README.html 47 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999
  1. <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
  2. <html>
  3. <head>
  4. <title>SoundTouch library README</title>
  5. <meta http-equiv="Content-Language" content="en-us">
  6. <meta name="author" content="Olli Parviainen">
  7. <meta name="description" content="Readme file for SoundTouch audio processing library">
  8. <style>
  9. body {
  10. font-family: Arial, Helvetica;
  11. }
  12. </style>
  13. </head>
  14. <body class="normal">
  15. <hr>
  16. <h1>SoundTouch audio processing library v2.3.1</h1>
  17. <p class="normal">SoundTouch library Copyright &copy; Olli Parviainen 2001-2021</p>
  18. <hr>
  19. <h2>1. Introduction </h2>
  20. <p>SoundTouch is an open-source audio processing library that allows
  21. changing the sound tempo, pitch and playback rate parameters
  22. independently from each other, i.e.:</p>
  23. <ul>
  24. <li> Sound tempo can be increased or decreased while maintaining the
  25. original pitch</li>
  26. <li> Sound pitch can be increased or decreased while maintaining the
  27. original tempo</li>
  28. <li> Change playback rate that affects both tempo and pitch at the
  29. same time</li>
  30. <li> Choose any combination of tempo/pitch/rate</li>
  31. </ul>
  32. <h3>1.1 Contact information </h3>
  33. <p>Author email: oparviai 'at' iki.fi </p>
  34. <p>SoundTouch WWW page: <a href="http://soundtouch.surina.net">http://soundtouch.surina.net</a></p>
  35. <p>SoundTouch git repository: <a
  36. href="https://gitlab.com/soundtouch/soundtouch.git">https://gitlab.com/soundtouch/soundtouch.git</a></p>
  37. <hr>
  38. <h2>2. Compiling SoundTouch</h2>
  39. <p>Before compiling, notice that you can choose the sample data format if it's
  40. desirable to use 16bit integer sample data instead of floating point samples. See
  41. section &quot;sample data format&quot; for more information.</p>
  42. <p>Also notice that SoundTouch can use OpenMP instructions for parallel
  43. computation to accelerate the runtime processing speed in multi-core systems,
  44. however, these improvements need to be separately enabled before compiling. See
  45. OpenMP notes in Chapter 3 below.</p>
  46. <h3>2.1. Building in Microsoft Windows</h3>
  47. <p>Project files for Microsoft Visual C++ are supplied with the source
  48. code package. Go to Microsoft WWW page to download
  49. <a href="http://www.visualstudio.com/en-US/products/visual-studio-express-vs">
  50. Microsoft Visual Studio Express version for free</a>.
  51. </p>
  52. <p>To build the binaries with Visual C++ compiler, either run
  53. "make-win.bat" script, or open the appropriate project files in source
  54. code directories with Visual Studio. The final executable will appear
  55. under the "SoundTouch\bin" directory. If using the Visual Studio IDE
  56. instead of the make-win.bat script, directories bin and lib may need to
  57. be created manually to the SoundTouch package root for the final
  58. executables. The make-win.bat script creates these directories
  59. automatically. </p>
  60. <p><strong>C# example</strong>: The source code package includes also a C# example
  61. application for Windows that shows how to invoke SoundTouch.dll
  62. dynamic-load library for processing mp3 audio.
  63. <p><strong>OpenMP NOTE</strong>: If activating the OpenMP parallel computing in
  64. the compilation, the target program will require additional vcomp dll library to
  65. properly run. In Visual C++ 9.0 these libraries can be found in the following
  66. folders.</p>
  67. <ul>
  68. <li>x86 32bit: C:\Program Files (x86)\Microsoft Visual Studio
  69. 9.0\VC\redist\x86\Microsoft.VC90.OPENMP\vcomp90.dll</li>
  70. <li>x64 64bit: C:\Program Files (x86)\Microsoft Visual Studio
  71. 9.0\VC\redist\amd64\Microsoft.VC90.OPENMP\vcomp90.dll</li>
  72. </ul>
  73. <p>In other VC++ versions the required library will be expectedly found in similar
  74. &quot;redist&quot; location.</p>
  75. <p>Notice that as minor demonstration of a &quot;dll hell&quot; phenomenon both the 32-bit
  76. and 64-bit version of vcomp90.dll have the same filename but different contents,
  77. thus choose the proper version to allow the program to start.</p>
  78. <h3>2.2. Building in Gnu platforms</h3>
  79. <p>The SoundTouch library compiles in practically any platform
  80. supporting GNU compiler (GCC) tools.
  81. <h4>2.2.1 Compiling with autotools</h4>
  82. <p>To install build prerequisites for 'autotools' tool chain:</p>
  83. <pre> sudo apt-get install automake autoconf libtool build-essential</pre>
  84. <p>To build and install the binaries, run the following commands in
  85. /soundtouch directory:</p>
  86. <table border="0" cellpadding="0" cellspacing="4">
  87. <tbody>
  88. <tr>
  89. <td style="vertical-align: top;">
  90. <pre>./bootstrap -</pre>
  91. </td>
  92. <td style="vertical-align: top;">Creates "configure" file with
  93. local autoconf/automake toolset.<br>
  94. </td>
  95. </tr>
  96. <tr valign="top">
  97. <td>
  98. <pre>./configure -</pre>
  99. </td>
  100. <td>
  101. <p>Configures the SoundTouch package for the local environment.
  102. Notice that "configure" file is not available before running the
  103. "./bootstrap" command as above.<br>
  104. </p>
  105. </td>
  106. </tr>
  107. <tr valign="top">
  108. <td>
  109. <pre>make -</pre>
  110. </td>
  111. <td>
  112. <p>Builds the SoundTouch library &amp; SoundStretch utility. You can
  113. optionally add &quot;-j&quot; switch after &quot;make&quot; to speed up the compilation in
  114. multi-core systems.</p>
  115. </td>
  116. </tr>
  117. <tr valign="top">
  118. <td>
  119. <pre>make install -</pre>
  120. </td>
  121. <td>
  122. <p>Installs the SoundTouch &amp; BPM libraries to <b>/usr/local/lib</b>
  123. and SoundStretch utility to <b>/usr/local/bin</b>. Please notice that
  124. 'root' privileges may be required to install the binaries to the
  125. destination locations.</p>
  126. </td>
  127. </tr>
  128. </tbody>
  129. </table>
  130. <b>Compiling portable Shared Library / DLL version</b>
  131. <p> The GNU autotools compilation does not automatically create a shared-library version of
  132. SoundTouch (.so or .dll) that features position-independent code and C-language
  133. api that are more suitable for cross-language development than C++ libraries.</p>
  134. <p> Use script "make-gnu-dll-sh" to build a portable dynamic library version if such is desired.</p>
  135. <h4><b>2.2.2 Compiling with cmake</b></h4>
  136. <p>'cmake' build scripts are provided as an alternative to the autotools toolchain.</p>
  137. <p>To install cmake build prerequisites:</p>
  138. <pre> sudo apt-get install libtool build-essential cmake</pre>
  139. <p>To build:</p>
  140. <pre>
  141. cmake .
