state, verb_t *self, value_t *x)
  5126. {
  5127. value_t *v = self->bonds->data[0];
  5128. if (v->tag != VERB)
  5129. return state->udf;
  5130. if (x->tag != ARRAY)
  5131. x = verb_enlist(state, NULL, x);
  5132. else if (!x->val.array->data)
  5133. return x;
  5134. list_t *r = list_new();
  5135. list_t *p = list_new();
  5136. for (size_t i = 0; i < x->val.array->length; i++)
  5137. {
  5138. value_t *b = apply_monad(state, v, x->val.array->data[i]);
  5139. if (value_is_truthy(b))
  5140. {
  5141. list_push(r, value_new_array(p));
  5142. p = list_new();
  5143. }
  5144. else
  5145. list_push(p, x->val.array->data[i]);
  5146. }
  5147. list_push(r, value_new_array(p));
  5148. return value_new_array(r);
  5149. }
  5150. value_t *_adverb_span_dyad(interpreter_t *state, verb_t *self, value_t *x,
  5151. value_t *y)
  5152. {
  5153. value_t *_v = self->bonds->data[0];
  5154. if (_v->tag != VERB)
  5155. return state->udf;
  5156. verb_t *v = _v->val.verb;
  5157. value_t *r = verb_windows(state, NULL, x, y);
  5158. return each_rank(state, v, r, 0, 1);
  5159. }
  5160. value_t *_adverb_inverse_monad(interpreter_t *state, verb_t *self, value_t *x)
  5161. {
  5162. value_t *_v = self->bonds->data[0];
  5163. if (_v->tag != VERB)
  5164. return state->udf;
  5165. verb_t *v = _v->val.verb;
  5166. verb_t *iv = table_get(Inverses, v->name);
  5167. if (!iv)
  5168. return state->udf;
  5169. return each_rank(state, iv, x, 0, iv->rank[0]);
  5170. }
  5171. value_t *_adverb_inverse_dyad(interpreter_t *state, verb_t *self, value_t *x,
  5172. value_t *y)
  5173. {
  5174. value_t *_v = self->bonds->data[0];
  5175. if (_v->tag != VERB)
  5176. return state->udf;
  5177. verb_t *v = _v->val.verb;
  5178. verb_t *iv = table_get(Inverses, v->name);
  5179. if (!iv)
  5180. return state->udf;
  5181. value_t *a = each_rank(state, iv, x, 0, iv->rank[0]);
  5182. value_t *b = each_rank(state, iv, y, 0, iv->rank[0]);
  5183. return apply_dyad(state, _v, a, b);
  5184. }
  5185. #define ADVERB(__name, __symb) \
  5186. verb_t *adverb_##__name(interpreter_t *state, value_t *v) \
  5187. { \
  5188. verb_t *nv = verb_new(); \
  5189. nv->bonds = list_newk(1); \
  5190. nv->bonds->data[0] = v; \
  5191. char *r = value_show(v); \
  5192. size_t l = strlen(r) + strlen(__symb) + 1; \
  5193. nv->name = malloc_checked_atomic(l); \
  5194. snprintf(nv->name, l, "%s" __symb, r); \
  5195. GC_FREE(r); \
  5196. nv->rank[0] = 0; \
  5197. nv->monad = _adverb_##__name##_monad; \
  5198. nv->dyad = _adverb_##__name##_dyad; \
  5199. return nv; \
  5200. }
  5201. ADVERB(fold, "/");
  5202. ADVERB(converge, "/.");
  5203. ADVERB(scan, "\\");
  5204. ADVERB(converges, "\\.");
  5205. ADVERB(each, "\"");
  5206. ADVERB(eachprior, "\".");
  5207. ADVERB(reflex, ";.");
  5208. ADVERB(amend, "`");
  5209. ADVERB(filter, "&.");
  5210. ADVERB(span, "/:");
  5211. ADVERB(inverse, "-:");
  5212. adverb_t ADVERBS[] = {
  5213. {"/", adverb_fold, NULL}, {"/.", adverb_converge, NULL}, {"\\", adverb_scan, NULL}, {"\\.", adverb_converges, NULL}, {"\"", adverb_each, NULL}, {"\".", adverb_eachprior, NULL}, {";.", adverb_reflex, NULL}, {"`", adverb_amend, NULL}, {"&.", adverb_filter, NULL}, {"/:", adverb_span, NULL}, {"-:", adverb_inverse, NULL}};
  5214. value_t *_conjunction_bond_monad(interpreter_t *state, verb_t *self,
  5215. value_t *x)
  5216. {
  5217. value_t *v1 = self->bonds->data[0];
  5218. value_t *v2 = self->bonds->data[1];
  5219. if (v1->tag == VERB && v2->tag == VERB)
  5220. return apply_monad(state, v1, apply_monad(state, v2, x));
  5221. else if (v1->tag == VERB)
  5222. return apply_dyad(state, v1, x, v2);
  5223. else if (v2->tag == VERB)
  5224. return apply_dyad(state, v2, v1, x);
  5225. else
  5226. return state->udf;
  5227. }
  5228. value_t *_conjunction_bond_dyad(interpreter_t *state, verb_t *self, value_t *x,
  5229. value_t *y)
  5230. {
  5231. value_t *v1 = self->bonds->data[0];
  5232. value_t *v2 = self->bonds->data[1];
  5233. if (v1->tag == VERB && v2->tag == VERB)
  5234. return apply_monad(state, v1, apply_dyad(state, v2, x, y));
  5235. else if (v1->tag == VERB)
  5236. return apply_dyad(state, v1, apply_dyad(state, v1, x, y), v2);
  5237. else if (v2->tag == VERB)
  5238. return apply_dyad(state, v2, v1, apply_dyad(state, v2, x, y));
  5239. else
  5240. return state->udf;
  5241. }
  5242. value_t *_conjunction_pick_monad(interpreter_t *state, verb_t *self,
  5243. value_t *x)
  5244. {
  5245. value_t *v1 = self->bonds->data[0];
  5246. value_t *v2 = self->bonds->data[1];
  5247. if (v1->tag != VERB || v2->tag != ARRAY)
  5248. return state->udf;
  5249. value_t *n = apply_monad(state, v1, x);
  5250. value_t *f = verb_at(state, NULL, v2, n);
  5251. return apply_monad(state, f, x);
  5252. }
  5253. value_t *_conjunction_pick_dyad(interpreter_t *state, verb_t *self, value_t *x,
  5254. value_t *y)
  5255. {
  5256. value_t *v1 = self->bonds->data[0];
  5257. value_t *v2 = self->bonds->data[1];
  5258. if (v1->tag != VERB || v2->tag != ARRAY)
  5259. return state->udf;
  5260. value_t *n = apply_dyad(state, v1, x, y);
  5261. value_t *f = verb_at(state, NULL, v2, n);
  5262. return apply_dyad(state, f, x, y);
  5263. }
  5264. value_t *_conjunction_while_monad(interpreter_t *state, verb_t *self,
  5265. value_t *x)
  5266. {
  5267. value_t *v1 = self->bonds->data[0];
  5268. value_t *v2 = self->bonds->data[1];
  5269. if (v1->tag == VERB)
  5270. {
  5271. for (;;)
  5272. {
  5273. if (!value_is_truthy(apply_monad(state, v1, x)))
  5274. break;
  5275. x = apply_monad(state, v2, x);
  5276. }
  5277. }
  5278. else if (v1->tag == NUMBER)
  5279. {
  5280. size_t k = (size_t)fabs(v1->val.number);
  5281. for (size_t i = 0; i < k; i++)
  5282. x = apply_monad(state, v2, x);
  5283. }
  5284. return x;
  5285. }
  5286. value_t *_conjunction_while_dyad(interpreter_t *state, verb_t *self, value_t *x,
  5287. value_t *y)
  5288. {
  5289. value_t *v1 = self->bonds->data[0];
  5290. value_t *v2 = self->bonds->data[1];
  5291. if (v1->tag == VERB)
  5292. {
  5293. for (;;)
  5294. {
  5295. if (!value_is_truthy(apply_dyad(state, v1, x, y)))
  5296. break;
  5297. x = apply_dyad(state, v2, x, y);
  5298. }
  5299. }
  5300. else if (v1->tag == NUMBER)
  5301. {
  5302. size_t k = (size_t)fabs(v1->val.number);
  5303. for (size_t i = 0; i < k; i++)
  5304. x = apply_dyad(state, v2, x, y);
  5305. }
