| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305 | /* * This is an OpenSSL-compatible implementation of the RSA Data Security, Inc. * MD4 Message-Digest Algorithm (RFC 1320). * * Homepage: http://openwall.info/wiki/people/solar/software/public-domain-source-code/md4 * * Author: * Alexander Peslyak, better known as Solar Designer <solar at openwall.com> * * This software was written by Alexander Peslyak in 2001.  No copyright is * claimed, and the software is hereby placed in the public domain.  In case * this attempt to disclaim copyright and place the software in the public * domain is deemed null and void, then the software is Copyright (c) 2001 * Alexander Peslyak and it is hereby released to the general public under the * following terms: * * Redistribution and use in source and binary forms, with or without * modification, are permitted. * * There's ABSOLUTELY NO WARRANTY, express or implied. * * (This is a heavily cut-down "BSD license".) * * This differs from Colin Plumb's older public domain implementation in that * no exactly 32-bit integer data type is required (any 32-bit or wider * unsigned integer data type will do), there's no compile-time endianness * configuration, and the function prototypes match OpenSSL's.  No code from * Colin Plumb's implementation has been reused; this comment merely compares * the properties of the two independent implementations. * * The primary goals of this implementation are portability and ease of use. * It is meant to be fast, but not as fast as possible.  Some known * optimizations are not included to reduce source code size and avoid * compile-time configuration. */#include "curl_setup.h"/* NSS and OS/400 crypto library do not provide the MD4 hash algorithm, so * that we have a local implementation of it */#if defined(USE_NSS) || defined(USE_OS400CRYPTO)#include "curl_md4.h"#include "warnless.h"#ifndef HAVE_OPENSSL#include <string.h>/* Any 32-bit or wider unsigned integer data type will do */typedef unsigned int MD4_u32plus;typedef struct {  MD4_u32plus lo, hi;  MD4_u32plus a, b, c, d;  unsigned char buffer[64];  MD4_u32plus block[16];} MD4_CTX;static void MD4_Init(MD4_CTX *ctx);static void MD4_Update(MD4_CTX *ctx, const void *data, unsigned long size);static void MD4_Final(unsigned char *result, MD4_CTX *ctx);/* * The basic MD4 functions. * * F and G are optimized compared to their RFC 1320 definitions, with the * optimization for F borrowed from Colin Plumb's MD5 implementation. */#define F(x, y, z)                      ((z) ^ ((x) & ((y) ^ (z))))#define G(x, y, z)                      (((x) & ((y) | (z))) | ((y) & (z)))#define H(x, y, z)                      ((x) ^ (y) ^ (z))/* * The MD4 transformation for all three rounds. */#define STEP(f, a, b, c, d, x, s) \        (a) += f((b), (c), (d)) + (x); \        (a) = (((a) << (s)) | (((a) & 0xffffffff) >> (32 - (s))));/* * SET reads 4 input bytes in little-endian byte order and stores them * in a properly aligned word in host byte order. * * The check for little-endian architectures that tolerate unaligned * memory accesses is just an optimization.  