123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339 |
- /*
- ** FFT and FHT routines
- ** Copyright 1988, 1993; Ron Mayer
- ** Copyright (c) 1999-2000 Takehiro Tominaga
- **
- ** fht(fz,n);
- ** Does a hartley transform of "n" points in the array "fz".
- **
- ** NOTE: This routine uses at least 2 patented algorithms, and may be
- ** under the restrictions of a bunch of different organizations.
- ** Although I wrote it completely myself; it is kind of a derivative
- ** of a routine I once authored and released under the GPL, so it
- ** may fall under the free software foundation's restrictions;
- ** it was worked on as a Stanford Univ project, so they claim
- ** some rights to it; it was further optimized at work here, so
- ** I think this company claims parts of it. The patents are
- ** held by R. Bracewell (the FHT algorithm) and O. Buneman (the
- ** trig generator), both at Stanford Univ.
- ** If it were up to me, I'd say go do whatever you want with it;
- ** but it would be polite to give credit to the following people
- ** if you use this anywhere:
- ** Euler - probable inventor of the fourier transform.
- ** Gauss - probable inventor of the FFT.
- ** Hartley - probable inventor of the hartley transform.
- ** Buneman - for a really cool trig generator
- ** Mayer(me) - for authoring this particular version and
- ** including all the optimizations in one package.
- ** Thanks,
- ** Ron Mayer; [email protected]
- ** and added some optimization by
- ** Mather - idea of using lookup table
- ** Takehiro - some dirty hack for speed up
- */
- /* $Id: fft.c,v 1.39 2017/09/06 15:07:29 robert Exp $ */
- #ifdef HAVE_CONFIG_H
- # include <config.h>
- #endif
- #include "lame.h"
- #include "machine.h"
- #include "encoder.h"
- #include "util.h"
- #include "fft.h"
- #include "vector/lame_intrin.h"
- #define TRI_SIZE (5-1) /* 1024 = 4**5 */
- /* fft.c */
- static const FLOAT costab[TRI_SIZE * 2] = {
- 9.238795325112867e-01, 3.826834323650898e-01,
- 9.951847266721969e-01, 9.801714032956060e-02,
- 9.996988186962042e-01, 2.454122852291229e-02,
- 9.999811752826011e-01, 6.135884649154475e-03
- };
- static void
- fht(FLOAT * fz, int n)
- {
- const FLOAT *tri = costab;
- int k4;
- FLOAT *fi, *gi;
- FLOAT const *fn;
- n <<= 1; /* to get BLKSIZE, because of 3DNow! ASM routine */
- fn = fz + n;
- k4 = 4;
- do {
- FLOAT s1, c1;
- int i, k1, k2, k3, kx;
- kx = k4 >> 1;
- k1 = k4;
- k2 = k4 << 1;
- k3 = k2 + k1;
- k4 = k2 << 1;
- fi = fz;
- gi = fi + kx;
- do {
- FLOAT f0, f1, f2, f3;
- f1 = fi[0] - fi[k1];
- f0 = fi[0] + fi[k1];
- f3 = fi[k2] - fi[k3];
- f2 = fi[k2] + fi[k3];
- fi[k2] = f0 - f2;
- fi[0] = f0 + f2;
- fi[k3] = f1 - f3;
- fi[k1] = f1 + f3;
- f1 = gi[0] - gi[k1];
- f0 = gi[0] + gi[k1];
- f3 = SQRT2 * gi[k3];
- f2 = SQRT2 * gi[k2];
- gi[k2] = f0 - f2;
- gi[0] = f0 + f2;
- gi[k3] = f1 - f3;
- gi[k1] = f1 + f3;
- gi += k4;
- fi += k4;