  5306. return x;
  5307. }
  5308. value_t *_conjunction_rank_monad(interpreter_t *state, verb_t *self,
  5309. value_t *x)
  5310. {
  5311. value_t *v1 = self->bonds->data[0];
  5312. value_t *v2 = self->bonds->data[1];
  5313. if (v1->tag != VERB || v2->tag != NUMBER)
  5314. return state->udf;
  5315. unsigned int rank =
  5316. v2->val.number == INFINITY ? UINT_MAX : fabs(v2->val.number);
  5317. return each_rank(state, v1->val.verb, x, 0, rank);
  5318. }
  5319. value_t *_conjunction_rank_dyad(interpreter_t *state, verb_t *self, value_t *x,
  5320. value_t *y)
  5321. {
  5322. value_t *v1 = self->bonds->data[0];
  5323. value_t *v2 = self->bonds->data[1];
  5324. if (v1->tag != VERB)
  5325. return state->udf;
  5326. unsigned int rl;
  5327. unsigned int rr;
  5328. if (v2->tag == NUMBER)
  5329. rl = rr = v2->val.number == INFINITY ? UINT_MAX : fabs(v2->val.number);
  5330. else if (v2->tag == ARRAY && v2->val.array->length == 2)
  5331. {
  5332. value_t *a = v2->val.array->data[0];
  5333. value_t *b = v2->val.array->data[1];
  5334. if (a->tag != NUMBER)
  5335. return state->udf;
  5336. rl = a->val.number == INFINITY ? UINT_MAX : fabs(a->val.number);
  5337. if (b->tag != NUMBER)
  5338. return state->udf;
  5339. rr = b->val.number == INFINITY ? UINT_MAX : fabs(b->val.number);
  5340. }
  5341. else
  5342. return state->udf;
  5343. return together(state, v1->val.verb, x, y, 0, 0, rl, rr);
  5344. }
  5345. value_t *_conjunction_monaddyad_monad(interpreter_t *state, verb_t *self,
  5346. value_t *x)
  5347. {
  5348. value_t *v = self->bonds->data[0];
  5349. if (v->tag != VERB)
  5350. return state->udf;
  5351. return each_rank(state, v->val.verb, x, 0, v->val.verb->rank[0]);
  5352. }
  5353. value_t *_conjunction_monaddyad_dyad(interpreter_t *state, verb_t *self,
  5354. value_t *x, value_t *y)
  5355. {
  5356. value_t *v = self->bonds->data[1];
  5357. if (v->tag != VERB)
  5358. return state->udf;
  5359. return together(state, v->val.verb, x, y, 0, 0, v->val.verb->rank[1],
  5360. v->val.verb->rank[2]);
  5361. }
  5362. value_t *_conjunction_if_monad(interpreter_t *state, verb_t *self, value_t *x)
  5363. {
  5364. value_t *v1 = self->bonds->data[0];
  5365. value_t *v2 = self->bonds->data[1];
  5366. if (v1->tag != VERB || v2->tag != VERB)
  5367. return state->udf;
  5368. value_t *b = apply_monad(state, v2, x);
  5369. if (value_is_truthy(b))
  5370. return x;
  5371. return apply_monad(state, v1, x);
  5372. }
  5373. value_t *_conjunction_if_dyad(interpreter_t *state, verb_t *self, value_t *x,
  5374. value_t *y)
  5375. {
  5376. value_t *v1 = self->bonds->data[0];
  5377. value_t *v2 = self->bonds->data[1];
  5378. if (v1->tag != VERB || v2->tag != VERB)
  5379. return state->udf;
  5380. value_t *b = apply_dyad(state, v2, x, y);
  5381. if (value_is_truthy(b))
  5382. return y;
  5383. return apply_dyad(state, v1, x, y);
  5384. }
  5385. value_t *_conjunction_under_monad(interpreter_t *state, verb_t *self,
  5386. value_t *x)
  5387. {
  5388. value_t *v1 = self->bonds->data[0];
  5389. value_t *v2 = self->bonds->data[1];
  5390. if (v1->tag != VERB || v2->tag != VERB)
  5391. return state->udf;
  5392. verb_t *iv = table_get(Inverses, v2->val.verb->name);
  5393. if (!iv)
  5394. return state->udf;
  5395. value_t *v = apply_monad(state, v2, x);
  5396. v = apply_monad(state, v1, v);
  5397. return each_rank(state, iv, v, 0, iv->rank[0]);
  5398. }
  5399. value_t *_conjunction_under_dyad(interpreter_t *state, verb_t *self, value_t *x,
  5400. value_t *y)
  5401. {
  5402. value_t *v1 = self->bonds->data[0];
  5403. value_t *v2 = self->bonds->data[1];
  5404. if (v1->tag != VERB || v2->tag != VERB)
  5405. return state->udf;
  5406. verb_t *iv = table_get(Inverses, v2->val.verb->name);
  5407. if (!iv)
  5408. return state->udf;
  5409. value_t *a = apply_monad(state, v2, x);
  5410. value_t *b = apply_monad(state, v2, y);
  5411. value_t *v = apply_dyad(state, v1, a, b);
  5412. return each_rank(state, iv, v, 0, iv->rank[0]);
  5413. }
  5414. value_t *_conjunction_collect_monad(interpreter_t *state, verb_t *self,
  5415. value_t *x)
  5416. {
  5417. value_t *v1 = self->bonds->data[0];
  5418. value_t *v2 = self->bonds->data[1];
  5419. list_t *r = list_new();
  5420. if (v1->tag == VERB)
  5421. {
  5422. for (;;)
  5423. {
  5424. if (!value_is_truthy(apply_monad(state, v1, x)))
  5425. break;
  5426. list_push(r, x);
  5427. x = apply_monad(state, v2, x);
  5428. }
  5429. }
  5430. else if (v1->tag == NUMBER)
  5431. {
  5432. size_t k = (size_t)fabs(v1->val.number);
  5433. for (size_t i = 0; i < k; i++)
  5434. {
  5435. list_push(r, x);
  5436. x = apply_monad(state, v2, x);
  5437. }
  5438. }
  5439. return value_new_array(r);
  5440. }
  5441. value_t *_conjunction_collect_dyad(interpreter_t *state, verb_t *self,
  5442. value_t *x, value_t *y)
  5443. {
  5444. value_t *v1 = self->bonds->data[0];
  5445. value_t *v2 = self->bonds->data[1];
  5446. list_t *r = list_new();
  5447. if (v1->tag == VERB)
  5448. {
  5449. for (;;)
  5450. {
  5451. if (!value_is_truthy(apply_dyad(state, v1, x, y)))
  5452. break;
  5453. list_push(r, x);
  5454. x = apply_dyad(state, v2, x, y);
  5455. }
  5456. }
  5457. else if (v1->tag == NUMBER)
  5458. {
  5459. size_t k = (size_t)fabs(v1->val.number);
  5460. for (size_t i = 0; i < k; i++)
  5461. {
  5462. list_push(r, x);
  5463. x = apply_dyad(state, v2, x, y);
  5464. }
  5465. }
  5466. return x;
  5467. }
  5468. #define CONJUNCTION(__name, __symb) \
  5469. verb_t *conjunction_##__name(interpreter_t *state, value_t *x, value_t *y) \
  5470. { \
  5471. verb_t *nv = verb_new(); \
  5472. nv->bonds = list_newk(2); \
  5473. nv->bonds->data[0] = x; \
  5474. nv->bonds->data[1] = y; \
  5475. char *rx = value_show(x); \
  5476. char *ry = value_show(y); \
  5477. size_t l = strlen(rx) + strlen(ry) + strlen(__symb) + 1; \
  5478. nv->name = malloc_checked_atomic(l); \
  5479. snprintf(nv->name, l, "%s" __symb "%s", rx, ry); \
  5480. GC_FREE(rx); \
  5481. GC_FREE(ry); \
  5482. nv->rank[0] = 0; \
  5483. nv->rank[1] = 0; \
  5484. nv->rank[1] = 0; \
  5485. nv->monad = _conjunction_##__name##_monad; \
  5486. nv->dyad = _conjunction_##__name##_dyad; \
  5487. return nv; \
  5488. }
  5489. CONJUNCTION(bond, ";");
  5490. CONJUNCTION(pick, "?.");
  5491. CONJUNCTION(while, "?:");
  5492. CONJUNCTION(rank, "\":");