Nothing will break if it * doesn't work. */#if defined(__i386__) || defined(__x86_64__) || defined(__vax__)#define SET(n) \        (*(MD4_u32plus *)&ptr[(n) * 4])#define GET(n) \        SET(n)#else#define SET(n) \        (ctx->block[(n)] = \        (MD4_u32plus)ptr[(n) * 4] | \        ((MD4_u32plus)ptr[(n) * 4 + 1] << 8) | \        ((MD4_u32plus)ptr[(n) * 4 + 2] << 16) | \        ((MD4_u32plus)ptr[(n) * 4 + 3] << 24))#define GET(n) \        (ctx->block[(n)])#endif/* * This processes one or more 64-byte data blocks, but does NOT update * the bit counters.  There are no alignment requirements. */static const void *body(MD4_CTX *ctx, const void *data, unsigned long size){  const unsigned char *ptr;  MD4_u32plus a, b, c, d;  MD4_u32plus saved_a, saved_b, saved_c, saved_d;  ptr = (const unsigned char *)data;  a = ctx->a;  b = ctx->b;  c = ctx->c;  d = ctx->d;  do {    saved_a = a;    saved_b = b;    saved_c = c;    saved_d = d;/* Round 1 */    STEP(F, a, b, c, d, SET(0), 3)      STEP(F, d, a, b, c, SET(1), 7)      STEP(F, c, d, a, b, SET(2), 11)      STEP(F, b, c, d, a, SET(3), 19)      STEP(F, a, b, c, d, SET(4), 3)      STEP(F, d, a, b, c, SET(5), 7)      STEP(F, c, d, a, b, SET(6), 11)      STEP(F, b, c, d, a, SET(7), 19)      STEP(F, a, b, c, d, SET(8), 3)      STEP(F, d, a, b, c, SET(9), 7)      STEP(F, c, d, a, b, SET(10), 11)      STEP(F, b, c, d, a, SET(11), 19)      STEP(F, a, b, c, d, SET(12), 3)      STEP(F, d, a, b, c, SET(13), 7)      STEP(F, c, d, a, b, SET(14), 11)      STEP(F, b, c, d, a, SET(15), 19)/* Round 2 */      STEP(G, a, b, c, d, GET(0) + 0x5a827999, 3)      STEP(G, d, a, b, c, GET(4) + 0x5a827999, 5)      STEP(G, c, d, a, b, GET(8) + 0x5a827999, 9)      STEP(G, b, c, d, a, GET(12) + 0x5a827999, 13)      STEP(G, a, b, c, d, GET(1) + 0x5a827999, 3)      STEP(G, d, a, b, c, GET(5) + 0x5a827999, 5)      STEP(G, c, d, a, b, GET(9) + 0x5a827999, 9)      STEP(G, b, c, d, a, GET(13) + 0x5a827999, 13)      STEP(G, a, b, c, d, GET(2) + 0x5a827999, 3)      STEP(G, d, a, b, c, GET(6) + 0x5a827999, 5)      STEP(G, c, d, a, b, GET(10) + 0x5a827999, 9)      STEP(G, b, c, d, a, GET(14) + 0x5a827999, 13)      STEP(G, a, b, c, d, GET(3) + 0x5a827999, 3)      STEP(G, d, a, b, c, GET(7) + 0x5a827999, 5)      STEP(G, c, d, a, b, GET(11) + 0x5a827999, 9)      STEP(G, b, c, d, a, GET(15) + 0x5a827999, 13)/* Round 3 */      STEP(H, a, b, c, d, GET(0) + 0x6ed9eba1, 3)      STEP(H, d, a, b, c, GET(8) + 0x6ed9eba1, 9)      STEP(H, c, d, a, b, GET(4) + 0x6ed9eba1, 11)      STEP(H, b, c, d, a, GET(12) + 0x6ed9eba1, 15)      STEP(H, a, b, c, d, GET(2) + 0x6ed9eba1, 3)      STEP(H, d, a, b, c, GET(10) + 0x6ed9eba1, 9)      STEP(H, c, d, a, b, GET(6) + 0x6ed9eba1, 11)      STEP(H, b, c, d, a, GET(14) + 0x6ed9eba1, 15)      STEP(H, a, b, c, d, GET(1) + 0x6ed9eba1, 3)      STEP(H, d, a, b, c, GET(9) + 0x6ed9eba1, 9)      STEP(H, c, d, a, b, GET(5) + 0x6ed9eba1, 11)      STEP(H, b, c, d, a, GET(13) + 0x6ed9eba1, 15)      