123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523 |
- /**************************************************************************
- * This code is based on Szymon Stefanek public domain AES implementation *
- **************************************************************************/
- #include "rar.hpp"
- #ifdef USE_SSE
- #include <wmmintrin.h>
- #endif
- static byte S[256]=
- {
- 99, 124, 119, 123, 242, 107, 111, 197, 48, 1, 103, 43, 254, 215, 171, 118,
- 202, 130, 201, 125, 250, 89, 71, 240, 173, 212, 162, 175, 156, 164, 114, 192,
- 183, 253, 147, 38, 54, 63, 247, 204, 52, 165, 229, 241, 113, 216, 49, 21,
- 4, 199, 35, 195, 24, 150, 5, 154, 7, 18, 128, 226, 235, 39, 178, 117,
- 9, 131, 44, 26, 27, 110, 90, 160, 82, 59, 214, 179, 41, 227, 47, 132,
- 83, 209, 0, 237, 32, 252, 177, 91, 106, 203, 190, 57, 74, 76, 88, 207,
- 208, 239, 170, 251, 67, 77, 51, 133, 69, 249, 2, 127, 80, 60, 159, 168,
- 81, 163, 64, 143, 146, 157, 56, 245, 188, 182, 218, 33, 16, 255, 243, 210,
- 205, 12, 19, 236, 95, 151, 68, 23, 196, 167, 126, 61, 100, 93, 25, 115,
- 96, 129, 79, 220, 34, 42, 144, 136, 70, 238, 184, 20, 222, 94, 11, 219,
- 224, 50, 58, 10, 73, 6, 36, 92, 194, 211, 172, 98, 145, 149, 228, 121,
- 231, 200, 55, 109, 141, 213, 78, 169, 108, 86, 244, 234, 101, 122, 174, 8,
- 186, 120, 37, 46, 28, 166, 180, 198, 232, 221, 116, 31, 75, 189, 139, 138,
- 112, 62, 181, 102, 72, 3, 246, 14, 97, 53, 87, 185, 134, 193, 29, 158,
- 225, 248, 152, 17, 105, 217, 142, 148, 155, 30, 135, 233, 206, 85, 40, 223,
- 140, 161, 137, 13, 191, 230, 66, 104, 65, 153, 45, 15, 176, 84, 187, 22
- };
- static byte S5[256];
- // Round constants. 10 items are used by AES-128, 8 by AES-192, 7 by AES-256.
- static byte rcon[]={0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80,0x1b,0x36};
- static byte T1[256][4],T2[256][4],T3[256][4],T4[256][4];
- static byte T5[256][4],T6[256][4],T7[256][4],T8[256][4];
- static byte U1[256][4],U2[256][4],U3[256][4],U4[256][4];
- inline void Xor128(void *dest,const void *arg1,const void *arg2)
- {
- #ifdef ALLOW_MISALIGNED
- ((uint32*)dest)[0]=((uint32*)arg1)[0]^((uint32*)arg2)[0];
- ((uint32*)dest)[1]=((uint32*)arg1)[1]^((uint32*)arg2)[1];
- ((uint32*)dest)[2]=((uint32*)arg1)[2]^((uint32*)arg2)[2];
- ((uint32*)dest)[3]=((uint32*)arg1)[3]^((uint32*)arg2)[3];
- #else
- for (int I=0;I<16;I++)
- ((byte*)dest)[I]=((byte*)arg1)[I]^((byte*)arg2)[I];
- #endif
- }
- inline void Xor128(byte *dest,const byte *arg1,const byte *arg2,
- const byte *arg3,const byte *arg4)
- {
- #ifdef ALLOW_MISALIGNED
- (*(uint32*)dest)=(*(uint32*)arg1)^(*(uint32*)arg2)^(*(uint32*)arg3)^(*(uint32*)arg4);
- #else
- for (int I=0;I<4;I++)
- dest[I]=arg1[I]^arg2[I]^arg3[I]^arg4[I];
- #endif
- }
- inline void Copy128(byte *dest,const byte *src)
- {
- #ifdef ALLOW_MISALIGNED
- ((uint32*)dest)[0]=((uint32*)src)[0];
- ((uint32*)dest)[1]=((uint32*)src)[1];
- ((uint32*)dest)[2]=((uint32*)src)[2];
- ((uint32*)dest)[3]=((uint32*)src)[3];
- #else
- for (int I=0;I<16;I++)
- dest[I]=src[I];
- #endif
- }
- //////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- // API
- //////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- Rijndael::Rijndael()
- {
- if (S5[0]==0)
- GenerateTables();
- CBCMode = true; // Always true for RAR.