  142. make -j
  143. make install</pre>
  144. <p>To compile the additional portable Shared Library / DLL version with the native C-language API:</p>
  145. <pre>
  146. cmake . -DSOUNDTOUCH_DLL=ON
  147. make -j
  148. make install</pre>
  149. <h3>2.3. Building in Android</h3>
  150. <p>Android compilation instructions are within the
  151. source code package, see file &quot;<b>source/Android-lib/README-SoundTouch-Android.html</b>&quot;
  152. in the source code package. </p>
  153. <p>The Android compilation automatically builds separate .so library binaries
  154. for ARM, X86 and MIPS processor architectures. For optimal device support,
  155. include all these .so library binaries into the Android .apk application
  156. package, so the target Android device can automatically choose the proper
  157. library binary version to use.</p>
  158. <p>The <strong>source/Android-lib</strong> folder includes also an Android
  159. example application that processes WAV audio files using SoundTouch library in
  160. Android devices.</p>
  161. <h3>2.4. Building in Mac</h3>
  162. <p>Install autoconf tool as instructed in <a
  163. href="http://macappstore.org/autoconf/">http://macappstore.org/autoconf/</a>, or alternatively the 'cmake' toolchain.</p>
  164. <p>Then, build as described above in section "Building in Gnu platforms".</p>
  165. <hr>
  166. <h2>3. About implementation &amp; Usage tips <h3>3.1. Supported sample data formats</h3>
  167. <p>The sample data format can be chosen between 16bit signed integer
  168. and 32bit floating point values.</p>
  169. </p> The default sample type is 32bit floating point format,
  170. which also provides better sound quality than integer format because
  171. integer algorithms need to scale already intermediate calculation results to
  172. avoid integer overflows. These early integer scalings can slightly degrade
  173. output quality.</p>
  174. <p> In Windows environment, the sample data format is chosen in file
  175. "STTypes.h" by choosing one of the following defines:</p>
  176. <ul>
  177. <li> <span style="font-weight: bold;">#define
  178. SOUNDTOUCH_INTEGER_SAMPLES</span> for 16bit signed integer</li>
  179. <li> <span style="font-weight: bold;">#define </span><span style="font-weight: bold;">SOUNDTOUCH_</span><span
  180. style="font-weight: bold;">FLOAT_SAMPLES</span> for 32bit floating
  181. point</li>
  182. </ul>
  183. <p> In GNU environment, the floating sample format is used by default,
  184. but integer sample format can be chosen by giving the following switch
  185. to the configure script: </p>
  186. <blockquote>
  187. <pre>./configure --enable-integer-samples</pre>
  188. </blockquote>
  189. <p>The sample data can have either single (mono) or double (stereo)
  190. audio channel. Stereo data is interleaved so that every other data
  191. value is for left channel and every second for right channel. Notice
  192. that while it'd be possible in theory to process stereo sound as two
  193. separate mono channels, this isn't recommended because processing the
  194. channels separately would result in losing the phase coherency between
  195. the channels, which consequently would ruin the stereo effect.</p>
  196. <p>Sample rates between 8000-48000H are supported.</p>
  197. <h3>3.2. Processing latency</h3>
  198. <p>The processing and latency constraints of the SoundTouch library are:</p>
  199. <ul>
  200. <li> Input/output processing latency for the SoundTouch processor is
  201. around 100 ms. This is when time-stretching is used. If the rate
  202. transposing effect alone is used, the latency requirement is much
  203. shorter, see section 'About algorithms'.</li>
  204. <li> Processing CD-quality sound (16bit stereo sound with 44100H
  205. sample rate) in real-time or faster is possible starting from
  206. processors equivalent to Intel Pentium 133Mh or better, if using the
  207. "quick" processing algorithm. If not using the "quick" mode or if
  208. floating point sample data are being used, several times more CPU power
  209. is typically required.</li>
  210. </ul>
  211. <h3>3.3. About algorithms</h3>
  212. <p>SoundTouch provides three seemingly independent effects: tempo,
  213. pitch and playback rate control. These three controls are implemented
  214. as combination of two primary effects, <em>sample rate transposing</em>
  215. and <em>time-stretching</em>.</p>
  216. <p><em>Sample rate transposing</em> affects both the audio stream
  217. duration and pitch. It's implemented simply by converting the original
  218. audio sample stream to the desired duration by interpolating from
  219. the original audio samples. In SoundTouch, linear interpolation with
  220. anti-alias filtering is used. Theoretically a higher-order
  221. interpolation provide better result than 1st order linear
  222. interpolation, but in audio application linear interpolation together
  223. with anti-alias filtering performs subjectively about as well as
  224. higher-order filtering would.</p>
  225. <p><em>Time-stretching </em>means changing the audio stream duration
  226. without affecting it's pitch. SoundTouch uses WSOLA-like
  227. time-stretching routines that operate in the time domain. Compared to
  228. sample rate transposing, time-stretching is a much heavier operation
  229. and also requires a longer processing "window" of sound samples used by
  230. the processing algorithm, thus increasing the algorithm input/output
  231. latency. Typical i/o latency for the SoundTouch time-stretch algorithm
  232. is around 100 ms.</p>
  233. <p>Sample rate transposing and time-stretching are then used together
  234. to produce the tempo, pitch and rate controls:</p>
  235. <ul>
  236. <li> <strong>'Tempo'</strong> control is implemented purely by
  237. time-stretching.</li>
  238. <li> <strong>'Rate</strong>' control is implemented purely by sample
  239. rate transposing.</li>
  240. <li> <strong>'Pitch</strong>' control is implemented as a
  241. combination of time-stretching and sample rate transposing. For
  242. example, to increase pitch the audio stream is first time-stretched to
  243. longer duration (without affecting pitch) and then transposed back to
  244. original duration by sample rate transposing, which simultaneously
  245. reduces duration and increases pitch. The result is original duration
  246. but increased pitch.</li>
  247. </ul>
  248. <h3>3.4 Tuning the algorithm parameters</h3>
  249. <p>The time-stretch algorithm has few parameters that can be tuned to
  250. optimize sound quality for certain application. The current default
  251. parameters have been chosen by iterative if-then analysis (read: "trial
  252. and error") to obtain best subjective sound quality in pop/rock music
  253. processing, but in applications processing different kind of sound the
  254. default parameter set may result into a sub-optimal result.</p>
  255. <p>The time-stretch algorithm default parameter values are set by the
  256. following #defines in file "TDStretch.h":</p>
  257. <blockquote>
  258. <pre>#define DEFAULT_SEQUENCE_MS AUTOMATIC<br>#define DEFAULT_SEEKWINDOW_MS AUTOMATIC<br>#define DEFAULT_OVERLAP_MS 8</pre>
  259. </blockquote>
  260. <p>These parameters affect to the time-stretch algorithm as follows:</p>
  261. <ul>
  262. <li> <strong>DEFAULT_SEQUENCE_MS</strong>: This is the default
  263. length of a single processing sequence in milliseconds which determines
  264. the how the original sound is chopped in the time-stretch algorithm.