  5493. CONJUNCTION(monaddyad, ";:");
  5494. CONJUNCTION(if, "&:");
  5495. CONJUNCTION(under, "^:");
  5496. CONJUNCTION(collect, "\\:");
  5497. adverb_t CONJUNCTIONS[] = {
  5498. {";", NULL, conjunction_bond}, {"?.", NULL, conjunction_pick}, {"?:", NULL, conjunction_while}, {"\":", NULL, conjunction_rank}, {";:", NULL, conjunction_monaddyad}, {"&:", NULL, conjunction_if}, {"^:", NULL, conjunction_under}, {"\\:", NULL, conjunction_collect}};
  5499. #define countof(x) (sizeof(x) / sizeof((x)[0]))
  5500. #define FINDER(kind, rname, table) \
  5501. kind *find_##rname(char *s) \
  5502. { \
  5503. for (size_t i = 0; i < countof(table); i++) \
  5504. { \
  5505. if (strcmp(table[i].name, s) == 0) \
  5506. return &table[i]; \
  5507. } \
  5508. return NULL; \
  5509. }
  5510. FINDER(verb_t, verb, VERBS);
  5511. FINDER(adverb_t, adverb, ADVERBS);
  5512. FINDER(adverb_t, conjunction, CONJUNCTIONS);
  5513. node_t *node_new(enum node_tag_t tag)
  5514. {
  5515. node_t *node = malloc_checked(sizeof(node_t));
  5516. node->tag = tag;
  5517. return node;
  5518. }
  5519. node_t *node_new_strand(list_t *l)
  5520. {
  5521. node_t *node = malloc_checked(sizeof(node_t));
  5522. node->tag = N_STRAND;
  5523. node->l = l;
  5524. return node;
  5525. }
  5526. node_t *node_new_literal(value_t *v)
  5527. {
  5528. node_t *node = malloc_checked(sizeof(node_t));
  5529. node->tag = N_LITERAL;
  5530. node->v = v;
  5531. return node;
  5532. }
  5533. node_t *node_new1(enum node_tag_t tag, node_t *a)
  5534. {
  5535. node_t *node = malloc_checked(sizeof(node_t));
  5536. node->tag = tag;
  5537. node->a = a;
  5538. return node;
  5539. }
  5540. node_t *node_new2(enum node_tag_t tag, node_t *a, node_t *b)
  5541. {
  5542. node_t *node = malloc_checked(sizeof(node_t));
  5543. node->tag = tag;
  5544. node->a = a;
  5545. node->b = b;
  5546. return node;
  5547. }
  5548. node_t *node_new3(enum node_tag_t tag, node_t *a, node_t *b, node_t *c)
  5549. {
  5550. node_t *node = malloc_checked(sizeof(node_t));
  5551. node->tag = tag;
  5552. node->a = a;
  5553. node->b = b;
  5554. node->c = c;
  5555. return node;
  5556. }
  5557. typedef struct
  5558. {
  5559. lexer_t *lexer;
  5560. interpreter_t *state;
  5561. size_t pos;
  5562. size_t end;
  5563. size_t dp;
  5564. bool bn;
  5565. } parser_t;
  5566. parser_t *parser_new(interpreter_t *state)
  5567. {
  5568. parser_t *parser = malloc_checked(sizeof(parser_t));
  5569. parser->state = state;
  5570. return parser;
  5571. }
  5572. void parser_error(parser_t *parser, char *s) { fatal(s); }
  5573. bool parser_done(parser_t *parser) { return parser->pos >= parser->end; }
  5574. token_t *parser_lookahead(parser_t *parser, size_t offset)
  5575. {
  5576. size_t pos = parser->pos + offset;
  5577. if (pos >= parser->end)
  5578. return NULL;
  5579. return list_index(parser->lexer->tokens, pos);
  5580. }
  5581. bool parser_stop(parser_t *parser)
  5582. {
  5583. token_t *tok = parser_lookahead(parser, 0);
  5584. if (!tok)
  5585. return true;
  5586. return tok->tag == T_RPAR;
  5587. }
  5588. void parser_eat(parser_t *parser)
  5589. {
  5590. if (!parser_done(parser))
  5591. parser->pos++;
  5592. }
  5593. node_t *parser_parse_expr(parser_t *parser);
  5594. node_t *parser_parse_verb(parser_t *parser)
  5595. {
  5596. token_t *tok = parser_lookahead(parser, 0);
  5597. if (!tok || tok->tag != T_PUNCT)
  5598. return NULL;
  5599. verb_t *verb = find_verb(tok->text);
  5600. if (!verb)
  5601. return NULL;
  5602. return node_new_literal(value_new_verb(verb));
  5603. }
  5604. value_t *_adverb_wrapper_monad(interpreter_t *state, verb_t *self, value_t *x)
  5605. {
  5606. adverb_t *av = self->bonds->data[0];
  5607. if (x->tag != VERB)
  5608. return state->udf;
  5609. return value_new_verb(av->adverb(state, x));
  5610. }
  5611. value_t *_adverb_wrapper_dyad(interpreter_t *state, verb_t *self, value_t *x,
  5612. value_t *y)
  5613. {
  5614. adverb_t *av = self->bonds->data[0];
  5615. if (x->tag != VERB)
  5616. return state->udf;
  5617. verb_t *v = av->adverb(state, x);
  5618. return each_rank(state, v, y, 0, v->rank[0]);
  5619. }
  5620. node_t *parser_parse_adverb_atom(parser_t *parser)
  5621. {
  5622. token_t *tok = parser_lookahead(parser, 0);
  5623. if (!tok || tok->tag != T_PUNCT)
  5624. return NULL;
  5625. adverb_t *adverb = find_adverb(tok->text);
  5626. if (!adverb)
  5627. return NULL;
  5628. verb_t *nv = verb_new();
  5629. nv->name = strdup_checked(tok->text);
  5630. nv->bonds = list_newk(1);
  5631. nv->bonds->data[0] = adverb;
  5632. nv->rank[0] = 0;
  5633. nv->rank[1] = 0;
  5634. nv->rank[2] = 0;
  5635. nv->monad = _adverb_wrapper_monad;
  5636. nv->dyad = _adverb_wrapper_dyad;
  5637. return node_new_literal(value_new_verb(nv));
  5638. }
  5639. value_t *_conjunction_wrapper_dyad(interpreter_t *state, verb_t *self,
  5640. value_t *x, value_t *y)
  5641. {
  5642. adverb_t *av = self->bonds->data[0];
  5643. return value_new_verb(av->conjunction(state, x, y));
  5644. }
  5645. node_t *parser_parse_conjunction_atom(parser_t *parser)
  5646. {
  5647. token_t *tok = parser_lookahead(parser, 0);
  5648. if (!tok || tok->tag != T_PUNCT)
  5649. return NULL;
  5650. adverb_t *adverb = find_conjunction(tok->text);
  5651. if (!adverb)
  5652. return NULL;
  5653. verb_t *nv = verb_new();
  5654. nv->name = strdup_checked(tok->text);
  5655. nv->bonds = list_newk(1);
  5656. nv->bonds->data[0] = adverb;
  5657. nv->rank[0] = 0;
  5658. nv->rank[1] = 0;
  5659. nv->rank[2] = 0;
  5660. nv->monad = NULL;
  5661. nv->dyad = _conjunction_wrapper_dyad;
  5662. return node_new_literal(value_new_verb(nv));
  5663. }
  5664. node_t *parser_parse_atom(parser_t *parser)
  5665. {
  5666. token_t *tok = parser_lookahead(parser, 0);
  5667. node_t *node = NULL;
  5668. switch (tok->tag)
  5669. {
  5670. case T_RPAR:
  5671. parser_error(parser, "unmatched");
  5672. case T_LPAR:
  5673. parser_eat(parser);
  5674. tok = parser_lookahead(parser, 0);
  5675. if (tok && tok->tag == T_RPAR)
  5676. {
  5677. node = node_new_literal(parser->state->unit);
  5678. break;
  5679. }
  5680. parser->dp++;
  5681. node = parser_parse_expr(parser);
  5682. if (!node)
  5683. parser_error(parser, "unmatched");
  5684. if (parser->bn)
  5685. node->dp = 2;
  5686. else
  5687. node->dp = parser->dp;
  5688. parser->dp--;
  5689. tok = parser_lookahead(parser, 0);
