1
0

sha1.cpp 6.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204
  1. #include "rar.hpp"
  2. /*
  3. SHA-1 in C
  4. By Steve Reid <[email protected]>
  5. 100% Public Domain
  6. */
  7. #ifndef SFX_MODULE
  8. #define SHA1_UNROLL
  9. #endif
  10. /* blk0() and blk() perform the initial expand. */
  11. /* I got the idea of expanding during the round function from SSLeay */
  12. #ifdef LITTLE_ENDIAN
  13. #define blk0(i) (block->l[i] = ByteSwap32(block->l[i]))
  14. #else
  15. #define blk0(i) block->l[i]
  16. #endif
  17. #define blk(i) (block->l[i&15] = rotl32(block->l[(i+13)&15]^block->l[(i+8)&15] \
  18. ^block->l[(i+2)&15]^block->l[i&15],1))
  19. /* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */
  20. #define R0(v,w,x,y,z,i) {z+=((w&(x^y))^y)+blk0(i)+0x5A827999+rotl32(v,5);w=rotl32(w,30);}
  21. #define R1(v,w,x,y,z,i) {z+=((w&(x^y))^y)+blk(i)+0x5A827999+rotl32(v,5);w=rotl32(w,30);}
  22. #define R2(v,w,x,y,z,i) {z+=(w^x^y)+blk(i)+0x6ED9EBA1+rotl32(v,5);w=rotl32(w,30);}
  23. #define R3(v,w,x,y,z,i) {z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rotl32(v,5);w=rotl32(w,30);}
  24. #define R4(v,w,x,y,z,i) {z+=(w^x^y)+blk(i)+0xCA62C1D6+rotl32(v,5);w=rotl32(w,30);}
  25. /* Hash a single 512-bit block. This is the core of the algorithm. */
  26. void SHA1Transform(uint32 state[5], uint32 workspace[16], const byte buffer[64], bool inplace)
  27. {
  28. uint32 a, b, c, d, e;
  29. union CHAR64LONG16
  30. {
  31. unsigned char c[64];
  32. uint32 l[16];
  33. } *block;
  34. if (inplace)
  35. block = (CHAR64LONG16*)buffer;
  36. else
  37. {
  38. block = (CHAR64LONG16*)workspace;
  39. memcpy(block, buffer, 64);
  40. }
  41. /* Copy context->state[] to working vars */
  42. a = state[0];
  43. b = state[1];
  44. c = state[2];
  45. d = state[3];
  46. e = state[4];
  47. #ifdef SHA1_UNROLL
  48. /* 4 rounds of 20 operations each. Loop unrolled. */
  49. R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
  50. R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
  51. R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
  52. R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
  53. R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
  54. R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
  55. R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
  56. R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
  57. R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
  58. R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
  59. R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
  60. R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
  61. R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
  62. R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
  63. R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
  64. R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
  65. R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
  66. R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
  67. R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
  68. R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
  69. #else
  70. for (uint I=0;;I+=5)
  71. {
  72. R0(a,b,c,d,e, I+0); if (I==15) break;
  73. R0(e,a,b,c,d, I+1); R0(d,e,a,b,c, I+2);
  74. R0(c,d,e,a,b, I+3); R0(b,c,d,e,a, I+4);
  75. }
  76. R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
  77. for (uint I=20;I<=35;I+=5)
  78. {
  79. R2(a,b,c,d,e,I+0); R2(e,a,b,c,d,I+1); R2(d,e,a,b,c,I+2);
  80. R2(c,d,e,a,b,I+3); R2(b,c,d,e,a,I+4);
  81. }
  82. for (uint I=40;I<=55;I+=5)
  83. {
  84. R3(a,b,c,d,e,I+0); R3(e,a,b,c,d,I+1); R3(d,e,a,b,c,I+2);
  85. R3(c,d,e,a,b,I+3); R3(b,c,d,e,a,I+4);
  86. }
  87. for (uint I=60;I<=75;I+=5)
  88. {
  89. R4(a,b,c,d,e,I+0); R4(e,a,b,c,d,I+1); R4(d,e,a,b,c,I+2);
  90. R4(c,d,e,a,b,I+3); R4(b,c,d,e,a,I+4);
  91. }
  92. #endif
  93. /* Add the working vars back into context.state[] */
  94. state[0] += a;
  95. state[1] += b;
  96. state[2] += c;
  97. state[3] += d;
  98. state[4] += e;
  99. }
  100. /* Initialize new context */
  101. void sha1_init(sha1_context* context)
  102. {
  103. context->count = 0;
  104. /* SHA1 initialization constants */
  105. context->state[0] = 0x67452301;
  106. context->state[1] = 0xEFCDAB89;
  107. context->state[2] = 0x98BADCFE;
  108. context->state[3] = 0x10325476;
  109. context->state[4] = 0xC3D2E1F0;
  110. }
  111. /* Run your data through this. */
  112. void sha1_process( sha1_context * context, const unsigned char * data, size_t len)
  113. {
  114. size_t i, j = (size_t)(context->count & 63);
  115. context->count += len;
  116. if ((j + len) > 63)
  117. {
  118. memcpy(context->buffer+j, data, (i = 64-j));
  119. uint32 workspace[16];
  120. SHA1Transform(context->state, workspace, context->buffer, true);
  121. for ( ; i + 63 < len; i += 64)
  122. SHA1Transform(context->state, workspace, data+i, false);
  123. j = 0;
  124. }
  125. else
  126. i = 0;
  127. if (len > i)
  128. memcpy(context->buffer+j, data+i, len - i);
  129. }
  130. void sha1_process_rar29(sha1_context *context, const unsigned char *data, size_t len)
  131. {
  132. size_t i, j = (size_t)(context->count & 63);
  133. context->count += len;
  134. if ((j + len) > 63)
  135. {
  136. memcpy(context->buffer+j, data, (i = 64-j));
  137. uint32 workspace[16];
  138. SHA1Transform(context->state, workspace, context->buffer, true);
  139. for ( ; i + 63 < len; i += 64)
  140. {
  141. SHA1Transform(context->state, workspace, data+i, false);
  142. for (uint k = 0; k < 16; k++)
  143. RawPut4(workspace[k],(void*)(data+i+k*4));
  144. }
  145. j = 0;
  146. }
  147. else
  148. i = 0;
  149. if (len > i)
  150. memcpy(context->buffer+j, data+i, len - i);
  151. }
  152. /* Add padding and return the message digest. */
  153. void sha1_done( sha1_context* context, uint32 digest[5])
  154. {
  155. uint32 workspace[16];
  156. uint64 BitLength = context->count * 8;
  157. uint BufPos = (uint)context->count & 0x3f;
  158. context->buffer[BufPos++] = 0x80; // Padding the message with "1" bit.
  159. if (BufPos!=56) // We need 56 bytes block followed by 8 byte length.
  160. {
  161. if (BufPos>56)
  162. {
  163. while (BufPos<64)
  164. context->buffer[BufPos++] = 0;
  165. BufPos=0;
  166. }
  167. if (BufPos==0)
  168. SHA1Transform(context->state, workspace, context->buffer, true);
  169. memset(context->buffer+BufPos,0,56-BufPos);
  170. }
  171. RawPutBE4((uint32)(BitLength>>32), context->buffer + 56);
  172. RawPutBE4((uint32)(BitLength), context->buffer + 60);
  173. SHA1Transform(context->state, workspace, context->buffer, true);
  174. for (uint i = 0; i < 5; i++)
  175. digest[i] = context->state[i];
  176. /* Wipe variables */
  177. sha1_init(context);
  178. }