123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320 |
- /*
- LICENSE
- -------
- Copyright 2005-2013 Nullsoft, Inc.
- All rights reserved.
- Redistribution and use in source and binary forms, with or without modification,
- are permitted provided that the following conditions are met:
- * Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimer in the documentation
- and/or other materials provided with the distribution.
- * Neither the name of Nullsoft nor the names of its contributors may be used to
- endorse or promote products derived from this software without specific prior written permission.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
- IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
- FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
- CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
- IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
- OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- */
- #include <math.h>
- #include <memory.h>
- #include "fft.h"
- #define PI 3.141592653589793238462643383279502884197169399f
- #define SafeDeleteArray(x) { if (x) { delete [] x; x = 0; } }
- /*****************************************************************************/
- FFT::FFT()
- {
- NFREQ = 0;
- envelope = 0;
- equalize = 0;
- bitrevtable = 0;
- cossintable = 0;
- temp1 = 0;
- temp2 = 0;
- }
- /*****************************************************************************/
- FFT::~FFT()
- {
- CleanUp();
- }
- /*****************************************************************************/
- void FFT::Init(int samples_in, int samples_out, int bEqualize, float envelope_power)
- {
- // samples_in: # of waveform samples you'll feed into the FFT
- // samples_out: # of frequency samples you want out; MUST BE A POWER OF 2.
- // bEqualize: set to 1 if you want the magnitude of the basses and trebles
- // to be roughly equalized; 0 to leave them untouched.
- // envelope_power: set to -1 to disable the envelope; otherwise, specify
- // the envelope power you want here. See InitEnvelopeTable for more info.
- CleanUp();
- m_samples_in = samples_in;
- NFREQ = samples_out*2;
- InitBitRevTable();
- InitCosSinTable();
- if (envelope_power > 0)
- InitEnvelopeTable(envelope_power);
- if (bEqualize)
- InitEqualizeTable();
- temp1 = new float[NFREQ];
- temp2 = new float[NFREQ];
- }
- /*****************************************************************************/
- void FFT::CleanUp()
- {
- SafeDeleteArray(envelope);
- SafeDeleteArray(equalize);
- SafeDeleteArray(bitrevtable);
- SafeDeleteArray(cossintable);
- SafeDeleteArray(temp1);
- SafeDeleteArray(temp2);
- }
- /*****************************************************************************/
- void FFT::InitEqualizeTable()
- {
- int i;
- float scaling = -0.02f;
- float inv_half_nfreq = 1.0f/(float)(NFREQ/2);
- equalize = new float[NFREQ/2];
- for (i=0; i<NFREQ/2; i++)
- equalize[i] = scaling * logf( (float)(NFREQ/2-i)*inv_half_nfreq );
- }
- /*****************************************************************************/
- void FFT::InitEnvelopeTable(float power)
- {
- // this precomputation is for multiplying the waveform sample
- // by a bell-curve-shaped envelope, so we don't see the ugly
- // frequency response (oscillations) of a square filter.
- // a power of 1.0 will compute the FFT with exactly one convolution.
- // a power of 2.0 is like doing it twice; the resulting frequency
- // output will be smoothed out and the peaks will be "fatter".
- // a power of 0.5 is closer to not using an envelope, and you start
- // to get the frequency response of the square filter as 'power'
- // approaches zero; the peaks get tighter and more precise, but
- // you also see small oscillations around their bases.
- int i;
- float mult = 1.0f/(float)m_samples_in * 6.2831853f;
- envelope = new float[m_samples_in];
- if (power==1.0f)
- for (i=0; i<m_samples_in; i++)
- envelope[i] = 0.5f + 0.5f*sinf(i*mult - 1.5707963268f);
- else
- for (i=0; i<m_samples_in; i++)
- envelope[i] = powf(0.5f + 0.5f*sinf(i*mult - 1.5707963268f), power);
- }
- /*****************************************************************************/
- void FFT::InitBitRevTable()
- {
- int i,j,m,temp;
- bitrevtable = new int[NFREQ];
- for (i=0; i<NFREQ; i++)
- bitrevtable[i] = i;
- for (i=0,j=0; i < NFREQ; i++)
- {
- if (j > i)
- {
- temp = bitrevtable[i];
- bitrevtable[i] = bitrevtable[j];
- bitrevtable[j] = temp;
- }
-
- m = NFREQ >> 1;
-
- while (m >= 1 && j >= m)
- {
- j -= m;
- m >>= 1;
- }
- j += m;
- }
- }
- /*****************************************************************************/
- void FFT::InitCosSinTable()
- {
- int i,dftsize,tabsize;
- float theta;
- dftsize = 2;
- tabsize = 0;
- while (dftsize <= NFREQ)
- {
- tabsize++;
- dftsize <<= 1;
- }
- cossintable = new float[tabsize][2];
- dftsize = 2;
- i = 0;
- while (dftsize <= NFREQ)
- {
- theta = (float)(-2.0f*PI/(float)dftsize);
- cossintable[i][0] = (float)cosf(theta);
- cossintable[i][1] = (float)sinf(theta);
- i++;
- dftsize <<= 1;
- }
- }
- /*****************************************************************************/
- void FFT::time_to_frequency_domain(float *in_wavedata, float *out_spectraldata)
- {
- // Converts time-domain samples from in_wavedata[]
- // into frequency-domain samples in out_spectraldata[].