- }
- void Rijndael::Init(bool Encrypt,const byte *key,uint keyLen,const byte * initVector)
- {
- #ifdef USE_SSE
- // Check SSE here instead of constructor, so if object is a part of some
- // structure memset'ed before use, this variable is not lost.
- int CPUInfo[4];
- __cpuid(CPUInfo, 0x80000000); // Get the maximum supported cpuid function.
- if ((CPUInfo[0] & 0x7fffffff)>=1)
- {
- __cpuid(CPUInfo, 1);
- AES_NI=(CPUInfo[2] & 0x2000000)!=0;
- }
- else
- AES_NI=false;
- #endif
- // Other developers asked us to initialize it to suppress "may be used
- // uninitialized" warning in code below in some compilers.
- uint uKeyLenInBytes=0;
- switch(keyLen)
- {
- case 128:
- uKeyLenInBytes = 16;
- m_uRounds = 10;
- break;
- case 192:
- uKeyLenInBytes = 24;
- m_uRounds = 12;
- break;
- case 256:
- uKeyLenInBytes = 32;
- m_uRounds = 14;
- break;
- }
- byte keyMatrix[_MAX_KEY_COLUMNS][4];
- for(uint i = 0; i < uKeyLenInBytes; i++)
- keyMatrix[i >> 2][i & 3] = key[i];
- if (initVector==NULL)
- memset(m_initVector, 0, sizeof(m_initVector));
- else
- for(int i = 0; i < MAX_IV_SIZE; i++)
- m_initVector[i] = initVector[i];
- keySched(keyMatrix);
- if(!Encrypt)
- keyEncToDec();
- }
- void Rijndael::blockEncrypt(const byte *input,size_t inputLen,byte *outBuffer)
- {
- if (inputLen <= 0)
- return;
- size_t numBlocks = inputLen/16;
- #ifdef USE_SSE
- if (AES_NI)
- {
- blockEncryptSSE(input,numBlocks,outBuffer);
- return;
- }
- #endif
-
- byte *prevBlock = m_initVector;
- for(size_t i = numBlocks;i > 0;i--)
- {
- byte block[16];
- if (CBCMode)
- Xor128(block,prevBlock,input);
- else
- Copy128(block,input);
- byte temp[4][4];
- Xor128(temp,block,m_expandedKey[0]);
- Xor128(outBuffer, T1[temp[0][0]],T2[temp[1][1]],T3[temp[2][2]],T4[temp[3][3]]);
- Xor128(outBuffer+4, T1[temp[1][0]],T2[temp[2][1]],T3[temp[3][2]],T4[temp[0][3]]);
- Xor128(outBuffer+8, T1[temp[2][0]],T2[temp[3][1]],T3[temp[0][2]],T4[temp[1][3]]);
- Xor128(outBuffer+12,T1[temp[3][0]],T2[temp[0][1]],T3[temp[1][2]],T4[temp[2][3]]);
- for(int r = 1; r < m_uRounds-1; r++)
- {
- Xor128(temp,outBuffer,m_expandedKey[r]);
- Xor128(outBuffer, T1[temp[0][0]],T2[temp[1][1]],T3[temp[2][2]],T4[temp[3][3]]);
- Xor128(outBuffer+4, T1[temp[1][0]],T2[temp[2][1]],T3[temp[3][2]],T4[temp[0][3]]);
- Xor128(outBuffer+8, T1[temp[2][0]],T2[temp[3][1]],T3[temp[0][2]],T4[temp[1][3]]);
- Xor128(outBuffer+12,T1[temp[3][0]],T2[temp[0][1]],T3[temp[1][2]],T4[temp[2][3]]);
- }
- Xor128(temp,outBuffer,m_expandedKey[m_uRounds-1]);
- outBuffer[ 0] = T1[temp[0][0]][1];
- outBuffer[ 1] = T1[temp[1][1]][1];