- } while (fi < fn);
- c1 = tri[0];
- s1 = tri[1];
- for (i = 1; i < kx; i++) {
- FLOAT c2, s2;
- c2 = 1 - (2 * s1) * s1;
- s2 = (2 * s1) * c1;
- fi = fz + i;
- gi = fz + k1 - i;
- do {
- FLOAT a, b, g0, f0, f1, g1, f2, g2, f3, g3;
- b = s2 * fi[k1] - c2 * gi[k1];
- a = c2 * fi[k1] + s2 * gi[k1];
- f1 = fi[0] - a;
- f0 = fi[0] + a;
- g1 = gi[0] - b;
- g0 = gi[0] + b;
- b = s2 * fi[k3] - c2 * gi[k3];
- a = c2 * fi[k3] + s2 * gi[k3];
- f3 = fi[k2] - a;
- f2 = fi[k2] + a;
- g3 = gi[k2] - b;
- g2 = gi[k2] + b;
- b = s1 * f2 - c1 * g3;
- a = c1 * f2 + s1 * g3;
- fi[k2] = f0 - a;
- fi[0] = f0 + a;
- gi[k3] = g1 - b;
- gi[k1] = g1 + b;
- b = c1 * g2 - s1 * f3;
- a = s1 * g2 + c1 * f3;
- gi[k2] = g0 - a;
- gi[0] = g0 + a;
- fi[k3] = f1 - b;
- fi[k1] = f1 + b;
- gi += k4;
- fi += k4;
- } while (fi < fn);
- c2 = c1;
- c1 = c2 * tri[0] - s1 * tri[1];
- s1 = c2 * tri[1] + s1 * tri[0];
- }
- tri += 2;
- } while (k4 < n);
- }
- static const unsigned char rv_tbl[] = {
- 0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0,
- 0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0,
- 0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8,
- 0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8,
- 0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4,
- 0x14, 0x94, 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4,
- 0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec,
- 0x1c, 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc,
- 0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2,
- 0x12, 0x92, 0x52, 0xd2, 0x32, 0xb2, 0x72, 0xf2,
- 0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0xea,
- 0x1a, 0x9a, 0x5a, 0xda, 0x3a, 0xba, 0x7a, 0xfa,
- 0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0xe6,
- 0x16, 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76, 0xf6,
- 0x0e, 0x8e, 0x4e, 0xce, 0x2e, 0xae, 0x6e, 0xee,
- 0x1e, 0x9e, 0x5e, 0xde, 0x3e, 0xbe, 0x7e, 0xfe
- };
- #define ch01(index) (buffer[chn][index])
- #define ml00(f) (window[i ] * f(i))
- #define ml10(f) (window[i + 0x200] * f(i + 0x200))
- #define ml20(f) (window[i + 0x100] * f(i + 0x100))
- #define ml30(f) (window[i + 0x300] * f(i + 0x300))
- #define ml01(f) (window[i + 0x001] * f(i + 0x001))
- #define ml11(f) (window[i + 0x201] * f(i + 0x201))
- #define ml21(f) (window[i + 0x101] * f(i + 0x101))
- #define ml31(f) (window[i + 0x301] * f(i + 0x301))
- #define ms00(f) (window_s[i ] * f(i + k))
- #define ms10(f) (window_s[0x7f - i] * f(i + k + 0x80))
- #define ms20(f) (window_s[i + 0x40] * f(i + k + 0x40))
- #define ms30(f) (window_s[0x3f - i] * f(i + k + 0xc0))
- #define ms01(f) (window_s[i + 0x01] * f(i + k + 0x01))
- #define ms11(f) (window_s[0x7e - i] * f(i + k + 0x81))
- #define ms21(f) (window_s[i + 0x41] * f(i + k + 0x41))
- #define ms31(f) (window_s[0x3e - i] * f(i + k + 0xc1))
- void
- fft_short(lame_internal_flags const *const gfc,
