123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160 |
- #include "rar.hpp"
- #define Clean(D,S) {for (int I=0;I<(S);I++) (D)[I]=0;}
- void RSCoder::Init(int ParSize)
- {
- RSCoder::ParSize=ParSize; // Store the number of recovery volumes.
- FirstBlockDone=false;
- gfInit();
- pnInit();
- }
- // Initialize logarithms and exponents Galois field tables.
- void RSCoder::gfInit()
- {
- for (int I=0,J=1;I<MAXPAR;I++)
- {
- gfLog[J]=I;
- gfExp[I]=J;
- J<<=1;
- if (J > MAXPAR)
- J^=0x11D; // 0x11D field-generator polynomial (x^8+x^4+x^3+x^2+1).
- }
- for (int I=MAXPAR;I<MAXPOL;I++) // Avoid gfExp overflow check.
- gfExp[I]=gfExp[I-MAXPAR];
- }
- // Multiplication over Galois field.
- inline int RSCoder::gfMult(int a,int b)
- {
- return(a==0 || b == 0 ? 0:gfExp[gfLog[a]+gfLog[b]]);
- }
- // Create the generator polynomial g(x).
- // g(x)=(x-a)(x-a^2)(x-a^3)..(x-a^N)
- void RSCoder::pnInit()
- {
- int p2[MAXPAR+1]; // Currently calculated part of g(x).
- Clean(p2,ParSize);
- p2[0]=1; // Set p2 polynomial to 1.
- for (int I=1;I<=ParSize;I++)
- {
- int p1[MAXPAR+1]; // We use p1 as current (x+a^i) expression.
- Clean(p1,ParSize);
- p1[0]=gfExp[I];
- p1[1]=1; // Set p1 polynomial to x+a^i.
- // Multiply the already calucated part of g(x) to next (x+a^i).
- pnMult(p1,p2,GXPol);
- // p2=g(x).
- for (int J=0;J<ParSize;J++)
- p2[J]=GXPol[J];
- }
- }
- // Multiply polynomial 'p1' to 'p2' and store the result in 'r'.
- void RSCoder::pnMult(int *p1,int *p2,int *r)
- {
- Clean(r,ParSize);
- for (int I=0;I<ParSize;I++)
- if (p1[I]!=0)
- for(int J=0;J<ParSize-I;J++)
- r[I+J]^=gfMult(p1[I],p2[J]);
- }
- void RSCoder::Encode(byte *Data,int DataSize,byte *DestData)
- {
- int ShiftReg[MAXPAR+1]; // Linear Feedback Shift Register.
- Clean(ShiftReg,ParSize+1);
- for (int I=0;I<DataSize;I++)
- {
- int D=Data[I]^ShiftReg[ParSize-1];
- // Use g(x) to define feedback taps.
- for (int J=ParSize-1;J>0;J--)
- ShiftReg[J]=ShiftReg[J-1]^gfMult(GXPol[J],D);
- ShiftReg[0]=gfMult(GXPol[0],D);
- }
- for (int I=0;I<ParSize;I++)
- DestData[I]=ShiftReg[ParSize-I-1];
- }
- bool RSCoder::Decode(byte *Data,int DataSize,int *EraLoc,int EraSize)
- {
- int SynData[MAXPOL]; // Syndrome data.
- bool AllZeroes=true;
- for (int I=0;I<ParSize;I++)
- {
- int Sum=0;
- for (int J=0;J<DataSize;J++)
- Sum=Data[J]^gfMult(gfExp[I+1],Sum);
- if ((SynData[I]=Sum)!=0)
- AllZeroes=false;
- }
- // If all syndrome numbers are zero, message does not have errors.
- if (AllZeroes)
- return(true);
- if (!FirstBlockDone) // Do things which we need to do once for all data.
- {
- FirstBlockDone=true;
- // Calculate the error locator polynomial.
- Clean(ELPol,ParSize+1);
- ELPol[0]=1;
- for (int EraPos=0;EraPos<EraSize;EraPos++)
- for (int I=ParSize,M=gfExp[DataSize-EraLoc[EraPos]-1];I>0;I--)
- ELPol[I]^=gfMult(M,ELPol[I-1]);
- ErrCount=0;
- // Find roots of error locator polynomial.
- for (int Root=MAXPAR-DataSize;Root<MAXPAR+1;Root++)
- {
- int Sum=0;
- for (int B=0;B<ParSize+1;B++)
- Sum^=gfMult(gfExp[(B*Root)%MAXPAR],ELPol[B]);
- if (Sum==0) // Root found.
- {
- ErrorLocs[ErrCount]=MAXPAR-Root; // Location of error.
- // Calculate the denominator for every error location.
- Dnm[ErrCount]=0;
- for (int I=1;I<ParSize+1;I+=2)
- Dnm[ErrCount]^= gfMult(ELPol[I],gfExp[Root*(I-1)%MAXPAR]);
- ErrCount++;
- }
- }
- }
- int EEPol[MAXPOL]; // Error Evaluator Polynomial.
- pnMult(ELPol,SynData,EEPol);
- // If errors are present and their number is correctable.
- if ((ErrCount<=ParSize) && ErrCount>0)
- for (int I=0;I<ErrCount;I++)
- {
- int Loc=ErrorLocs[I],DLoc=MAXPAR-Loc,N=0;
- for (int J=0;J<ParSize;J++)
- N^=gfMult(EEPol[J],gfExp[DLoc*J%MAXPAR]);
- int DataPos=DataSize-Loc-1;
- // Perform bounds check and correct the data error.
- if (DataPos>=0 && DataPos<DataSize)
- Data[DataPos]^=gfMult(N,gfExp[MAXPAR-gfLog[Dnm[I]]]);
- }
- return(ErrCount<=ParSize); // Return true if success.
- }
|