- outBuffer[ 2] = T1[temp[2][2]][1];
- outBuffer[ 3] = T1[temp[3][3]][1];
- outBuffer[ 4] = T1[temp[1][0]][1];
- outBuffer[ 5] = T1[temp[2][1]][1];
- outBuffer[ 6] = T1[temp[3][2]][1];
- outBuffer[ 7] = T1[temp[0][3]][1];
- outBuffer[ 8] = T1[temp[2][0]][1];
- outBuffer[ 9] = T1[temp[3][1]][1];
- outBuffer[10] = T1[temp[0][2]][1];
- outBuffer[11] = T1[temp[1][3]][1];
- outBuffer[12] = T1[temp[3][0]][1];
- outBuffer[13] = T1[temp[0][1]][1];
- outBuffer[14] = T1[temp[1][2]][1];
- outBuffer[15] = T1[temp[2][3]][1];
- Xor128(outBuffer,outBuffer,m_expandedKey[m_uRounds]);
- prevBlock=outBuffer;
- outBuffer += 16;
- input += 16;
- }
- Copy128(m_initVector,prevBlock);
- }
- #ifdef USE_SSE
- void Rijndael::blockEncryptSSE(const byte *input,size_t numBlocks,byte *outBuffer)
- {
- __m128i v = _mm_loadu_si128((__m128i*)m_initVector);
- __m128i *src=(__m128i*)input;
- __m128i *dest=(__m128i*)outBuffer;
- __m128i *rkey=(__m128i*)m_expandedKey;
- while (numBlocks > 0)
- {
- __m128i d = _mm_loadu_si128(src++);
- if (CBCMode)
- v = _mm_xor_si128(v, d);
- else
- v = d;
- __m128i r0 = _mm_loadu_si128(rkey);
- v = _mm_xor_si128(v, r0);
-
- for (int i=1; i<m_uRounds; i++)
- {
- __m128i ri = _mm_loadu_si128(rkey + i);
- v = _mm_aesenc_si128(v, ri);
- }
- __m128i rl = _mm_loadu_si128(rkey + m_uRounds);
- v = _mm_aesenclast_si128(v, rl);
- _mm_storeu_si128(dest++,v);
- numBlocks--;
- }
- _mm_storeu_si128((__m128i*)m_initVector,v);
- }
- #endif
-
- void Rijndael::blockDecrypt(const byte *input, size_t inputLen, byte *outBuffer)
- {
- if (inputLen <= 0)
- return;
- size_t numBlocks=inputLen/16;
- #ifdef USE_SSE
- if (AES_NI)
- {
- blockDecryptSSE(input,numBlocks,outBuffer);
- return;
- }
- #endif
- byte block[16], iv[4][4];
- memcpy(iv,m_initVector,16);
- for (size_t i = numBlocks; i > 0; i--)
- {
- byte temp[4][4];
-
- Xor128(temp,input,m_expandedKey[m_uRounds]);
- Xor128(block, T5[temp[0][0]],T6[temp[3][1]],T7[temp[2][2]],T8[temp[1][3]]);
- Xor128(block+4, T5[temp[1][0]],T6[temp[0][1]],T7[temp[3][2]],T8[temp[2][3]]);
- Xor128(block+8, T5[temp[2][0]],T6[temp[1][1]],T7[temp[0][2]],T8[temp[3][3]]);
- Xor128(block+12,T5[temp[3][0]],T6[temp[2][1]],T7[temp[1][2]],T8[temp[0][3]]);
- for(int r = m_uRounds-1; r > 1; r--)
- {
- Xor128(temp,block,m_expandedKey[r]);
- Xor128(block, T5[temp[0][0]],T6[temp[3][1]],T7[temp[2][2]],T8[temp[1][3]]);
- Xor128(block+4, T5[temp[1][0]],T6[temp[0][1]],T7[temp[3][2]],T8[temp[2][3]]);
- Xor128(block+8, T5[temp[2][0]],T6[temp[1][1]],T7[temp[0][2]],T8[temp[3][3]]);