  5690. if (!tok || tok->tag != T_RPAR)
  5691. parser_error(parser, "unmatched");
  5692. break;
  5693. case T_PUNCT:
  5694. node = parser_parse_verb(parser);
  5695. if (!node)
  5696. node = parser_parse_adverb_atom(parser);
  5697. if (!node)
  5698. node = parser_parse_conjunction_atom(parser);
  5699. if (!node)
  5700. parser_error(parser, "parse");
  5701. break;
  5702. case T_NUMBER:
  5703. node = node_new_literal(value_new_number(strtod(tok->text, NULL)));
  5704. break;
  5705. case T_BNUMBER:
  5706. {
  5707. if (!tok->text[1])
  5708. parser_error(parser, "trailing-base");
  5709. int base = tok->text[0] == 'x' ? 16 : tok->text[0] == 'b' ? 2
  5710. : 8;
  5711. node =
  5712. node_new_literal(value_new_number(strtol(tok->text + 1, NULL, base)));
  5713. }
  5714. break;
  5715. case T_NAME:
  5716. node = node_new_literal(value_new_symbol(strdup_checked(tok->text)));
  5717. break;
  5718. case T_QUOTE:
  5719. if (!*tok->text)
  5720. node = node_new_literal(parser->state->unit);
  5721. else if (!*(tok->text + 1))
  5722. node = node_new_literal(value_new_char(tok->text[0]));
  5723. else
  5724. {
  5725. size_t z = strlen(tok->text);
  5726. list_t *r = list_newk(z);
  5727. for (size_t i = 0; i < z; i++)
  5728. r->data[i] = CHARS[(int)tok->text[i]];
  5729. node = node_new_literal(value_new_array(r));
  5730. }
  5731. break;
  5732. }
  5733. if (!node)
  5734. parser_error(parser, "parse");
  5735. parser_eat(parser);
  5736. return node;
  5737. }
  5738. bool is_unbound(interpreter_t *state, char *s)
  5739. {
  5740. if (state->args->data)
  5741. {
  5742. list_t *args = list_index(state->args, -1);
  5743. size_t argc = args->length - 1;
  5744. if (argc == 2 && strcmp(s, "y") == 0)
  5745. return false;
  5746. else if (strcmp(s, "x") == 0)
  5747. return false;
  5748. }
  5749. else if (table_has(state->env, s))
  5750. return false;
  5751. return true;
  5752. }
  5753. node_t *parser_parse_sequence(parser_t *parser, node_t *a,
  5754. enum token_tag_t tag)
  5755. {
  5756. token_t *tok;
  5757. if ((tok = parser_lookahead(parser, 0)) &&
  5758. (tok->tag == tag || (tag == T_NUMBER && tok->tag == T_BNUMBER)))
  5759. {
  5760. if (tag == T_NAME && !is_unbound(parser->state, tok->text))
  5761. return NULL;
  5762. list_t *as = list_new();
  5763. list_push(as, a->v);
  5764. do
  5765. {
  5766. if (tag == T_NAME && tok->tag == T_NAME &&
  5767. !is_unbound(parser->state, tok->text))
  5768. break;
  5769. a = parser_parse_atom(parser);
  5770. list_push(as, a->v);
  5771. } while ((tok = parser_lookahead(parser, 0)) &&
  5772. (tok->tag == tag || (tag == T_NUMBER && tok->tag == T_BNUMBER)));
  5773. return node_new_literal(value_new_array(as));
  5774. }
  5775. return NULL;
  5776. }
  5777. node_t *_parser_parse_noun(parser_t *parser)
  5778. {
  5779. node_t *n;
  5780. node_t *a = parser_parse_atom(parser);
  5781. if (a->tag == N_LITERAL && a->v->tag == NUMBER &&
  5782. (n = parser_parse_sequence(parser, a, T_NUMBER)))
  5783. return n;
  5784. else if (a->tag == N_LITERAL && a->v->tag == SYMBOL &&
  5785. is_unbound(parser->state, a->v->val.symbol) &&
  5786. (n = parser_parse_sequence(parser, a, T_NAME)))
  5787. return n;
  5788. else if (a->tag == N_LITERAL &&
  5789. ((a->v->tag == ARRAY && is_char_array(a->v->val.array)) ||
  5790. a->v->tag == CHAR) &&
  5791. (n = parser_parse_sequence(parser, a, T_QUOTE)))
  5792. return n;
  5793. return a;
  5794. }
  5795. node_t *parser_parse_noun(parser_t *parser, bool flat)
  5796. {
  5797. node_t *a = flat ? parser_parse_atom(parser) : _parser_parse_noun(parser);
  5798. token_t *tok;
  5799. if ((tok = parser_lookahead(parser, 0)) && tok->tag == T_PUNCT &&
  5800. strcmp(tok->text, ",:") == 0)
  5801. {
  5802. parser_eat(parser);
  5803. list_t *l = list_new();
  5804. list_push(l, a);
  5805. for (;;)
  5806. {
  5807. if (parser_stop(parser))
  5808. parser_error(parser, "trailing-strand");
  5809. a = flat ? parser_parse_atom(parser) : _parser_parse_noun(parser);
  5810. list_push(l, a);
  5811. if (!((tok = parser_lookahead(parser, 0)) && tok->tag == T_PUNCT &&
  5812. strcmp(tok->text, ",:") == 0))
  5813. break;
  5814. parser_eat(parser);
  5815. }
  5816. return node_new_strand(l);
  5817. }
  5818. return a;
  5819. }
  5820. bool parser_node_is_verbal(parser_t *parser, node_t *n)
  5821. {
  5822. value_t *v;
  5823. if (n->tag == N_FUN)
  5824. return true;
  5825. else if (n->tag == N_ADV || n->tag == N_CONJ || n->tag == N_PARTIAL_CONJ)
  5826. return true;
  5827. else if (n->tag == N_FORK || n->tag == N_HOOK || n->tag == N_BOND ||
  5828. n->tag == N_OVER)
  5829. return true;
  5830. else if (n->tag == N_LITERAL && n->v->tag == VERB)
  5831. return true;
  5832. else if (n->tag == N_LITERAL && n->v->tag == SYMBOL &&
  5833. (v = table_get(parser->state->env, n->v->val.symbol)) &&
  5834. v->tag == VERB)
  5835. return true;
  5836. return false;
  5837. }
  5838. node_t *parser_parse_adverb(parser_t *parser, node_t *v, bool *flag)
  5839. {
  5840. token_t *tok;
  5841. adverb_t *adv;
  5842. node_t *t;
  5843. for (;;)
  5844. {
  5845. tok = parser_lookahead(parser, 0);
  5846. if (!tok || tok->tag != T_PUNCT)
  5847. break;
  5848. if ((adv = find_adverb(tok->text)))
  5849. {
  5850. if (flag)
  5851. *flag = true;
  5852. parser_eat(parser);
  5853. t = node_new(N_ADV);
  5854. t->av = adv;
  5855. t->a = v;
  5856. v = t;
  5857. }
  5858. else
  5859. break;
  5860. }
  5861. return v;
  5862. }
  5863. node_t *parser_parse_conjunction(parser_t *parser, node_t *v, bool *flag)
  5864. {
  5865. token_t *tok;
  5866. adverb_t *adv;
  5867. node_t *t;
  5868. for (;;)
  5869. {
  5870. tok = parser_lookahead(parser, 0);
  5871. if (!tok || tok->tag != T_PUNCT)
  5872. break;
  5873. if ((adv = find_conjunction(tok->text)))
  5874. {
  5875. if (flag)
  5876. *flag = true;
  5877. parser_eat(parser);
  5878. if (parser_stop(parser))
  5879. {
  5880. t = node_new(N_PARTIAL_CONJ);
  5881. t->av = adv;
  5882. t->a = v;
  5883. }
  5884. else
  5885. {
  5886. t = node_new(N_CONJ);
  5887. t->av = adv;
  5888. t->a = v;
  5889. t->b = parser_parse_noun(parser, true);
  5890. }
  5891. v = t;
  5892. }
  5893. else
  5894. break;
  5895. }
  5896. return v;
  5897. }
  5898. bool is_apply(node_t *n)
  5899. {
  5900. return n->tag == N_LITERAL && n->v->tag == VERB &&
  5901. (strcmp(n->v->val.verb->name, "`.") == 0 ||