  265. Larger values mean fewer sequences are used in processing. In principle
  266. a larger value sounds better when slowing down the tempo, but worse
  267. when increasing the tempo and vice versa.<br>
  268. <br>
  269. By default, this setting value is calculated automatically according to
  270. tempo value.<br>
  271. </li>
  272. <li> <strong>DEFAULT_SEEKWINDOW_MS</strong>: The seeking window
  273. default length in milliseconds is for the algorithm that seeks the best
  274. possible overlapping location. This determines from how wide a sample
  275. "window" the algorithm can use to find an optimal mixing location when
  276. the sound sequences are to be linked back together.<br>
  277. <br>
  278. The bigger this window setting is, the higher the possibility to find a
  279. better mixing position becomes, but at the same time large values may
  280. cause a "drifting" sound artifact because neighboring sequences can be
  281. chosen at more uneven intervals. If there's a disturbing artifact that
  282. sounds as if a constant frequency was drifting around, try reducing
  283. this setting.<br>
  284. <br>
  285. By default, this setting value is calculated automatically according to
  286. tempo value.<br>
  287. </li>
  288. <li> <strong>DEFAULT_OVERLAP_MS</strong>: Overlap length in
  289. milliseconds. When the sound sequences are mixed back together to form
  290. again a continuous sound stream, this parameter defines how much the
  291. ends of the consecutive sequences will overlap with each other.<br>
  292. <br>
  293. This shouldn't be that critical parameter. If you reduce the
  294. DEFAULT_SEQUENCE_MS setting by a large amount, you might wish to try a
  295. smaller value on this.
  296. </li>
  297. </ul>
  298. <p>Notice that these parameters can also be set during execution time
  299. with functions "<strong>TDStretch::setParameters()</strong>" and "<strong>SoundTouch::setSetting()</strong>".</p>
  300. <p>The table below summaries how the parameters can be adjusted for
  301. different applications:</p>
  302. <table border="1">
  303. <tbody>
  304. <tr>
  305. <td valign="top"><strong>Parameter name</strong></td>
  306. <td valign="top"><strong>Default value magnitude</strong></td>
  307. <td valign="top"><strong>Larger value affects...</strong></td>
  308. <td valign="top"><strong>Smaller value affects...</strong></td>
  309. <td valign="top"><strong>Effect to CPU burden</strong></td>
  310. </tr>
  311. <tr>
  312. <td valign="top">
  313. <pre>SEQUENCE_MS</pre>
  314. </td>
  315. <td valign="top">Default value is relatively large, chosen for
  316. slowing down music tempo</td>
  317. <td valign="top">Larger value is usually better for slowing down
  318. tempo. Growing the value decelerates the "echoing" artifact when
  319. slowing down the tempo.</td>
  320. <td valign="top">Smaller value might be better for speeding up
  321. tempo. Reducing the value accelerates the "echoing" artifact when
  322. slowing down the tempo </td>
  323. <td valign="top">Increasing the parameter value reduces
  324. computation burden</td>
  325. </tr>
  326. <tr>
  327. <td valign="top">
  328. <pre>SEEKWINDOW_MS</pre>
  329. </td>
  330. <td valign="top">Default value is relatively large, chosen for
  331. slowing down music tempo</td>
  332. <td valign="top">Larger value eases finding a good mixing
  333. position, but may cause a "drifting" artifact</td>
  334. <td valign="top">Smaller reduce possibility to find a good mixing
  335. position, but reduce the "drifting" artifact.</td>
  336. <td valign="top">Increasing the parameter value increases
  337. computation burden</td>
  338. </tr>
  339. <tr>
  340. <td valign="top">
  341. <pre>OVERLAP_MS</pre>
  342. </td>
  343. <td valign="top">Default value is relatively large, chosen to
  344. suit with above parameters.</td>
  345. <td valign="top"></td>
  346. <td valign="top">If you reduce the "sequence ms" setting, you
  347. might wish to try a smaller value.</td>
  348. <td valign="top">Increasing the parameter value increases
  349. computation burden</td>
  350. </tr>
  351. </tbody>
  352. </table>
  353. <h3>3.5 Performance Optimizations </h3>
  354. <p><strong>Integer vs floating point:</strong></p>
  355. <p>Floating point sample type is generally recommended because it provides
  356. better sound quality.</p>
  357. <p>However, execution speed difference between integer and floating point processing
  358. depends on the CPU architecture. As rule of thumb,
  359. <ul>
  360. <li>in 32-bit x86 floating point and integer are roughly equally fast</li>
  361. <li>in 64-bit x86/x64 floating point can be significantly faster than integer
  362. version, because MMX integer optimizations are not available in the x64 architecture.