- // The array lengths are the two parameters to Init().
-
- // The last sample of the output data will represent the frequency
- // that is 1/4th of the input sampling rate. For example,
- // if the input wave data is sampled at 44,100 Hz, then the last
- // sample of the spectral data output will represent the frequency
- // 11,025 Hz. The first sample will be 0 Hz; the frequencies of
- // the rest of the samples vary linearly in between.
- // Note that since human hearing is limited to the range 200 - 20,000
- // Hz. 200 is a low bass hum; 20,000 is an ear-piercing high shriek.
- // Each time the frequency doubles, that sounds like going up an octave.
- // That means that the difference between 200 and 300 Hz is FAR more
- // than the difference between 5000 and 5100, for example!
- // So, when trying to analyze bass, you'll want to look at (probably)
- // the 200-800 Hz range; whereas for treble, you'll want the 1,400 -
- // 11,025 Hz range.
- // If you want to get 3 bands, try it this way:
- // a) 11,025 / 200 = 55.125
- // b) to get the number of octaves between 200 and 11,025 Hz, solve for n:
- // 2^n = 55.125
- // n = log 55.125 / log 2
- // n = 5.785
- // c) so each band should represent 5.785/3 = 1.928 octaves; the ranges are:
- // 1) 200 - 200*2^1.928 or 200 - 761 Hz
- // 2) 200*2^1.928 - 200*2^(1.928*2) or 761 - 2897 Hz
- // 3) 200*2^(1.928*2) - 200*2^(1.928*3) or 2897 - 11025 Hz
- // A simple sine-wave-based envelope is convolved with the waveform
- // data before doing the FFT, to emeliorate the bad frequency response
- // of a square (i.e. nonexistent) filter.
- // You might want to slightly damp (blur) the input if your signal isn't
- // of a very high quality, to reduce high-frequency noise that would
- // otherwise show up in the output.
- int j, m, i, dftsize, hdftsize, t;
- float wr, wi, wpi, wpr, wtemp, tempr, tempi;
- if (!bitrevtable) return;
- //if (!envelope) return;
- //if (!equalize) return;
- if (!temp1) return;
- if (!temp2) return;
- if (!cossintable) return;
- // 1. set up input to the fft
- if (envelope)
- {
- for (i=0; i<NFREQ; i++)
- {
- int idx = bitrevtable[i];
- if (idx < m_samples_in)
- temp1[i] = in_wavedata[idx] * envelope[idx];
- else
- temp1[i] = 0;
- }
- }
- else
- {
- for (i=0; i<NFREQ; i++)
- {
- int idx = bitrevtable[i];
- if (idx < m_samples_in)
- temp1[i] = in_wavedata[idx];// * envelope[idx];
- else
- temp1[i] = 0;
- }
- }
- memset(temp2, 0, sizeof(float)*NFREQ);
-
- // 2. perform FFT
- float *real = temp1;
- float *imag = temp2;
- dftsize = 2;
- t = 0;
- while (dftsize <= NFREQ)
- {
- wpr = cossintable[t][0];
- wpi = cossintable[t][1];
- wr = 1.0f;
- wi = 0.0f;
- hdftsize = dftsize >> 1;
- for (m = 0; m < hdftsize; m+=1)
- {
- for (i = m; i < NFREQ; i+=dftsize)
- {
- j = i + hdftsize;
- tempr = wr*real[j] - wi*imag[j];
- tempi = wr*imag[j] + wi*real[j];
- real[j] = real[i] - tempr;
- imag[j] = imag[i] - tempi;
- real[i] += tempr;
- imag[i] += tempi;
- }
- wr = (wtemp=wr)*wpr - wi*wpi;
- wi = wi*wpr + wtemp*wpi;
- }
- dftsize <<= 1;
- t++;
- }
- // 3. take the magnitude & equalize it (on a log10 scale) for output
- if (equalize)
- for (i=0; i<NFREQ/2; i++)
- out_spectraldata[i] = equalize[i] * sqrtf(temp1[i]*temp1[i] + temp2[i]*temp2[i]);
- else
- for (i=0; i<NFREQ/2; i++)
- out_spectraldata[i] = sqrtf(temp1[i]*temp1[i] + temp2[i]*temp2[i]);
- }
- /*****************************************************************************/
|