  5902. strcmp(n->v->val.verb->name, "`:") == 0);
  5903. }
  5904. bool is_obverse(node_t *n)
  5905. {
  5906. return n->tag == N_LITERAL && n->v->tag == VERB &&
  5907. strcmp(n->v->val.verb->name, "::") == 0;
  5908. }
  5909. node_t *parser_parse_expr(parser_t *parser)
  5910. {
  5911. token_t *tmp;
  5912. list_t *ns = list_new();
  5913. while (!parser_stop(parser))
  5914. {
  5915. if (!ns->data && (tmp = parser_lookahead(parser, 0)) &&
  5916. tmp->tag == T_PUNCT && strcmp(tmp->text, ":") == 0)
  5917. {
  5918. parser_eat(parser);
  5919. node_t *r = parser_parse_expr(parser);
  5920. if (!r)
  5921. r = node_new_literal(parser->state->nil);
  5922. return node_new1(N_FUN, r);
  5923. }
  5924. node_t *n = parser_parse_noun(parser, false);
  5925. if (!ns->data && n->tag == N_LITERAL && n->v->tag == SYMBOL &&
  5926. (tmp = parser_lookahead(parser, 0)) && tmp->tag == T_PUNCT &&
  5927. strcmp(tmp->text, ":") == 0)
  5928. {
  5929. parser_eat(parser);
  5930. bool t = parser->bn;
  5931. parser->bn = true;
  5932. node_t *r = parser_parse_expr(parser);
  5933. parser->bn = t;
  5934. return node_new2(N_BIND, n, r);
  5935. }
  5936. for (;;)
  5937. {
  5938. bool flag = false;
  5939. n = parser_parse_adverb(parser, n, &flag);
  5940. n = parser_parse_conjunction(parser, n, &flag);
  5941. if (!flag)
  5942. break;
  5943. }
  5944. list_push(ns, n);
  5945. }
  5946. size_t len;
  5947. node_t *l, *m, *r;
  5948. for (;;)
  5949. {
  5950. len = ns->length;
  5951. if (len < 2)
  5952. break;
  5953. if (len >= 3 &&
  5954. (is_apply(list_index(ns, -2)) || is_obverse(list_index(ns, -2))) &&
  5955. parser_node_is_verbal(parser, list_index(ns, -3)))
  5956. {
  5957. r = list_pop(ns);
  5958. m = list_pop(ns);
  5959. l = list_pop(ns);
  5960. list_push(ns, node_new3(N_DYAD, m, l, r));
  5961. }
  5962. else if (len >= 3 && !parser_node_is_verbal(parser, list_index(ns, -1)) &&
  5963. parser_node_is_verbal(parser, list_index(ns, -2)) &&
  5964. !parser_node_is_verbal(parser, list_index(ns, -3)))
  5965. {
  5966. r = list_pop(ns);
  5967. m = list_pop(ns);
  5968. l = list_pop(ns);
  5969. list_push(ns, node_new3(N_DYAD, m, l, r));
  5970. }
  5971. else if (len >= 3 && parser_node_is_verbal(parser, list_index(ns, -1)) &&
  5972. parser_node_is_verbal(parser, list_index(ns, -2)) &&
  5973. parser_node_is_verbal(parser, list_index(ns, -3)))
  5974. {
  5975. r = list_pop(ns);
  5976. m = list_pop(ns);
  5977. l = list_pop(ns);
  5978. list_push(ns, node_new3(N_FORK, l, m, r));
  5979. }
  5980. else if (len >= 3 && parser_node_is_verbal(parser, list_index(ns, -1)) &&
  5981. parser_node_is_verbal(parser, list_index(ns, -2)) &&
  5982. !parser_node_is_verbal(parser, list_index(ns, -3)))
  5983. {
  5984. r = list_pop(ns);
  5985. m = list_pop(ns);
  5986. l = list_pop(ns);
  5987. list_push(ns, node_new3(N_OVER, l, m, r));
  5988. }
  5989. else if (len >= 2 && is_apply(list_index(ns, -1)))
  5990. {
  5991. r = list_pop(ns);
  5992. l = list_pop(ns);
  5993. list_push(ns, node_new2(N_BOND, r, l));
  5994. }
  5995. else if (len >= 2 && !parser_node_is_verbal(parser, list_index(ns, -1)) &&
  5996. parser_node_is_verbal(parser, list_index(ns, -2)))
  5997. {
  5998. r = list_pop(ns);
  5999. l = list_pop(ns);
  6000. list_push(ns, node_new2(N_MONAD, l, r));
  6001. }
  6002. else if (len >= 2 && parser_node_is_verbal(parser, list_index(ns, -1)) &&
  6003. parser_node_is_verbal(parser, list_index(ns, -2)))
  6004. {
  6005. r = list_pop(ns);
  6006. l = list_pop(ns);
  6007. list_push(ns, node_new2(N_HOOK, l, r));
  6008. }
  6009. else if (len >= 2 && parser_node_is_verbal(parser, list_index(ns, -1)) &&
  6010. !parser_node_is_verbal(parser, list_index(ns, -2)))
  6011. {
  6012. r = list_pop(ns);
  6013. l = list_pop(ns);
  6014. list_push(ns, node_new2(N_BOND, r, l));
  6015. }
  6016. else if (len >= 3)
  6017. {
  6018. r = list_pop(ns);
  6019. m = list_pop(ns);
  6020. l = list_pop(ns);
  6021. list_push(ns, node_new3(N_INDEX2, m, l, r));
  6022. }
  6023. else if (len >= 2)
  6024. {
  6025. r = list_pop(ns);
  6026. l = list_pop(ns);
  6027. list_push(ns, node_new2(N_INDEX1, l, r));
  6028. }
  6029. }
  6030. return ns->data ? ns->data[0] : NULL;
  6031. }
  6032. node_t *parser_parse(parser_t *parser, lexer_t *lexer)
  6033. {
  6034. parser->lexer = lexer;
  6035. parser->pos = 0;
  6036. parser->end = parser->lexer->tokens->length;
  6037. node_t *node = parser_parse_expr(parser);
  6038. if (!parser_done(parser))
  6039. {
  6040. token_t *tok = parser_lookahead(parser, 0);
  6041. if (tok && tok->tag == T_RPAR)
  6042. parser_error(parser, "unmatched");
  6043. parser_error(parser, "parse");
  6044. }
  6045. return node;
  6046. }
  6047. value_t *interpreter_run(interpreter_t *state, char *program)
  6048. {
  6049. lexer_t *lexer = lexer_new();
  6050. lexer_lex(lexer, program);
  6051. parser_t *parser = parser_new(state);
  6052. node_t *node = parser_parse(parser, lexer);
  6053. list_t *t = lexer->tokens;
  6054. for (size_t i = 0; i < t->length; i++)
  6055. {
  6056. token_t *tok = t->data[i];
  6057. if (tok->text)
  6058. GC_FREE(tok->text);
  6059. GC_FREE(tok);
  6060. }
  6061. GC_FREE(t->data);
  6062. GC_FREE(t);
  6063. value_t *r = interpreter_walk(state, node);
  6064. GC_FREE(parser);
  6065. return r;
  6066. }
  6067. #define HELP_SIZE 7
  6068. static const struct
  6069. {
  6070. const char *key;
  6071. const char *text;
  6072. } HELP[HELP_SIZE] = {
  6073. {"+",
  6074. ": monadic const create a function that always yields x"
  6075. "\n"
  6076. ": dyadic bind bind y to symbol x"
  6077. "\n"
  6078. ":: monadic unbind unbind symbol x"
  6079. "\n"
  6080. ":: dyadic obverse insert inverse for x"
  6081. "\n"
  6082. "+ monadic flip transpose matrix"
  6083. "\n"
  6084. "+ dyadic plus add numbers"
  6085. "\n"
  6086. "+. monadic fibonacci compute xth fibonacci number"
  6087. "\n"
  6088. "+. dyadic gcd compute gcd(x, y)"
  6089. "\n"
  6090. "+: monadic sin compute sin(x)"
  6091. "\n"
  6092. "+: dyadic combine combine digits of x and y, same as 10_.(10_:),(10_:)"
  6093. "\n"
  6094. "- monadic negate negate number"
  6095. "\n"
  6096. "- dyadic minus subtract numbers"
  6097. "\n"
  6098. "* monadic first yield first element of x"
  6099. "\n"
  6100. "* dyadic times multiply numbers"
  6101. "\n"
  6102. "*. monadic factorial x!"