- FLOAT x_real[3][BLKSIZE_s], int chn, const sample_t *const buffer[2])
- {
- int i;
- int j;
- int b;
- #define window_s gfc->cd_psy->window_s
- #define window gfc->cd_psy->window
- for (b = 0; b < 3; b++) {
- FLOAT *x = &x_real[b][BLKSIZE_s / 2];
- short const k = (576 / 3) * (b + 1);
- j = BLKSIZE_s / 8 - 1;
- do {
- FLOAT f0, f1, f2, f3, w;
- i = rv_tbl[j << 2];
- f0 = ms00(ch01);
- w = ms10(ch01);
- f1 = f0 - w;
- f0 = f0 + w;
- f2 = ms20(ch01);
- w = ms30(ch01);
- f3 = f2 - w;
- f2 = f2 + w;
- x -= 4;
- x[0] = f0 + f2;
- x[2] = f0 - f2;
- x[1] = f1 + f3;
- x[3] = f1 - f3;
- f0 = ms01(ch01);
- w = ms11(ch01);
- f1 = f0 - w;
- f0 = f0 + w;
- f2 = ms21(ch01);
- w = ms31(ch01);
- f3 = f2 - w;
- f2 = f2 + w;
- x[BLKSIZE_s / 2 + 0] = f0 + f2;
- x[BLKSIZE_s / 2 + 2] = f0 - f2;
- x[BLKSIZE_s / 2 + 1] = f1 + f3;
- x[BLKSIZE_s / 2 + 3] = f1 - f3;
- } while (--j >= 0);
- #undef window
- #undef window_s
- gfc->fft_fht(x, BLKSIZE_s / 2);
- /* BLKSIZE_s/2 because of 3DNow! ASM routine */
- }
- }
- void
- fft_long(lame_internal_flags const *const gfc,
- FLOAT x[BLKSIZE], int chn, const sample_t *const buffer[2])
- {
- int i;
- int jj = BLKSIZE / 8 - 1;
- x += BLKSIZE / 2;
- #define window_s gfc->cd_psy->window_s
- #define window gfc->cd_psy->window
- do {
- FLOAT f0, f1, f2, f3, w;
- i = rv_tbl[jj];
- f0 = ml00(ch01);
- w = ml10(ch01);
- f1 = f0 - w;
- f0 = f0 + w;
- f2 = ml20(ch01);
- w = ml30(ch01);
- f3 = f2 - w;
- f2 = f2 + w;
- x -= 4;
- x[0] = f0 + f2;
- x[2] = f0 - f2;
- x[1] = f1 + f3;
- x[3] = f1 - f3;
- f0 = ml01(ch01);
- w = ml11(ch01);
- f1 = f0 - w;
- f0 = f0 + w;
- f2 = ml21(ch01);
- w = ml31(ch01);
- f3 = f2 - w;
- f2 = f2 + w;
- x[BLKSIZE / 2 + 0] = f0 + f2;
- x[BLKSIZE / 2 + 2] = f0 - f2;
- x[BLKSIZE / 2 + 1] = f1 + f3;
- x[BLKSIZE / 2 + 3] = f1 - f3;
- } while (--jj >= 0);
- #undef window
- #undef window_s
- gfc->fft_fht(x, BLKSIZE / 2);
- /* BLKSIZE/2 because of 3DNow! ASM routine */
- }
- #ifdef HAVE_NASM
- extern void fht_3DN(FLOAT * fz, int n);
- extern void fht_SSE(FLOAT * fz, int n);
- #endif
- void
- init_fft(lame_internal_flags * const gfc)
- {
- int i;
- /* The type of window used here will make no real difference, but */
- /* in the interest of merging nspsytune stuff - switch to blackman window */
- for (i = 0; i < BLKSIZE; i++)
- /* blackman window */
- gfc->cd_psy->window[i] = 0.42 - 0.5 * cos(2 * PI * (i + .5) / BLKSIZE) +
- 0.08 * cos(4 * PI * (i + .5) / BLKSIZE);
- for (i = 0; i < BLKSIZE_s / 2; i++)
- gfc->cd_psy->window_s[i] = 0.5 * (1.0 - cos(2.0 * PI * (i + 0.5) / BLKSIZE_s));
- gfc->fft_fht = fht;
- #ifdef HAVE_NASM
- if (gfc->CPU_features.AMD_3DNow) {
- gfc->fft_fht = fht_3DN;
- }
- else if (gfc->CPU_features.SSE) {
- gfc->fft_fht = fht_SSE;
- }
- else {
- gfc->fft_fht = fht;
- }
- #else
- #ifdef HAVE_XMMINTRIN_H
- #ifdef MIN_ARCH_SSE
- gfc->fft_fht = fht_SSE2;
- #endif
- #endif
- #endif
- }
|