123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233 |
- static void hmac_sha256(const byte *Key,size_t KeyLength,const byte *Data,
- size_t DataLength,byte *ResDigest,
- sha256_context *ICtxOpt,bool *SetIOpt,
- sha256_context *RCtxOpt,bool *SetROpt)
- {
- const size_t Sha256BlockSize=64; // As defined in RFC 4868.
- byte KeyHash[SHA256_DIGEST_SIZE];
- if (KeyLength > Sha256BlockSize) // Convert longer keys to key hash.
- {
- sha256_context KCtx;
- sha256_init(&KCtx);
- sha256_process(&KCtx, Key, KeyLength);
- sha256_done(&KCtx, KeyHash);
- Key = KeyHash;
- KeyLength = SHA256_DIGEST_SIZE;
- }
- byte KeyBuf[Sha256BlockSize]; // Store the padded key here.
- sha256_context ICtx;
- if (ICtxOpt!=NULL && *SetIOpt)
- ICtx=*ICtxOpt; // Use already calculated first block context.
- else
- {
- // This calculation is the same for all iterations with same password.
- // So for PBKDF2 we can calculate it only for first block and then reuse
- // to improve performance.
- for (size_t I = 0; I < KeyLength; I++) // Use 0x36 padding for inner digest.
- KeyBuf[I] = Key[I] ^ 0x36;
- for (size_t I = KeyLength; I < Sha256BlockSize; I++)
- KeyBuf[I] = 0x36;
- sha256_init(&ICtx);
- sha256_process(&ICtx, KeyBuf, Sha256BlockSize); // Hash padded key.
- }
- if (ICtxOpt!=NULL && !*SetIOpt) // Store constant context for further reuse.
- {
- *ICtxOpt=ICtx;
- *SetIOpt=true;
- }
- sha256_process(&ICtx, Data, DataLength); // Hash data.
- byte IDig[SHA256_DIGEST_SIZE]; // Internal digest for padded key and data.
- sha256_done(&ICtx, IDig);
- sha256_context RCtx;
- if (RCtxOpt!=NULL && *SetROpt)
- RCtx=*RCtxOpt; // Use already calculated first block context.
- else
- {
- // This calculation is the same for all iterations with same password.
- // So for PBKDF2 we can calculate it only for first block and then reuse
- // to improve performance.
- for (size_t I = 0; I < KeyLength; I++) // Use 0x5c for outer key padding.
- KeyBuf[I] = Key[I] ^ 0x5c;
- for (size_t I = KeyLength; I < Sha256BlockSize; I++)
- KeyBuf[I] = 0x5c;
- sha256_init(&RCtx);
- sha256_process(&RCtx, KeyBuf, Sha256BlockSize); // Hash padded key.
- }
- if (RCtxOpt!=NULL && !*SetROpt) // Store constant context for further reuse.
- {
- *RCtxOpt=RCtx;
- *SetROpt=true;
- }
- sha256_process(&RCtx, IDig, SHA256_DIGEST_SIZE); // Hash internal digest.
- sha256_done(&RCtx, ResDigest);
- }
- // PBKDF2 for 32 byte key length. We generate the key for specified number
- // of iteration count also as two supplementary values (key for checksums
- // and password verification) for iterations+16 and iterations+32.
- void pbkdf2(const byte *Pwd, size_t PwdLength,
- const byte *Salt, size_t SaltLength,
- byte *Key, byte *V1, byte *V2, uint Count)
- {
- const size_t MaxSalt=64;
- byte SaltData[MaxSalt+4];
- memcpy(SaltData, Salt, Min(SaltLength,MaxSalt));
- SaltData[SaltLength + 0] = 0; // Salt concatenated to 1.
- SaltData[SaltLength + 1] = 0;
- SaltData[SaltLength + 2] = 0;
- SaltData[SaltLength + 3] = 1;
- // First iteration: HMAC of password, salt and block index (1).