  6103. "\n"
  6104. "*. dyadic lcm compute lcm(x, y)"
  6105. "\n"
  6106. "*: monadic double x * 2"
  6107. "\n"
  6108. "*: dyadic replicate repeat y x times"
  6109. "\n"
  6110. "% monadic reciprocal 1 / x"
  6111. "\n"
  6112. "% dyadic divide divide numbers"
  6113. "\n"
  6114. "%. monadic sqrt compute square root of x"
  6115. "\n"
  6116. "%. dyadic root compute xth root of y"
  6117. "\n"
  6118. "%: monadic halve x % 2"
  6119. "\n"
  6120. "%: dyadic idivide same as % divide, but result is always integer"
  6121. "\n"
  6122. "! monadic enum [0, x)"
  6123. "\n"
  6124. "! dyadic mod modulo of numbers"
  6125. "\n"
  6126. "!. monadic iota [1, x]"
  6127. "\n"
  6128. "!. dyadic range [x, y] (also works for chars and even if x > y)"
  6129. "\n"
  6130. "!: monadic odometer !:10 10 is 0 0,:0 1,: ... 1 0,:1 1,: ... 9 8,:9 9"
  6131. "\n"
  6132. "!: dyadic chunks split y into x-sized chunks"
  6133. "\n"
  6134. "^ monadic exp e^x"
  6135. "\n"
  6136. "^ dyadic power raise number to a power"
  6137. "\n"
  6138. "^. monadic nlog ln(x)"
  6139. "\n"
  6140. "^. dyadic log log(y)/log(x)"
  6141. "\n"
  6142. "= monadic permute generate permutations of x"
  6143. "\n"
  6144. "= dyadic equals test whether x and y are equal"
  6145. "\n"
  6146. "=. monadic occurences count occurences of elts, =.'Hello World!' is 0 0 0 1 0 0 0 1 0 2 0 0"
  6147. "\n"
  6148. "=. dyadic mask mask one array in another, 'abxyzabayxxyabxyk'=.'xy' is 0 0 1 1 0 0 0 0 0 0 2 2 0 0 3 3 0"
  6149. "\n"
  6150. "=: monadic classify assign unique index to each unique elt, =:'Hello World!' is 0 1 2 2 3 4 5 3 6 2 7 8"
  6151. "\n"
  6152. "=: dyadic match same as = equals, but rank 0, so compares x and y as whole"
  6153. "\n"
  6154. "~ monadic not logical not, nil udf () 0 4t.0 are not truthy, everything else is truthy"
  6155. "\n"
  6156. "~ dyadic notequals test whether x and y are not equal"
  6157. "\n"
  6158. "~. monadic sign sign of x, -1 for negative, 0 for 0, 1 for positive"
  6159. "\n"
  6160. "~. dyadic insert insert x between elts of y, 0~.1 2 3 is 1 0 2 0 3"
  6161. "\n"
  6162. "~: dyadic notmatch rank 0 version of ~ notequals"
  6163. "\n"
  6164. "< monadic pred x - 1"
  6165. "\n"
  6166. "< dyadic less test whether x is lesser than y"
  6167. "\n"
  6168. "<. monadic floor round x down"
  6169. "\n"
  6170. "<. dyadic lesseq test whether x is equal or lesser than y"
  6171. "\n"
  6172. "<: monadic gradedown indices of array sorted descending"
  6173. "\n"
  6174. "<: dyadic nudgeleft shift elts of y to the left filling gap with x"
  6175. "\n"
  6176. "> monadic succ x + 1"
  6177. "\n"
  6178. "> dyadic greater test whether x is greater than y"
  6179. "\n"
  6180. ">. monadic ceil round x up"
  6181. "\n"
  6182. ">. dyadic greatereq test whether x is equal or greater than y"
  6183. "\n"
  6184. ">: monadic gradeup indices of array sorted ascending"
  6185. "\n"
  6186. ">: dyadic nudgeright shift elts of y to the right filling gap with x"
  6187. "\n"
  6188. ", monadic enlist put x into 1-elt array"
  6189. "\n"
  6190. ", dyadic join concat x and y"
  6191. "\n"
  6192. ",. monadic enfile same as , enlist but with infinite rank, ,.1 2 3 is (,1),:(,2),:(,3)"
  6193. "\n"
  6194. ",. dyadic enpair put x and y into 2-elt array"
  6195. "\n"
  6196. "# monadic count yield count of elts of x"
  6197. "\n"
  6198. "# dyadic take take x first elts of y (or last if x < 0)"
  6199. "\n"
  6200. "#. monadic where #.0 0 1 0 1 0 is 2 4"
  6201. "\n"
  6202. "#. dyadic copy repeat each elt of x by corresponding number in y, 5 2 3 3#.0 2 2 1 is 2 2 3 3 3"
  6203. "\n"
  6204. "#: monadic group #:'mississippi' is (,0),:1 4 7 10,:2 3 5 6,:8 9"
  6205. "\n"
  6206. "#: dyadic buckets group elts of y into buckets according to x, e.g. 0 -1 -1 2 0#:a b c d e is (a,.e),:(),:(,d)"
  6207. "\n"
  6208. "_ monadic nub mark all unique elts of x, e.g. _'abracadabra' yields 1 1 1 0 1 0 1 0 0 0 0"
  6209. "\n"
  6210. "_ dyadic drop remove first x elts of y (or last if x < 0)"
  6211. "\n"
  6212. "_. monadic unbits _.1 0 1 is 5"
  6213. "\n"
  6214. "_. dyadic unbase 10_.4 5 6 is 456"
  6215. "\n"
  6216. "_: monadic bits _:5 is 1 0 1"
  6217. "\n"
  6218. "_: dyadic base 10_:4242 is 4 2 4 2"
  6219. "\n"
  6220. "? monadic unique distinct elts of x, same as ]#._"
  6221. "\n"
  6222. "? dyadic find find all indices of x in y"
  6223. "\n"
  6224. "& monadic flatten flatten an array, same as ,//."
  6225. "\n"
  6226. "& dyadic minand get min of two numbers (logical and for 0/1s)"
  6227. "\n"
  6228. "| monadic reverse reverse an array"
  6229. "\n"
  6230. "| dyadic maxor get max of two numbers (for 0/1s is same as logical or)"
  6231. "\n"
  6232. "|. monadic round round x"
  6233. "\n"
  6234. "|. dyadic rotate rotate array x times clockwise (-x for counterclockwise)"
  6235. "\n"
  6236. "|: monadic depth find max depth of x, |:,,,y yields 3"
  6237. "\n"
  6238. "|: dyadic windows yields all contiguous x-sized subarrays of y"
  6239. "\n"
  6240. "@ monadic abs |x|"
  6241. "\n"
  6242. "@ dyadic at pick elts from x by indices from y"
  6243. "\n"
  6244. "@. monadic shuffle shuffle elts of x"
  6245. "\n"
  6246. "@. dyadic member check whether x is in y"
  6247. "\n"
  6248. "@: monadic infix shortcut for }{:"
  6249. "\n"
  6250. "@: dyadic indexof yield index of x in y or #y if x not in y"
  6251. "\n"
  6252. "{ monadic head first two elts of x, same as 2#"
  6253. "\n"
  6254. "{ dyadic bin bin search, e.g. 1 3 5 7 9{8 9 0 yields 3 4 -1"
  6255. "\n"
  6256. "{. monadic tail last elt of x"
  6257. "\n"
  6258. "{. dyadic cut 1 3{.!.5 yields 2 3,:4 5"
  6259. "\n"
  6260. "{: monadic prefixes prefixes of x, same as |}.\\."
  6261. "\n"
  6262. "{: dyadic shl x << y"
  6263. "\n"
  6264. "} monadic behead all elts of x except first, same as 1_"
  6265. "\n"
  6266. "} dyadic xor x ^ y"
  6267. "\n"
  6268. "}. monadic curtail all elts of x except last, same as -1_"
  6269. "\n"
  6270. "}. dyadic band x & y"
  6271. "\n"
  6272. "}: monadic suffixes suffixes of x, same as }.\\."