  363. That depends on the compiler however, so that gcc can autovectorize integer routines
  364. to work equally fast as floating point, where as Visual C++ (2017) does not
  365. perform equally well and produces integer code that runs some 3x slower than
  366. SSE-optimized floating poing code.
  367. </li>
  368. <li>in ARMv7 integer routines are twice as fast as floating point. Their
  369. relative difference is roughly the same both with and without NEON; NEON
  370. vfpu can however bring 2.4x speed improvement.
  371. </li>
  372. <li>in other platforms: try out if the execution time performance makes a
  373. big difference</li>
  374. </ul>
  375. </p>
  376. <p><strong>General optimizations:</strong></p>
  377. <p>The time-stretch routine has a 'quick' mode that substantially
  378. speeds up the algorithm but may slightly compromise the sound quality.
  379. This mode is activated by calling SoundTouch::setSetting()
  380. function with parameter id of SETTING_USE_QUICKSEEK and value
  381. "1", i.e. </p>
  382. <blockquote>
  383. <p>setSetting(SETTING_USE_QUICKSEEK, 1);</p>
  384. </blockquote>
  385. <p><strong>CPU-specific optimizations:</strong></p>
  386. <p>Intel x86 specific SIMD optimizations are implemented using compiler
  387. intrinsics, providing about a 3x processing speedup for x86 compatible
  388. processors vs. non-SIMD implementation:</p>
  389. <ul>
  390. <li> MMX optimized routines are used in 32-bit x86 build when 16bit integer
  391. sample type is used</li>
  392. <li> SSE optimized routines are used in 32- and 64-bit x86 CPUs when 32bit
  393. floating point sample type is used</li>
  394. </ul>
  395. <p>The algorithms are tuned to utilize autovectorization efficiently
  396. also in other CPU architectures, for example ARM cpus see approx 2.4x processing
  397. speedup when NEON SIMD support is present.
  398. </p>
  399. <h3>3.5 OpenMP parallel computation</h3>
  400. <p>SoundTouch 1.9 onwards support running the algorithms parallel in several CPU
  401. cores. Based on benchmark the experienced multi-core processing speed-up gain
  402. ranges between +30% (on a high-spec dual-core x86 Windows PC) to 215% (on a moderately low-spec
  403. quad-core ARM of Raspberry Pi2). </p>
  404. <p>See an external blog article with more detailed discussion about the
  405. <a href="http://www.softwarecoven.com/parallel-computing-in-embedded-mobile-devices/">
  406. SoundTouch OpenMP optimization</a>.
  407. </p>
  408. <p>The parallel computing support is implemented using OpenMP spec 3.0
  409. instructions. These instructions are supported by Visual C++ 2008 and later, and
  410. GCC v4.2 and later. Compilers that do not supporting OpenMP will ignore these
  411. optimizations and routines will still work properly. Possible warnings about
  412. unknown #pragmas are related to OpenMP support and can be safely ignored.</p>
  413. <p>The OpenMP improvements are disabled by default, and need to be enabled by
  414. developer during compile-time. Reason for this is that parallel processing adds
  415. moderate runtime overhead in managing the multi-threading, so it may not be
  416. necessary nor desirable in all applications. For example real-time processing
  417. that is not constrained by CPU power will not benefit of speed-up provided by
  418. the parallel processing, in the contrary it may increase power consumption due
  419. to the increased overhead.</p>
  420. <p>However, applications that run on low-spec multi-core CPUs and may otherwise
  421. have possibly constrained performance will benefit of the OpenMP improvements.
  422. This include for example multi-core embedded devices.</p>
  423. <p>OpenMP parallel computation can be enabled before compiling SoundTouch
  424. library as follows:</p>
  425. <ul>
  426. <li><strong>Visual Studio</strong>: Open properties for the <strong>SoundTouch
  427. </strong>sub-project, browse to <strong>C/C++</strong> and <strong>Language
  428. </strong>settings. Set
  429. there &quot;<strong>OpenMP support</strong>&quot; to &quot;<strong>Yes</strong>&quot;. Alternatively add
  430. <strong>/openmp</strong> switch to command-line
  431. parameters
  432. </li>
  433. <li><strong>GNU</strong>: Run the configure script with &quot;<strong>./configure
  434. --enable-openmp</strong>&quot; switch, then run make as usually</li>
  435. <li><strong>Android</strong>: Add &quot;<strong>-fopenmp</strong>&quot; switches to compiler &amp; linker
  436. options, see README-SoundTouch-Android.html in the source code package for
  437. more detailed instructions.</li>
  438. </ul>
  439. <hr>
  440. <h2><a name="SoundStretch"></a>4. SoundStretch audio processing utility
  441. </h2>
  442. <p>SoundStretch audio processing utility<br>
  443. Copyright (c) Olli Parviainen 2002-2015</p>
  444. <p>SoundStretch is a simple command-line application that can change
  445. tempo, pitch and playback rates of WAV sound files. This program is
  446. intended primarily to demonstrate how the "SoundTouch" library can be
  447. used to process sound in your own program, but it can as well be used
  448. for processing sound files.</p>
  449. <h3>4.1. SoundStretch Usage Instructions</h3>
  450. <p>SoundStretch Usage syntax:</p>
  451. <blockquote>
  452. <pre>soundstretch infilename outfilename [switches]</pre>
  453. </blockquote>
  454. <p>Where: </p>
  455. <table width="100%" border="0" cellpadding="2">
  456. <tbody>
  457. <tr>
  458. <td valign="top">
  459. <pre>"infilename"</pre>
  460. </td>
  461. <td valign="top">Name of the input sound data file (in .WAV audio
  462. file format). Give "stdin" as filename to use standard input pipe. </td>
  463. </tr>
  464. <tr>
  465. <td valign="top">
  466. <pre>"outfilename"</pre>
  467. </td>
  468. <td valign="top">Name of the output sound file where the
  469. resulting sound is saved (in .WAV audio file format). This parameter
  470. may be omitted if you don't want to save the output (e.g. when
  471. only calculating BPM rate with '-bpm' switch). Give "stdout" as
  472. filename to use standard output pipe.</td>
  473. </tr>
  474. <tr>
  475. <td valign="top">
  476. <pre>[switches]</pre>
  477. </td>
  478. <td valign="top">Are one or more control switches.</td>
  479. </tr>
  480. </tbody>
  481. </table>
  482. <p>Available control switches are:</p>
  483. <table width="100%" border="0" cellpadding="2">
  484. <tbody>
  485. <tr>
  486. <td valign="top">
  487. <pre>-tempo=n </pre>
  488. </td>
  489. <td valign="top">Change the sound tempo by n percents (n = -95.0
  490. .. +5000.0 %) </td>
  491. </tr>
  492. <tr>
  493. <td valign="top">
  494. <pre>-pitch=n</pre>
  495. </td>
  496. <td valign="top">Change the sound pitch by n semitones (n = -60.0
  497. .. + 60.0 semitones) </td>
  498. </tr>
  499. <tr>
  500. <td valign="top">
  501. <pre>-rate=n</pre>
  502. </td>
  503. <td valign="top">Change the sound playback rate by n percents (n
  504. = -95.0 .. +5000.0 %) </td>
  505. </tr>
  506. <tr>
  507. <td valign="top">
  508. <pre>-bpm=n</pre>
  509. </td>
  510. <td valign="top">Detect the Beats-Per-Minute (BPM) rate of the
  511. sound and adjust the tempo to meet 'n' BPMs. When this switch is
  512. applied, the "-tempo" switch is ignored. If "=n" is omitted, i.e.