- byte U1[SHA256_DIGEST_SIZE];
- hmac_sha256(Pwd, PwdLength, SaltData, SaltLength + 4, U1, NULL, NULL, NULL, NULL);
- byte Fn[SHA256_DIGEST_SIZE]; // Current function value.
- memcpy(Fn, U1, sizeof(Fn)); // Function at first iteration.
- uint CurCount[] = { Count-1, 16, 16 };
- byte *CurValue[] = { Key , V1, V2 };
-
- sha256_context ICtxOpt,RCtxOpt;
- bool SetIOpt=false,SetROpt=false;
-
- byte U2[SHA256_DIGEST_SIZE];
- for (uint I = 0; I < 3; I++) // For output key and 2 supplementary values.
- {
- for (uint J = 0; J < CurCount[I]; J++)
- {
- // U2 = PRF (P, U1).
- hmac_sha256(Pwd, PwdLength, U1, sizeof(U1), U2, &ICtxOpt, &SetIOpt, &RCtxOpt, &SetROpt);
- memcpy(U1, U2, sizeof(U1));
- for (uint K = 0; K < sizeof(Fn); K++) // Function ^= U.
- Fn[K] ^= U1[K];
- }
- memcpy(CurValue[I], Fn, SHA256_DIGEST_SIZE);
- }
- cleandata(SaltData, sizeof(SaltData));
- cleandata(Fn, sizeof(Fn));
- cleandata(U1, sizeof(U1));
- cleandata(U2, sizeof(U2));
- }
- void CryptData::SetKey50(bool Encrypt,SecPassword *Password,const wchar *PwdW,
- const byte *Salt,const byte *InitV,uint Lg2Cnt,byte *HashKey,
- byte *PswCheck)
- {
- if (Lg2Cnt>CRYPT5_KDF_LG2_COUNT_MAX)
- return;
- byte Key[32],PswCheckValue[SHA256_DIGEST_SIZE],HashKeyValue[SHA256_DIGEST_SIZE];
- bool Found=false;
- for (uint I=0;I<ASIZE(KDF5Cache);I++)
- {
- KDF5CacheItem *Item=KDF5Cache+I;
- if (Item->Lg2Count==Lg2Cnt && Item->Pwd==*Password &&
- memcmp(Item->Salt,Salt,SIZE_SALT50)==0)
- {
- memcpy(Key,Item->Key,sizeof(Key));
- SecHideData(Key,sizeof(Key),false,false);
- memcpy(PswCheckValue,Item->PswCheckValue,sizeof(PswCheckValue));
- memcpy(HashKeyValue,Item->HashKeyValue,sizeof(HashKeyValue));
- Found=true;
- break;
- }
- }
- if (!Found)
- {
- char PwdUtf[MAXPASSWORD*4];
- WideToUtf(PwdW,PwdUtf,ASIZE(PwdUtf));
-
- pbkdf2((byte *)PwdUtf,strlen(PwdUtf),Salt,SIZE_SALT50,Key,HashKeyValue,PswCheckValue,(1<<Lg2Cnt));
- cleandata(PwdUtf,sizeof(PwdUtf));
- KDF5CacheItem *Item=KDF5Cache+(KDF5CachePos++ % ASIZE(KDF5Cache));
- Item->Lg2Count=Lg2Cnt;
- Item->Pwd=*Password;
- memcpy(Item->Salt,Salt,SIZE_SALT50);
- memcpy(Item->Key,Key,sizeof(Item->Key));
- memcpy(Item->PswCheckValue,PswCheckValue,sizeof(PswCheckValue));
- memcpy(Item->HashKeyValue,HashKeyValue,sizeof(HashKeyValue));
- SecHideData(Item->Key,sizeof(Item->Key),true,false);
- }
- if (HashKey!=NULL)
- memcpy(HashKey,HashKeyValue,SHA256_DIGEST_SIZE);
- if (PswCheck!=NULL)
- {
- memset(PswCheck,0,SIZE_PSWCHECK);
- for (uint I=0;I<SHA256_DIGEST_SIZE;I++)
- PswCheck[I%SIZE_PSWCHECK]^=PswCheckValue[I];
- cleandata(PswCheckValue,sizeof(PswCheckValue));
- }
- // NULL initialization vector is possible if we only need the password
- // check value for archive encryption header.