STEP(H, a, b, c, d, GET(3) + 0x6ed9eba1, 3)      STEP(H, d, a, b, c, GET(11) + 0x6ed9eba1, 9)      STEP(H, c, d, a, b, GET(7) + 0x6ed9eba1, 11)      STEP(H, b, c, d, a, GET(15) + 0x6ed9eba1, 15)      a += saved_a;    b += saved_b;    c += saved_c;    d += saved_d;    ptr += 64;  } while(size -= 64);  ctx->a = a;  ctx->b = b;  ctx->c = c;  ctx->d = d;  return ptr;}static void MD4_Init(MD4_CTX *ctx){  ctx->a = 0x67452301;  ctx->b = 0xefcdab89;  ctx->c = 0x98badcfe;  ctx->d = 0x10325476;  ctx->lo = 0;  ctx->hi = 0;}static void MD4_Update(MD4_CTX *ctx, const void *data, unsigned long size){  MD4_u32plus saved_lo;  unsigned long used, available;  saved_lo = ctx->lo;  ctx->lo = (saved_lo + size) & 0x1fffffff;  if(ctx->lo < saved_lo)    ctx->hi++;  ctx->hi += (MD4_u32plus)size >> 29;  used = saved_lo & 0x3f;  if(used) {    available = 64 - used;    if(size < available) {      memcpy(&ctx->buffer[used], data, size);      return;    }    memcpy(&ctx->buffer[used], data, available);    data = (const unsigned char *)data + available;    size -= available;    body(ctx, ctx->buffer, 64);  }  if(size >= 64) {    data = body(ctx, data, size & ~(unsigned long)0x3f);    size &= 0x3f;  }  memcpy(ctx->buffer, data, size);}static void MD4_Final(unsigned char *result, MD4_CTX *ctx){  unsigned long used, available;  used = ctx->lo & 0x3f;  ctx->buffer[used++] = 0x80;  available = 64 - used;  if(available < 8) {    memset(&ctx->buffer[used], 0, available);    body(ctx, ctx->buffer, 64);    used = 0;    available = 64;  }  memset(&ctx->buffer[used], 0, available - 8);  ctx->lo <<= 3;  ctx->buffer[56] = curlx_ultouc((ctx->lo)&0xff);  ctx->buffer[57] = curlx_ultouc((ctx->lo >> 8)&0xff);  ctx->buffer[58] = curlx_ultouc((ctx->lo >> 16)&0xff);  ctx->buffer[59] = curlx_ultouc((ctx->lo >> 24)&0xff);  ctx->buffer[60] = curlx_ultouc((ctx->hi)&0xff);  ctx->buffer[61] = curlx_ultouc((ctx->hi >> 8)&0xff);  ctx->buffer[62] = curlx_ultouc((ctx->hi >> 16)&0xff);  ctx->buffer[63] = curlx_ultouc(ctx->hi >> 24);  body(ctx, ctx->buffer, 64);  result[0] = curlx_ultouc((ctx->a)&0xff);  result[1] = curlx_ultouc((ctx->a >> 8)&0xff);  result[2] = curlx_ultouc((ctx->a >> 16)&0xff);  result[3] = curlx_ultouc(ctx->a >> 24);  result[4] = curlx_ultouc((ctx->b)&0xff);  result[5] = curlx_ultouc((ctx->b >> 8)&0xff);  result[6] = curlx_ultouc((ctx->b >> 16)&0xff);  result[7] = curlx_ultouc(ctx->b >> 24);  result[8] = curlx_ultouc((ctx->c)&0xff);  result[9] = curlx_ultouc((ctx->c >> 8)&0xff);  result[10] = curlx_ultouc((ctx->c >> 16)&0xff);  result[11] = curlx_ultouc(ctx->c >> 24);  result[12] = curlx_ultouc((ctx->d)&0xff);  result[13] = curlx_ultouc((ctx->d >> 8)&0xff);  result[14] = curlx_ultouc((ctx->d >> 16)&0xff);  result[15] = curlx_ultouc(ctx->d >> 24);  memset(ctx, 0, sizeof(*ctx));}#endifvoid Curl_md4it(unsigned char *output, const unsigned char *input, size_t len){  MD4_CTX ctx;  MD4_Init(&ctx);  MD4_Update(&ctx, input, curlx_uztoui(len));  MD4_Final(output, &ctx);}#endif /* defined(USE_NSS) || defined(USE_OS400CRYPTO) */
 |