  513. switch "-bpm" is used alone, then the BPM rate is estimated and
  514. displayed, but tempo not adjusted according to the BPM value. </td>
  515. </tr>
  516. <tr>
  517. <td valign="top">
  518. <pre>-quick</pre>
  519. </td>
  520. <td valign="top">Use quicker tempo change algorithm. Gains speed
  521. but loses sound quality. </td>
  522. </tr>
  523. <tr>
  524. <td valign="top">
  525. <pre>-naa</pre>
  526. </td>
  527. <td valign="top">Don't use anti-alias filtering in sample rate
  528. transposing. Gains speed but loses sound quality. </td>
  529. </tr>
  530. <tr>
  531. <td valign="top">
  532. <pre>-license</pre>
  533. </td>
  534. <td valign="top">Displays the program license text (LGPL)</td>
  535. </tr>
  536. </tbody>
  537. </table>
  538. <p>Notes:</p>
  539. <ul>
  540. <li> To use standard input/output pipes for processing, give "stdin"
  541. and "stdout" as input/output filenames correspondingly. The standard
  542. input/output pipes will still carry the audio data in .wav audio file
  543. format.</li>
  544. <li> The numerical switches allow both integer (e.g. "-tempo=123")
  545. and decimal (e.g. "-tempo=123.45") numbers.</li>
  546. <li> The "-naa" and/or "-quick" switches can be used to reduce CPU
  547. usage while compromising some sound quality</li>
  548. <li> The BPM detection algorithm works by detecting repeating bass or
  549. drum patterns at low frequencies of &lt;250Hz. A lower-than-expected
  550. BPM figure may be reported for music with uneven or complex bass
  551. patterns.</li>
  552. </ul>
  553. <h3>4.2. SoundStretch usage examples </h3>
  554. <p><strong>Example 1</strong></p>
  555. <p>The following command increases tempo of the sound file
  556. "originalfile.wav" by 12.5% and stores result to file
  557. "destinationfile.wav":</p>
  558. <blockquote>
  559. <pre>soundstretch originalfile.wav destinationfile.wav -tempo=12.5</pre>
  560. </blockquote>
  561. <p><strong>Example 2</strong></p>
  562. <p>The following command decreases the sound pitch (key) of the sound
  563. file "orig.wav" by two semitones and stores the result to file
  564. "dest.wav":</p>
  565. <blockquote>
  566. <pre>soundstretch orig.wav dest.wav -pitch=-2</pre>
  567. </blockquote>
  568. <p><strong>Example 3</strong></p>
  569. <p>The following command processes the file "orig.wav" by decreasing
  570. the sound tempo by 25.3% and increasing the sound pitch (key) by 1.5
  571. semitones. Resulting .wav audio data is directed to standard output
  572. pipe:</p>
  573. <blockquote>
  574. <pre>soundstretch orig.wav stdout -tempo=-25.3 -pitch=1.5</pre>
  575. </blockquote>
  576. <p><strong>Example 4</strong></p>
  577. <p>The following command detects the BPM rate of the file "orig.wav"
  578. and adjusts the tempo to match 100 beats per minute. Result is stored
  579. to file "dest.wav":</p>
  580. <blockquote>
  581. <pre>soundstretch orig.wav dest.wav -bpm=100</pre>
  582. </blockquote>
  583. <p><strong>Example 5</strong></p>
  584. <p>The following command reads .wav sound data from standard input pipe
  585. and estimates the BPM rate:</p>
  586. <blockquote>
  587. <pre>soundstretch stdin -bpm</pre>
  588. </blockquote>
  589. <p><strong>Example 6</strong></p>
  590. <p>The following command tunes song from original 440Hz tuning to 432Hz tuning:
  591. this corresponds to lowering the pitch by -0.318 semitones:</p>
  592. <blockquote>
  593. <pre>soundstretch original.wav output.wav -pitch=-0.318</pre>
  594. </blockquote>
  595. <hr>
  596. <h2>5. Change History</h2>
  597. <h3>5.1. SoundTouch library Change History </h3>
  598. <p><b>2.3.1:</b></p>
  599. <ul>
  600. <li>Adjusted cmake build settings and header files that cmake installs</li>
  601. </ul>
  602. <p><b>2.3.0:</b></p>
  603. <ul>
  604. <li>Disable setting "SOUNDTOUCH_ALLOW_NONEXACT_SIMD_OPTIMIZATION" by default. The original
  605. purpose of this setting was to avoid performance penalty due to unaligned SIMD memory
  606. accesses in old CPUs, but that is not any more issue in concurrent CPU SIMD implementations
  607. and having this setting enabled can cause slight compromise in result quality.
  608. </li>
  609. <li>Bugfix: soundtouch.clear() to really clear whole processing pipeline state. Earlier
  610. individual variables were left uncleared, which caused slightly different result if
  611. the same audio stream were processed again after calling clear().
  612. </li>
  613. <li>Bugfix: TDstretch to align initial offset position to be in middle of correlation search
  614. window. This ensures that with zero tempo change the output will be same as input.
  615. </li>
  616. <li>Bugfix: Fix a bug in TDstrectch with too small initial skipFract value that occurred
  617. with certain processing parameter settings: Replace assert with assignment that
  618. corrects the situation.