- if (InitV!=NULL)
- rin.Init(Encrypt, Key, 256, InitV);
- cleandata(Key,sizeof(Key));
- }
- void ConvertHashToMAC(HashValue *Value,byte *Key)
- {
- if (Value->Type==HASH_CRC32)
- {
- byte RawCRC[4];
- RawPut4(Value->CRC32,RawCRC);
- byte Digest[SHA256_DIGEST_SIZE];
- hmac_sha256(Key,SHA256_DIGEST_SIZE,RawCRC,sizeof(RawCRC),Digest,NULL,NULL,NULL,NULL);
- Value->CRC32=0;
- for (uint I=0;I<ASIZE(Digest);I++)
- Value->CRC32^=Digest[I] << ((I & 3) * 8);
- }
- if (Value->Type==HASH_BLAKE2)
- {
- byte Digest[BLAKE2_DIGEST_SIZE];
- hmac_sha256(Key,BLAKE2_DIGEST_SIZE,Value->Digest,sizeof(Value->Digest),Digest,NULL,NULL,NULL,NULL);
- memcpy(Value->Digest,Digest,sizeof(Value->Digest));
- }
- }
- #if 0
- static void TestPBKDF2();
- struct TestKDF {TestKDF() {TestPBKDF2();exit(0);}} GlobalTestKDF;
- void TestPBKDF2() // Test PBKDF2 HMAC-SHA256
- {
- byte Key[32],V1[32],V2[32];
- pbkdf2((byte *)"password", 8, (byte *)"salt", 4, Key, V1, V2, 1);
- byte Res1[32]={0x12, 0x0f, 0xb6, 0xcf, 0xfc, 0xf8, 0xb3, 0x2c, 0x43, 0xe7, 0x22, 0x52, 0x56, 0xc4, 0xf8, 0x37, 0xa8, 0x65, 0x48, 0xc9, 0x2c, 0xcc, 0x35, 0x48, 0x08, 0x05, 0x98, 0x7c, 0xb7, 0x0b, 0xe1, 0x7b };
- mprintf(L"\nPBKDF2 test1: %s", memcmp(Key,Res1,32)==0 ? L"OK":L"Failed");
- pbkdf2((byte *)"password", 8, (byte *)"salt", 4, Key, V1, V2, 4096);
- byte Res2[32]={0xc5, 0xe4, 0x78, 0xd5, 0x92, 0x88, 0xc8, 0x41, 0xaa, 0x53, 0x0d, 0xb6, 0x84, 0x5c, 0x4c, 0x8d, 0x96, 0x28, 0x93, 0xa0, 0x01, 0xce, 0x4e, 0x11, 0xa4, 0x96, 0x38, 0x73, 0xaa, 0x98, 0x13, 0x4a };
- mprintf(L"\nPBKDF2 test2: %s", memcmp(Key,Res2,32)==0 ? L"OK":L"Failed");
- pbkdf2((byte *)"just some long string pretending to be a password", 49, (byte *)"salt, salt, salt, a lot of salt", 31, Key, V1, V2, 65536);
- byte Res3[32]={0x08, 0x0f, 0xa3, 0x1d, 0x42, 0x2d, 0xb0, 0x47, 0x83, 0x9b, 0xce, 0x3a, 0x3b, 0xce, 0x49, 0x51, 0xe2, 0x62, 0xb9, 0xff, 0x76, 0x2f, 0x57, 0xe9, 0xc4, 0x71, 0x96, 0xce, 0x4b, 0x6b, 0x6e, 0xbf};
- mprintf(L"\nPBKDF2 test3: %s", memcmp(Key,Res3,32)==0 ? L"OK":L"Failed");
- }
- #endif
|