  6273. "\n"
  6274. "}: dyadic shr x >> y"
  6275. "\n"
  6276. "[ monadic factors compute prime factors of x"
  6277. "\n"
  6278. "[ dyadic left yield x"
  6279. "\n"
  6280. "[. monadic bnot ~x"
  6281. "\n"
  6282. "[. dyadic bor x | y"
  6283. "\n"
  6284. "[: monadic primes find primes in range [2, x]"
  6285. "\n"
  6286. "[: dyadic parts split y into x parts"
  6287. "\n"
  6288. "] monadic same yield x (i.e. identity)"
  6289. "\n"
  6290. "] dyadic right yield y (i.e. right argument)"
  6291. "\n"
  6292. "]. monadic sort sort x ascending, shortcut for ]@>:"
  6293. "\n"
  6294. "]. dyadic outof the number of ways of picking x balls from a bag of y balls, e.g. 5].10 is 252"
  6295. "\n"
  6296. "]: monadic unsort sort x descending, shortcut for ]@<:"
  6297. "\n"
  6298. "]: dyadic explode split y by delim x"
  6299. "\n"
  6300. "`. monadic symbol cast x to a symbol"
  6301. "\n"
  6302. "`. dyadic apply1 apply x to y"
  6303. "\n"
  6304. "`: monadic square x ^ 2"
  6305. "\n"
  6306. "`: dyadic apply2 apply x to y (y is 2-elt array of args)"
  6307. "\n"
  6308. "$ monadic shape yield shape of x"
  6309. "\n"
  6310. "$ dyadic reshape reshape y to shape x"
  6311. "\n"
  6312. "$. monadic repr yield string repr of x"
  6313. "\n"
  6314. "$. dyadic format format y by template x, e.g. '{0}+{1}*{-1}+_'$.1 2 3 4 is 1+2*4+1"
  6315. "\n"
  6316. "$: monadic eye identity matrix of size x"
  6317. "\n"
  6318. "$: dyadic implode join y inserting x between"
  6319. "\n"},
  6320. {"a",
  6321. "d. dyadic delete delete elt from y by index x"
  6322. "\n"
  6323. "D. dyadic deleteInplace delete elt from y by index x (in-place)"
  6324. "\n"
  6325. "p. monadic print print x"
  6326. "\n"
  6327. "P. monadic println print x and a \\n"
  6328. "\n"
  6329. "c. monadic putch print char x"
  6330. "\n"
  6331. "s. monadic selfref1 monadic reference to current function or rhs of bind"
  6332. "\n"
  6333. "s. dyadic selfref2 dyadic reference to current function or rhs of bind"
  6334. "\n"
  6335. "F. monadic read read file (x=0 to read stdin)"
  6336. "\n"
  6337. "F. dyadic write write file (y=0 to write to stderr)"
  6338. "\n"
  6339. "t. dyadic cast cast y to type x"
  6340. "\n"
  6341. "t. monadic type type of x, array=0, verb=1, symbol=2, number=3, char=4, nil=5, udf=6"
  6342. "\n"
  6343. "r. monadic deal yield random elt of x"
  6344. "\n"
  6345. "r. dyadic roll roll xdy (note: y is 0-based, so >xr.y for 1-based)"
  6346. "\n"
  6347. "e. monadic eval eval expression, yields udf on parse error"
  6348. "\n"
  6349. "i. monadic import load and eval source file"
  6350. "\n"
  6351. "i. dyadic foreign call external function (lhs is array of arguments), e.g. .5i.'libm.so:dd:sin'"
  6352. "\n"
  6353. "y. monadic system exec system command (yields output)"
  6354. "\n"
  6355. "y. dyadic system2 exec system command with input"
  6356. "\n"
  6357. "E. monadic exit exit with exit code"
  6358. "\n"
  6359. "L. monadic lines shortcut for (4t.10)]:"
  6360. "\n"
  6361. "L. dyadic tackleft prepend x to y"
  6362. "\n"
  6363. "R. monadic setrecdepth set max recursion depth"
  6364. "\n"
  6365. "R. dyadic tackright append x to y"
  6366. "\n"
  6367. "v. monadic value get value of var x (udf if not defined)"
  6368. "\n"
  6369. "h. monadic hex yield hexadecimal representation of num x"
  6370. "x. monadic show identity for strings, same as $ repr for other"
  6371. "\n"
  6372. "x. dyadic rematch match str y with regex (PCRE) x"
  6373. "\n"
  6374. "X. dyadic extract extract all matches of regex x from y"
  6375. "\n"},
  6376. {"\"",
  6377. "f\" each >\"1 2 3 yields 2 3 4"
  6378. "\n"
  6379. "xf\" merge 1 2 3,\"a b c yields (1,.a),:(2,.b),:(3,.c)"
  6380. "\n"
  6381. "f\". eachprior -\".1 2 2 3 5 6 yields 1 0 1 2 1"
  6382. "\n"
  6383. "xf\". eachpriorwith 0-\".1 2 2 3 5 6 yields 1 1 0 1 2 1"
  6384. "\n"
  6385. "f/ fold +/1 2 3 yields 6"
  6386. "\n"
  6387. "xf/ foldwith 1+/1 2 3 yields 7"
  6388. "\n"
  6389. "f\\ scan +\\1 2 3 yields 1 3 6"
  6390. "\n"
  6391. "xf\\ scanwith 1+\\1 2 3 yields 1 2 4 7"
  6392. "\n"
  6393. "f/. converge 1;_/.1 2 3 yields ()"
  6394. "\n"
  6395. "f\\. converges 1;_\\.1 2 3 yields 1 2 3,:2 3,:(,3),:()"
  6396. "\n"
  6397. "xf/. eachright 1-/.1 2 3 yields 0 1 2"
  6398. "\n"
  6399. "xf\\. eachleft 1-\\.1 2 3 yields 0 -1 -2"
  6400. "\n"
  6401. "f\": rank #\":1 2 3$1 yields 3 3, #\":inf 2 3$1 yields 1 1 1,:1 1 1"
  6402. "\n"
  6403. "xf\": rank2 1 2 3 *:\":1 1 2 3 yields (,1),:2 2,:3 3 3"
  6404. "\n"
  6405. "n` amend 'gw'0 3`'cross' yields 'grows', 1 0 -1(1+)`!.5 yields 2 3 3 4 6"
  6406. "\n"
  6407. "f&. filter >;0&.-2!.2 yields 1 2, basically shortcut for ]#.f"
  6408. "\n"
  6409. "f/: span =;' '/:'x y z' yields (,'x'),:(,'y'),:(,'z')"
  6410. "\n"
  6411. "xf/: stencil 3+//:!10 yields 3 6 9 12 15 18 21 24, shortcut for f\"x|:"
  6412. "\n"
  6413. "f;. reflex *;.5 yields 25, 5%;.2 yields 0.4"
  6414. "\n"},
  6415. {";",
  6416. "f;g bond */;!.5 yields 120, +;1 5 yields 6, 5;- 1 yields 4"
  6417. "\n"
  6418. "f?.x pick >;5?.((2*),:<)\"3 6 yields 6 5"
  6419. "\n"
  6420. "f?:F while <;5?:>0 yields 5"
  6421. "\n"
  6422. "n?:f repeat 5?:*;2 1 yields 32"
  6423. "\n"
  6424. "a\\:f collect same as while/repeat, but yields array of intermediate iterations"
  6425. "\n"
  6426. "f&:F if 1+&:+2 yields 2"
  6427. "\n"
  6428. "f;:F monaddyad -;:+5 yields -5, 1-;:+5 yields 6"
  6429. "\n"},
  6430. {"-:",
  6431. "inverse of a function f is a function ~f that undoes the effect of f"
  6432. "\n"
  6433. "\n"
  6434. "f::~f obverse define inverse ~f for f"
  6435. "\n"
  6436. "\n"
  6437. "f-:x inverse ~fx"
  6438. "\n"
  6439. "xf-:y inverse2 (~fx)~f~fx"
  6440. "\n"
  6441. "f^:Fx under ~FfFx"
  6442. "\n"
  6443. "xf^:Fx under2 ~F(Fx)f(Fx)"
  6444. "\n"},
  6445. {"0",
  6446. "/ comment"
  6447. "\n"
  6448. "5+5 / also comment"
  6449. "\n"
  6450. "5+5/not comment (no whitespace before /)"
  6451. "\n"
  6452. "abc foo bar f g x y z / symbols"
  6453. "\n"
  6454. "nil udf / special, nil and undefined"
  6455. "\n"
  6456. "'a'%2 / = nan, nan used to denote illegal numeric operation"
  6457. "\n"
  6458. "+1 2 3 / = udf, attempt to transpose flat vector, udf/undefined used to denote illegal operation"
  6459. "\n"
  6460. "5 5.5 -5 42 / number (double-precision floats)"
  6461. "\n"
  6462. "1`000 1`000`000 /"
  6463. "\n"
  6464. ".5 .429 /"
  6465. "\n"
  6466. "0xff 0o4 0b0101 /"
  6467. "\n"
  6468. "nan inf /"
  6469. "\n"
  6470. "'a' 'b' 'g' / chars (bytes)"
  6471. "\n"
  6472. "4t.0 / 0 NUL byte"
  6473. "\n"
  6474. "(4t.0),:(4t.16),:(4t.22) /"
  6475. "\n"
  6476. "1 2 3 / numbers array"
  6477. "\n"
  6478. "'hello world!' 'bla''bla' / quote, array of chars"
  6479. "\n"
  6480. ",'a' / 1-char string"
  6481. "\n"
  6482. ",1 / 1-elt array"
  6483. "\n"
  6484. "() / unit, empty array"
  6485. "\n"
  6486. "1,:(5+5),:1 2 3 / strand, mixed array literal"
  6487. "\n"
  6488. "-1 / negative num literal"
  6489. "\n"
  6490. "- 1 / application of - negate to 1"