  619. </li>
  620. <li>Remove OpenMP "_init_threading" workaround from Android build as it's not needed with concurrent
  621. Android SDKs any more.</li>
  622. </ul>
  623. <p><b>2.2:</b></p>
  624. <ul>
  625. <li>Improved source codes so that compiler can autovectorize them more effectively.
  626. This brings remarkable improvement e.g. ARM cpus equipped with NEON vfpu: Bencmarked
  627. 2.4x improvement in execution speed in ARMv7l vs the previous SoundTouch version
  628. for both integer and floating point sample types.
  629. </li>
  630. <li>Bugfix: Resolved bad sound quality when using integer sample types in non-x86 CPU</li>
  631. <li>Bugfix: Fixed possible reading past end of array in BPM peak detection algorithm</li>
  632. </ul>
  633. <p><b>2.1.2:</b></p>
  634. <ul>
  635. <li>Bump version to 2.1.2 also in configure.ac. The earlier release had old version info for GNU autotools.</li>
  636. </ul>
  637. <p><b>2.1.1:</b></p>
  638. <ul>
  639. <li>Bugfixes: Fixed potential buffer overwrite bugs in WavFile routines. Replaced asserts with runtime exceptions.
  640. </li>
  641. <li>Android: Migrated the SoundTouch Android example to new Android Studio</li>
  642. <li>Automake: unset ACLOCAL in bootstrap script in case earlier build script has set it</li>
  643. </ul>
  644. <p><b>2.1:</b></p>
  645. <ul>
  646. <li>Refactored C# interface example</li>
  647. <li>Disable anti-alias filter when switch
  648. SOUNDTOUCH_PREVENT_CLICK_AT_RATE_CROSSOVER defined because anti-alias
  649. filter cause slight click if the rate change crosses zero during
  650. processing</li>
  651. <li>Added script for building SoundTouchDll dynamic-link-library for GNU platforms</li>
  652. <li>Rewrote Beats-per-Minute analysis algorithm for more reliable BPM detection</li>
  653. <li>Added BPM functions to SoundTouchDll API</li>
  654. <li>Migrated Visual Studio project files to MSVC 201x format</li>
  655. <li>Replaced function parameter value asserts with runtime exceptions</li>
  656. <li>Code maintenance & style cleanup</li>
  657. </ul>
  658. <p><b>2.0:</b></p>
  659. <ul>
  660. <li>Added functions to get initial processing latency, duration ratio between the original input and processed
  661. output tracks, and clarified reporting of input/output batch sizes</li>
  662. <li>Fixed issue that added brief sequence of silence to beginning of output audio</li>
  663. <li>Adjusted algorithm parameters to reduce reverberating effect at tempo slowdown</li>
  664. <li>Bugfix: Fixed a glitch that could cause negative array indexing in quick seek algorithm</li>
  665. <li>Bugfix: flush() didn't properly flush final samples from the pipeline on 2nd time in case that soundtouch
  666. object instance was recycled and used for processing a second audio stream.</li>
  667. <li>Bugfix: Pi value had incorrect 9th/10th decimals</li>
  668. <li>Added C# example application that uses SoundTouch dll library for processing MP3 files</li>
  669. </ul>
  670. <p><b>1.9.2:</b></p>
  671. <ul>
  672. <li>Fix in GNU package configuration</li>
  673. </ul>
  674. <p><b>1.9.1:</b></p>
  675. <ul>
  676. <li>Improved SoundTouch::flush() function so that it returns precisely the desired amount of samples for exact
  677. output duration control</li>
  678. <li>Redesigned quickseek algorithm for improved sound quality when using the quickseek mode. The new quickseek
  679. algorithm can find 99% as good results as the
  680. default full-scan mode, while the quickseek algorithm is remarkable less
  681. CPU intensive.</li>
  682. <li>Added adaptive integer divider scaling for improved sound quality when using integer processing algorithm
  683. </li>
  684. </ul>
  685. <p><b>1.9:</b></p>
  686. <ul>
  687. <li>Added support for parallel computation support via OpenMP primitives for better performance in multicore
  688. systems.
  689. Benchmarks show that achieved parallel processing speedup improvement
  690. typically range from +30% (x86 dual-core) to +180% (ARM quad-core). The
  691. OpenMP optimizations are disabled by default, see OpenMP notes above in this
  692. readme file how to enabled these optimizations.</li>
  693. <li>Android: Added support for Android devices featuring X86 and MIPS CPUs,
  694. in addition to ARM CPUs.</li>
  695. <li>Android: More versatile Android example application that processes WAV
  696. audio files with SoundTouch library</li>
  697. <li>Replaced Windows-like 'BOOL' types with native 'bool'</li>
  698. <li>Changed documentation token to "dist_doc_DATA" in Makefile.am file</li>
  699. <li>Miscellaneous small fixes and improvements</li>
  700. </ul>
  701. <p><b>1.8.0:</b></p>
  702. <ul>
  703. <li>Added support for multi-channel audio processing</li>
  704. <li>Added support for <b>cubic</b> and <b>shannon</b> interpolation for rate and pitch shift effects besides
  705. the original <b>linear</b> interpolation, to reduce aliasing at high frequencies due to interpolation.