- Xor128(block+12,T5[temp[3][0]],T6[temp[2][1]],T7[temp[1][2]],T8[temp[0][3]]);
- }
-
- Xor128(temp,block,m_expandedKey[1]);
- block[ 0] = S5[temp[0][0]];
- block[ 1] = S5[temp[3][1]];
- block[ 2] = S5[temp[2][2]];
- block[ 3] = S5[temp[1][3]];
- block[ 4] = S5[temp[1][0]];
- block[ 5] = S5[temp[0][1]];
- block[ 6] = S5[temp[3][2]];
- block[ 7] = S5[temp[2][3]];
- block[ 8] = S5[temp[2][0]];
- block[ 9] = S5[temp[1][1]];
- block[10] = S5[temp[0][2]];
- block[11] = S5[temp[3][3]];
- block[12] = S5[temp[3][0]];
- block[13] = S5[temp[2][1]];
- block[14] = S5[temp[1][2]];
- block[15] = S5[temp[0][3]];
- Xor128(block,block,m_expandedKey[0]);
- if (CBCMode)
- Xor128(block,block,iv);
- Copy128((byte*)iv,input);
- Copy128(outBuffer,block);
- input += 16;
- outBuffer += 16;
- }
- memcpy(m_initVector,iv,16);
- }
- #ifdef USE_SSE
- void Rijndael::blockDecryptSSE(const byte *input, size_t numBlocks, byte *outBuffer)
- {
- __m128i initVector = _mm_loadu_si128((__m128i*)m_initVector);
- __m128i *src=(__m128i*)input;
- __m128i *dest=(__m128i*)outBuffer;
- __m128i *rkey=(__m128i*)m_expandedKey;
- while (numBlocks > 0)
- {
- __m128i rl = _mm_loadu_si128(rkey + m_uRounds);
- __m128i d = _mm_loadu_si128(src++);
- __m128i v = _mm_xor_si128(rl, d);
- for (int i=m_uRounds-1; i>0; i--)
- {
- __m128i ri = _mm_loadu_si128(rkey + i);
- v = _mm_aesdec_si128(v, ri);
- }
-
- __m128i r0 = _mm_loadu_si128(rkey);
- v = _mm_aesdeclast_si128(v, r0);
- if (CBCMode)
- v = _mm_xor_si128(v, initVector);
- initVector = d;
- _mm_storeu_si128(dest++,v);
- numBlocks--;
- }
- _mm_storeu_si128((__m128i*)m_initVector,initVector);
- }
- #endif
- //////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- // ALGORITHM
- //////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- void Rijndael::keySched(byte key[_MAX_KEY_COLUMNS][4])
- {
- int j,rconpointer = 0;
- // Calculate the necessary round keys
- // The number of calculations depends on keyBits and blockBits
- int uKeyColumns = m_uRounds - 6;
- byte tempKey[_MAX_KEY_COLUMNS][4];
- // Copy the input key to the temporary key matrix
- memcpy(tempKey,key,sizeof(tempKey));
- int r = 0;
- int t = 0;
- // copy values into round key array
- for(j = 0;(j < uKeyColumns) && (r <= m_uRounds); )
- {
- for(;(j < uKeyColumns) && (t < 4); j++, t++)
- for (int k=0;k<4;k++)
- m_expandedKey[r][t][k]=tempKey[j][k];
- if(t == 4)
- {
- r++;
- t = 0;
- }
- }
-
- while(r <= m_uRounds)
- {
- tempKey[0][0] ^= S[tempKey[uKeyColumns-1][1]];
- tempKey[0][1] ^= S[tempKey[uKeyColumns-1][2]];
- tempKey[0][2] ^= S[tempKey[uKeyColumns-1][3]];