  6491. "\n"
  6492. "-1 -2 -3 / array of negative nums"
  6493. "\n"
  6494. "- 1 2 3 / application of - negate to an array of nums"
  6495. "\n"
  6496. "5-5 / array of numbers 5 and -5"
  6497. "\n"
  6498. "5- 5 / 5 minus 5"
  6499. "\n"
  6500. "+ / verb"
  6501. "\n"
  6502. "5+5 / dyadic expr"
  6503. "\n"
  6504. "#1 2 3 / monadic expr (no left side)"
  6505. "\n"
  6506. "+/ *;. / adverb"
  6507. "\n"
  6508. "+;1 -;* +^:^. / conjunction"
  6509. "\n"
  6510. ":x+y / function literal"
  6511. "\n"
  6512. ":1 / function that always yields 1"
  6513. "\n"
  6514. "x:123 / bind name (symbol)"
  6515. "\n"
  6516. "sq:*;. /"
  6517. "\n"
  6518. "fac:*/1+! / bind function"
  6519. "\n"
  6520. "f:x+y /"
  6521. "\n"
  6522. "f:-x / overload function by arity"
  6523. "\n"
  6524. "f 5 / = -5"
  6525. "\n"
  6526. "5 f 5 / = 10"
  6527. "\n"
  6528. "*/!. / hook, fgx -> f(g(x)), xfgy -> f(g(x, y))"
  6529. "\n"
  6530. "+/%# / fork, fghx -> g(f(x), h(x)), xfghy -> g(f(x), h(y))"
  6531. "\n"
  6532. "1+! / over, nfgx -> f(n, g(x)), xnfgy -> f(n, g(x, y))"
  6533. "\n"
  6534. "1+ / bond, nfx -> f(n, x), xnfy -> f(n, f(x, y))"
  6535. "\n"},
  6536. {"", "\\0\thelp on syntax\n"
  6537. "\\+\thelp on verbs\n"
  6538. "\\a\thelp on additional verbs\n"
  6539. "\\\"\thelp on adverbs\n"
  6540. "\\;\thelp on conjunctions\n"
  6541. "\\-:\thelp on inverses\n"}};
  6542. const char *VSTR = VER " " __DATE__;
  6543. void jkexec(interpreter_t *state, FILE *fd, bool isrepl, char **s)
  6544. {
  6545. value_t *v = NULL;
  6546. list_t *r;
  6547. if (!isrepl)
  6548. r = list_new();
  6549. for (;;)
  6550. {
  6551. buffer_t *buffer;
  6552. char line[256];
  6553. buffer = buffer_new();
  6554. if (isrepl)
  6555. putc('\t', stdout);
  6556. if (!fgets(line, sizeof(line), fd))
  6557. break;
  6558. if (isrepl)
  6559. {
  6560. if (strcmp(line, "\\\\\n") == 0)
  6561. break;
  6562. if (line[0] == '\\') {
  6563. char tmp[4];
  6564. memset(tmp, 0, sizeof(tmp));
  6565. for (size_t i = 1; i < strlen(line) && line[i] != '\n'; i++)
  6566. tmp[i-1] = line[i];
  6567. size_t ti = HELP_SIZE;
  6568. for (size_t i = 0; i < HELP_SIZE; i++) {
  6569. if (strcmp(tmp, HELP[i].key) == 0) {
  6570. ti = i;
  6571. break;
  6572. }
  6573. }
  6574. if (ti < HELP_SIZE) {
  6575. printf("%s", HELP[ti].text);
  6576. continue;
  6577. }
  6578. }
  6579. }
  6580. while (strlen(line) > 2 && strcmp(line + strlen(line) - 3, "..\n") == 0)
  6581. {
  6582. line[strlen(line) - 3] = 0;
  6583. buffer_append_str(buffer, line);
  6584. if (isrepl)
  6585. putc('\t', stdout);
  6586. if (!fgets(line, sizeof(line), fd))
  6587. return;
  6588. }
  6589. buffer_append_str(buffer, line);
  6590. *s = buffer_read(buffer);
  6591. v = interpreter_run(state, *s);
  6592. GC_FREE(*s);
  6593. *s = NULL;
  6594. if (isrepl && v->tag != NIL)
  6595. {
  6596. table_set(state->env, "it", v);
  6597. char *s = value_show(v);
  6598. fputs(s, stdout);
  6599. GC_FREE(s);
  6600. if (isrepl)
  6601. putc('\n', stdout);
  6602. }
  6603. else if (!isrepl && v && v->tag != NIL)
  6604. list_push(r, v);
  6605. }
  6606. if (!isrepl && r->data)
  6607. {
  6608. char *s = value_show(list_index(r, -1));
  6609. fputs(s, stdout);
  6610. GC_FREE(s);
  6611. }
  6612. }
  6613. int main(int argc, char **argv)
  6614. {
  6615. GC_INIT();
  6616. guards = list_new();
  6617. is_interactive = isatty(0);
  6618. HASH_SEED = time(NULL);
  6619. srand(HASH_SEED);
  6620. VCACHE = table_new();
  6621. SCACHE = table_new();
  6622. for (size_t i = 0; i < countof(VERBS); i++)
  6623. {
  6624. value_t *v = value_new_const(VERB);
  6625. v->val.verb = &VERBS[i];
  6626. table_set(VCACHE, VERBS[i].name, v);
  6627. }
  6628. _UNIT = value_new(ARRAY);
  6629. _UNIT->val.array = list_new();
  6630. interpreter_t *state = interpreter_new();
  6631. for (int i = 1; i <= 8; i++)
  6632. {
  6633. NNUMS[i - 1] = value_new_const(NUMBER);
  6634. NNUMS[i - 1]->val.number = -i;
  6635. }
  6636. for (int i = 0; i < 256; i++)
  6637. {
  6638. NUMS[i] = value_new_const(NUMBER);
  6639. NUMS[i]->val.number = i;
  6640. }
  6641. list_t *cs = list_newk(256);
  6642. for (int i = 0; i < 256; i++)
  6643. {
  6644. CHARS[i] = value_new_const(CHAR);
  6645. CHARS[i]->val._char = i;
  6646. cs->data[i] = CHARS[i];
  6647. }
  6648. _NAN = value_new_const(NUMBER);
  6649. _NAN->val.number = NAN;
  6650. INF = value_new_const(NUMBER);
  6651. INF->val.number = INFINITY;
  6652. NINF = value_new_const(NUMBER);
  6653. NINF->val.number = -INFINITY;
  6654. list_t *vs = list_new();
  6655. for (size_t i = 0; i < strlen(VSTR); i++)
  6656. list_push(vs, CHARS[(int)VSTR[i]]);
  6657. table_set(state->env, "A", value_new_array(cs));
  6658. table_set(state->env, "JKV", value_new_array(vs));
  6659. table_set(state->env, "E", value_new_number(exp(1)));
  6660. table_set(state->env, "pi", value_new_number(M_PI));
  6661. table_set(state->env, "tau", value_new_number(M_PI * 2));
  6662. table_set(state->env, "nan", _NAN);
  6663. table_set(state->env, "inf", INF);
  6664. table_set(state->env, "nil", state->nil);
  6665. table_set(state->env, "udf", state->udf);
  6666. Inverses = table_new();
  6667. table_set(Inverses, "+", find_verb("+"));
  6668. table_set(Inverses, "-", find_verb("-"));
  6669. table_set(Inverses, "|", find_verb("|"));
  6670. table_set(Inverses, "~", find_verb("~"));
  6671. table_set(Inverses, "%", find_verb("%"));
  6672. table_set(Inverses, "]", find_verb("]"));
  6673. table_set(Inverses, "*:", find_verb("%:"));
  6674. table_set(Inverses, "%:", find_verb("*:"));
  6675. table_set(Inverses, ">", find_verb("<"));
  6676. table_set(Inverses, "<", find_verb(">"));
  6677. table_set(Inverses, "_.", find_verb("_:"));
  6678. table_set(Inverses, "_:", find_verb("_."));
  6679. table_set(Inverses, "^.", find_verb("^"));
  6680. table_set(Inverses, "^", find_verb("^."));
  6681. table_set(Inverses, "+;.", find_verb("%:"));
  6682. table_set(Inverses, "*/", find_verb("["));
  6683. table_set(Inverses, "[", interpreter_run(state, "*/")->val.verb);
  6684. table_set(Inverses, "!", interpreter_run(state, ">|/")->val.verb);
  6685. table_set(Inverses, "!.", interpreter_run(state, "|/")->val.verb);
  6686. table_set(Inverses, "]@>:", interpreter_run(state, "]@<:")->val.verb);
  6687. table_set(Inverses, "]@<:", interpreter_run(state, "]@>:")->val.verb);
  6688. list_t *args = list_new();
  6689. for (int i = 1; i < argc; i++)
  6690. {
  6691. list_t *arg = list_new();
  6692. char *s = argv[i];
  6693. while (*s)
  6694. list_push(arg, CHARS[(int)(*s++)]);
  6695. list_push(args, value_new_array(arg));
  6696. }
  6697. table_set(state->env, "args", value_new_array(args));
  6698. if (is_interactive)
  6699. printf("jk\t\\\\ to exit \\ for help\n");
  6700. char *s = NULL;
  6701. if (is_interactive)
  6702. setjmp(interactive_checkpoint);
  6703. if (s)
  6704. {
  6705. GC_FREE(s);
  6706. s = NULL;
  6707. }
  6708. jkexec(state, stdin, is_interactive, &s);
  6709. }