  706. Cubic interpolation is used as default for floating point processing, and linear interpolation for integer
  707. processing.</li>
  708. <li>Fixed bug in anti-alias filtering that limited stop-band attenuation to -10 dB instead of <-50dB, and
  709. increased filter length from 32 to 64 taps to further reduce aliasing due to frequency folding.</li>
  710. <li>Performance improvements in cross-correlation algorithm</li>
  711. <li>Other bug and compatibility fixes</li>
  712. </ul>
  713. <p><b>1.7.1:</b></p>
  714. <ul>
  715. <li>Added files for Android compilation
  716. </ul>
  717. <p><b>1.7.0:</b></p>
  718. <ul>
  719. <li>Sound quality improvements/li>
  720. <li>Improved flush() to adjust output sound stream duration to match better with
  721. ideal duration</li>
  722. <li>Rewrote x86 cpu feature check to resolve compatibility problems</li>
  723. <li>Configure script automatically checks if CPU supports mmx & sse compatibility for GNU platform, and
  724. the script support now "--enable-x86-optimizations" switch to allow disabling x86-specific optimizations.</li>
  725. <li>Revised #define conditions for 32bit/64bit compatibility</li>
  726. <li>gnu autoconf/automake script compatibility fixes</li>
  727. <li>Tuned beat-per-minute detection algorithm</li>
  728. </ul>
  729. <p><b>1.6.0:</b></p>
  730. <ul>
  731. <li> Added automatic cutoff threshold adaptation to beat detection
  732. routine to better adapt BPM calculation to different types of music</li>
  733. <li> Retired 3DNow! optimization support as 3DNow! is nowadays
  734. obsoleted and assembler code is nuisance to maintain</li>
  735. <li>Retired "configure" file from source code package due to
  736. autoconf/automake versio conflicts, so that it is from now on to be
  737. generated by invoking "boostrap" script that uses locally available
  738. toolchain version for generating the "configure" file</li>
  739. <li>Resolved namespace/label naming conflicts with other libraries by
  740. replacing global labels such as INTEGER_SAMPLES with more specific
  741. SOUNDTOUCH_INTEGER_SAMPLES etc.<br>
  742. </li>
  743. <li>Updated windows build scripts &amp; project files for Visual
  744. Studio 2008 support</li>
  745. <li> Updated SoundTouch.dll API for .NET compatibility</li>
  746. <li> Added API for querying nominal processing input &amp; output
  747. sample batch sizes</li>
  748. </ul>
  749. <p><strong>1.5.0:</strong></p>
  750. <ul>
  751. <li> Added normalization to correlation calculation and improvement
  752. automatic seek/sequence parameter calculation to improve sound quality</li>
  753. <li> Bugfixes:
  754. <ul>
  755. <li> Fixed negative array indexing in quick seek algorithm</li>
  756. <li> FIR autoalias filter running too far in processing buffer</li>
  757. <li> Check against zero sample count in rate transposing</li>
  758. <li> Fix for x86-64 support: Removed pop/push instructions from
  759. the cpu detection algorithm.</li>
  760. <li> Check against empty buffers in FIFOSampleBuffer</li>
  761. <li> Other minor fixes &amp; code cleanup</li>
  762. </ul>
  763. </li>
  764. <li> Fixes in compilation scripts for non-Intel platforms</li>
  765. <li> Added Dynamic-Link-Library (DLL) version of SoundTouch library
  766. build, provided with Delphi/Pascal wrapper for calling the dll routines
  767. </li>
  768. <li> Added #define PREVENT_CLICK_AT_RATE_CROSSOVER that prevents a
  769. click artifact when crossing the nominal pitch from either positive to
  770. negative side or vice versa</li>
  771. </ul>
  772. <p><strong>1.4.1:</strong></p>
  773. <ul>
  774. <li> Fixed a buffer overflow bug in BPM detect algorithm routines if
  775. processing more than 2048 samples at one call</li>
  776. </ul>
  777. <p><strong>1.4.0:</strong></p>
  778. <ul>
  779. <li> Improved sound quality by automatic calculation of time stretch
  780. algorithm processing parameters according to tempo setting</li>
  781. <li> Moved BPM detection routines from SoundStretch application into
  782. SoundTouch library</li>
  783. <li> Bugfixes: Usage of uninitialied variables, GNU build scripts,
  784. compiler errors due to 'const' keyword mismatch.</li>
  785. <li> Source code cleanup</li>
  786. </ul>
  787. <p><strong>1.3.1: </strong> </p>
  788. <ul>
  789. <li> Changed static class declaration to GCC 4.x compiler compatible
  790. syntax.</li>
  791. <li> Enabled MMX/SSE-optimized routines also for GCC compilers.
  792. Earlier the MMX/SSE-optimized routines were written in
  793. compiler-specific inline assembler, now these routines are migrated to
  794. use compiler intrinsic syntax which allows compiling the same
  795. MMX/SSE-optimized source code with both Visual C++ and GCC compilers.</li>
  796. <li> Set floating point as the default sample format and added switch
  797. to the GNU configure script for selecting the other sample format.</li>
  798. </ul>
  799. <p><strong>1.3.0: </strong> </p>
  800. <ul>
  801. <li> Fixed tempo routine output duration inaccuracy due to rounding
  802. error</li>
  803. <li> Implemented separate processing routines for integer and
  804. floating arithmetic to allow improvements to floating point routines
  805. (earlier used algorithms mostly optimized for integer arithmetic also
  806. for floating point samples)</li>
  807. <li> Fixed a bug that distorts sound if sample rate changes during
  808. the sound stream</li>
  809. <li> Fixed a memory leak that appeared in MMX/SSE/3DNow! optimized
  810. routines</li>
  811. <li> Reduced redundant code pieces in MMX/SSE/3DNow! optimized
  812. routines vs. the standard C routines.</li>
  813. <li> MMX routine incompatibility with new gcc compiler versions</li>
  814. <li> Other miscellaneous bug fixes</li>
  815. </ul>
  816. <p><strong>1.2.1: </strong> </p>
  817. <ul>
  818. <li> Added automake/autoconf scripts for GNU platforms (in courtesy
  819. of David Durham)</li>
  820. <li> Fixed SCALE overflow bug in rate transposer routine.</li>
  821. <li> Fixed 64bit address space bugs.</li>
  822. <li> Created a 'soundtouch' namespace for SAMPLETYPE definitions.</li>
  823. </ul>
  824. <p><strong>1.2.0: </strong> </p>
  825. <ul>
  826. <li> Added support for 32bit floating point sample data type with
  827. SSE/3DNow! optimizations for Win32 platform (SSE/3DNow! optimizations