- tempKey[0][3] ^= S[tempKey[uKeyColumns-1][0]];
- tempKey[0][0] ^= rcon[rconpointer++];
- if (uKeyColumns != 8)
- for(j = 1; j < uKeyColumns; j++)
- for (int k=0;k<4;k++)
- tempKey[j][k] ^= tempKey[j-1][k];
- else
- {
- for(j = 1; j < uKeyColumns/2; j++)
- for (int k=0;k<4;k++)
- tempKey[j][k] ^= tempKey[j-1][k];
- tempKey[uKeyColumns/2][0] ^= S[tempKey[uKeyColumns/2 - 1][0]];
- tempKey[uKeyColumns/2][1] ^= S[tempKey[uKeyColumns/2 - 1][1]];
- tempKey[uKeyColumns/2][2] ^= S[tempKey[uKeyColumns/2 - 1][2]];
- tempKey[uKeyColumns/2][3] ^= S[tempKey[uKeyColumns/2 - 1][3]];
- for(j = uKeyColumns/2 + 1; j < uKeyColumns; j++)
- for (int k=0;k<4;k++)
- tempKey[j][k] ^= tempKey[j-1][k];
- }
- for(j = 0; (j < uKeyColumns) && (r <= m_uRounds); )
- {
- for(; (j < uKeyColumns) && (t < 4); j++, t++)
- for (int k=0;k<4;k++)
- m_expandedKey[r][t][k] = tempKey[j][k];
- if(t == 4)
- {
- r++;
- t = 0;
- }
- }
- }
- }
- void Rijndael::keyEncToDec()
- {
- for(int r = 1; r < m_uRounds; r++)
- {
- byte n_expandedKey[4][4];
- for (int i = 0; i < 4; i++)
- for (int j = 0; j < 4; j++)
- {
- byte *w=m_expandedKey[r][j];
- n_expandedKey[j][i]=U1[w[0]][i]^U2[w[1]][i]^U3[w[2]][i]^U4[w[3]][i];
- }
- memcpy(m_expandedKey[r],n_expandedKey,sizeof(m_expandedKey[0]));
- }
- }
- static byte gmul(byte a, byte b) // Galois field "peasant's algorithm" multiplication.
- {
- const byte poly=0x1b; // Lower byte of AES 0x11b irreducible polynomial.
- byte result = 0;
- while (b>0)
- {
- if ((b & 1) != 0)
- result ^= a;
- a = (a & 0x80) ? (a<<1)^poly : a<<1;
- b >>= 1;
- }
- return result;
- }
- // 2021-09-24: changed to slower and simpler code without interim tables.
- // It is still fast enough for our purpose.
- void Rijndael::GenerateTables()
- {
- for (int I=0;I<256;I++)
- S5[S[I]]=I;
- for (int I=0;I<256;I++)
- {
- byte s=S[I];
- T1[I][1]=T1[I][2]=T2[I][2]=T2[I][3]=T3[I][0]=T3[I][3]=T4[I][0]=T4[I][1]=s;
- T1[I][0]=T2[I][1]=T3[I][2]=T4[I][3]=gmul(s,2);
- T1[I][3]=T2[I][0]=T3[I][1]=T4[I][2]=gmul(s,3);
- byte b=S5[I];
- U1[b][3]=U2[b][0]=U3[b][1]=U4[b][2]=T5[I][3]=T6[I][0]=T7[I][1]=T8[I][2]=gmul(b,0xb);
- U1[b][1]=U2[b][2]=U3[b][3]=U4[b][0]=T5[I][1]=T6[I][2]=T7[I][3]=T8[I][0]=gmul(b,0x9);
- U1[b][2]=U2[b][3]=U3[b][0]=U4[b][1]=T5[I][2]=T6[I][3]=T7[I][0]=T8[I][1]=gmul(b,0xd);
- U1[b][0]=U2[b][1]=U3[b][2]=U4[b][3]=T5[I][0]=T6[I][1]=T7[I][2]=T8[I][3]=gmul(b,0xe);
- }
- }
- #if 0
- static void TestRijndael();
- struct TestRij {TestRij() {TestRijndael();exit(0);}} GlobalTestRij;
- // Test CBC encryption according to NIST 800-38A.