  828. currently not supported in GCC environment)</li>
  829. <li> Replaced 'make-gcc' script for GNU environment by master
  830. Makefile</li>
  831. <li> Added time-stretch routine configurability to SoundTouch main
  832. class</li>
  833. <li> Bugfixes</li>
  834. </ul>
  835. <p><strong>1.1.1: </strong> </p>
  836. <ul>
  837. <li> Moved SoundTouch under lesser GPL license (LGPL). This allows
  838. using SoundTouch library in programs that aren't released under GPL
  839. license.</li>
  840. <li> Changed MMX routine organiation so that MMX optimized routines
  841. are now implemented in classes that are derived from the basic classes
  842. having the standard non-mmx routines.</li>
  843. <li> MMX routines to support gcc version 3.</li>
  844. <li> Replaced windows makefiles by script using the .dsw files</li>
  845. </ul>
  846. <p><strong>1.0.1: </strong> </p>
  847. <ul>
  848. <li> "mmx_gcc.cpp": Added "using namespace std" and removed "return
  849. 0" from a function with void return value to fix compiler errors when
  850. compiling the library in Solaris environment.</li>
  851. <li> Moved file "FIFOSampleBuffer.h" to "include" directory to allow
  852. accessing the FIFOSampleBuffer class from external files.</li>
  853. </ul>
  854. <p><strong>1.0: </strong> </p>
  855. <ul>
  856. <li> Initial release</li>
  857. </ul>
  858. <h3>5.2. SoundStretch application Change History </h3>
  859. <p><b>1.9:</b></p>
  860. <ul>
  861. <li>Added support for WAV file 'fact' information chunk.</li>
  862. </ul>
  863. <p><b>1.7.0:</b></p>
  864. <ul>
  865. <li>Bugfixes in Wavfile: exception string formatting, avoid getLengthMs() integer
  866. precision overflow, support WAV files using 24/32bit sample format.</li>
  867. </ul>
  868. <p><b>1.5.0:</b></p>
  869. <ul>
  870. <li> Added "-speech" switch to activate algorithm parameters more
  871. suitable for speech processing than the default parameters tuned for
  872. music processing.</li>
  873. </ul>
  874. <p><strong>1.4.0:</strong></p>
  875. <ul>
  876. <li> Moved BPM detection routines from SoundStretch application into
  877. SoundTouch library</li>
  878. <li> Allow using standard input/output pipes as audio processing
  879. input/output streams</li>
  880. </ul>
  881. <p><strong>1.3.0:</strong></p>
  882. <ul>
  883. <li> Simplified accessing WAV files with floating point sample
  884. format.</li>
  885. </ul>
  886. <p><strong>1.2.1: </strong> </p>
  887. <ul>
  888. <li> Fixed 64bit address space bugs.</li>
  889. </ul>
  890. <p><strong>1.2.0: </strong> </p>
  891. <ul>
  892. <li> Added support for 32bit floating point sample data type</li>
  893. <li> Restructured the BPM routines into separate library</li>
  894. <li> Fixed big-endian conversion bugs in WAV file routines (hopefully
  895. :)</li>
  896. </ul>
  897. <p><strong>1.1.1: </strong> </p>
  898. <ul>
  899. <li> Fixed bugs in WAV file reading &amp; added byte-order conversion
  900. for big-endian processors.</li>
  901. <li> Moved SoundStretch source code under 'example' directory to
  902. highlight difference from SoundTouch stuff.</li>
  903. <li> Replaced windows makefiles by script using the .dsw files</li>
  904. <li> Output file name isn't required if output isn't desired (e.g. if
  905. using the switch '-bpm' in plain format only)</li>
  906. </ul>
  907. <p><strong>1.1:</strong></p>
  908. <ul>
  909. <li> Fixed "Release" settings in Microsoft Visual C++ project file
  910. (.dsp)</li>
  911. <li> Added beats-per-minute (BPM) detection routine and command-line
  912. switch "-bpm"</li>
  913. </ul>
  914. <p><strong>1.01: </strong> </p>
  915. <ul>
  916. <li> Initial release</li>
  917. </ul>
  918. <hr>
  919. <h2>6. Acknowledgements </h2>
  920. <p>Kudos for these people who have contributed to development or
  921. submitted bugfixes:</p>
  922. <ul>
  923. <li> Arthur A</li>
  924. <li> Paul Adenot</li>
  925. <li> Richard Ash</li>
  926. <li> Stanislav Brabec</li>
  927. <li> Christian Budde</li>
  928. <li> Jamie Bullock</li>
  929. <li> Chris Bryan</li>
  930. <li> Jacek Caban</li>
  931. <li> Marketa Calabkova</li>
  932. <li> Brian Cameron</li>
  933. <li> Jason Champion</li>
  934. <li> Giuseppe Cigala</li>
  935. <li> David Clark</li>
  936. <li> Patrick Colis</li>
  937. <li> Miquel Colon</li>
  938. <li> Jim Credland</li>
  939. <li> Sandro Cumerlato</li>
  940. <li> Gerry Fan</li>
  941. <li> Justin Frankel</li>
  942. <li> Masa H.</li>
  943. <li> Jason Garland</li>
  944. <li> Takashi Iwai</li>
  945. <li> Thomas Klausner</li>
  946. <li> Lu Zhihe</li>
  947. <li> Luzpaz</li>
  948. <li> Tony Mechelynck </li>
  949. <li> Mathias M&ouml;hl</li>
  950. <li> Yuval Naveh</li>
  951. <li> Mats Palmgren </li>
  952. <li> Chandni Patel</li>
  953. <li> Paulo Pizarro</li>
  954. <li> Andrey Ponomarenko</li>
  955. <li> Blaise Potard</li>
  956. <li> Michael Pruett</li>
  957. <li> Rajeev Puran</li>
  958. <li> RJ Ryan</li>
  959. <li> John Sheehy</li>
  960. <li> Tim Shuttleworth</li>
  961. <li> Albert Sirvent</li>
  962. <li> Tyson Smith</li>
  963. <li> John Stumpo</li>
  964. <li> Mario di Vece</li>
  965. <li> Rémi Verschelde</li>
  966. <li> Katja Vetter</li>
  967. <li> Wu Q.</li>
  968. </ul>
  969. <p>Moral greetings to all other contributors and users also!</p>
  970. <hr>
  971. <h2>7. LICENSE </h2>
  972. <p>SoundTouch audio processing library<br>
  973. Copyright (c) Olli Parviainen</p>
  974. <p>This library is free software; you can redistribute it and/or modify
  975. it under the terms of the GNU Lesser General Public License version 2.1
  976. as published by the Free Software Foundation.</p>
  977. <p>This library is distributed in the hope that it will be useful, but
  978. WITHOUT ANY WARRANTY; without even the implied warranty of
  979. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser
  980. General Public License for more details.</p>
  981. <p>You should have received a copy of the GNU Lesser General Public
  982. License along with this library; if not, write to the Free Software
  983. Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA</p>
  984. <p>---</p>
  985. <p>commercial license alternative also available, contact author for details.</p>
  986. <hr>
  987. </body>
  988. </html>