- void TestRijndael()
- {
- byte IV[16]={0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0a,0x0b,0x0c,0x0d,0x0e,0x0f};
- byte PT[64]={
- 0x6b,0xc1,0xbe,0xe2,0x2e,0x40,0x9f,0x96,0xe9,0x3d,0x7e,0x11,0x73,0x93,0x17,0x2a,
- 0xae,0x2d,0x8a,0x57,0x1e,0x03,0xac,0x9c,0x9e,0xb7,0x6f,0xac,0x45,0xaf,0x8e,0x51,
- 0x30,0xc8,0x1c,0x46,0xa3,0x5c,0xe4,0x11,0xe5,0xfb,0xc1,0x19,0x1a,0x0a,0x52,0xef,
- 0xf6,0x9f,0x24,0x45,0xdf,0x4f,0x9b,0x17,0xad,0x2b,0x41,0x7b,0xe6,0x6c,0x37,0x10,
- };
- byte Key128[16]={0x2b,0x7e,0x15,0x16,0x28,0xae,0xd2,0xa6,0xab,0xf7,0x15,0x88,0x09,0xcf,0x4f,0x3c};
- byte Chk128[16]={0x3f,0xf1,0xca,0xa1,0x68,0x1f,0xac,0x09,0x12,0x0e,0xca,0x30,0x75,0x86,0xe1,0xa7};
- byte Key192[24]={0x8e,0x73,0xb0,0xf7,0xda,0x0e,0x64,0x52,0xc8,0x10,0xf3,0x2b,0x80,0x90,0x79,0xe5,0x62,0xf8,0xea,0xd2,0x52,0x2c,0x6b,0x7b};
- byte Chk192[16]={0x08,0xb0,0xe2,0x79,0x88,0x59,0x88,0x81,0xd9,0x20,0xa9,0xe6,0x4f,0x56,0x15,0xcd};
- byte Key256[32]={0x60,0x3d,0xeb,0x10,0x15,0xca,0x71,0xbe,0x2b,0x73,0xae,0xf0,0x85,0x7d,0x77,0x81,0x1f,0x35,0x2c,0x07,0x3b,0x61,0x08,0xd7,0x2d,0x98,0x10,0xa3,0x09,0x14,0xdf,0xf4};
- byte Chk256[16]={0xb2,0xeb,0x05,0xe2,0xc3,0x9b,0xe9,0xfc,0xda,0x6c,0x19,0x07,0x8c,0x6a,0x9d,0x1b};
- byte *Key[3]={Key128,Key192,Key256};
- byte *Chk[3]={Chk128,Chk192,Chk256};
- Rijndael rij; // Declare outside of loop to test re-initialization.
- for (uint L=0;L<3;L++)
- {
- byte Out[16];
- wchar Str[sizeof(Out)*2+1];
- uint KeyLength=128+L*64;
- rij.Init(true,Key[L],KeyLength,IV);
- for (uint I=0;I<sizeof(PT);I+=16)
- rij.blockEncrypt(PT+I,16,Out);
- BinToHex(Chk[L],16,NULL,Str,ASIZE(Str));
- mprintf(L"\nAES-%d expected: %s",KeyLength,Str);
- BinToHex(Out,sizeof(Out),NULL,Str,ASIZE(Str));
- mprintf(L"\nAES-%d result: %s",KeyLength,Str);
- if (memcmp(Out,Chk[L],16)==0)
- mprintf(L" OK");
- else
- {
- mprintf(L" FAILED");
- getchar();
- }
- }
- }
- #endif
|