mv_prediction.c 8.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250
  1. /*!
  2. *************************************************************************************
  3. * \file mv_prediction.c
  4. *
  5. * \brief
  6. * Motion Vector Prediction Functions
  7. *
  8. * \author
  9. * Main contributors (see contributors.h for copyright, address and affiliation details)
  10. * - Alexis Michael Tourapis <[email protected]>
  11. * - Karsten Sühring <[email protected]>
  12. *************************************************************************************
  13. */
  14. #include "global.h"
  15. #include "mbuffer.h"
  16. /*!
  17. ************************************************************************
  18. * \brief
  19. * Get motion vector predictor
  20. ************************************************************************
  21. */
  22. static void GetMotionVectorPredictorMBAFF (Macroblock *currMB,
  23. PixelPos *block, // <--> block neighbors
  24. short pmv[2],
  25. short ref_frame,
  26. PicMotion **motion,
  27. int mb_x,
  28. int mb_y,
  29. int blockshape_x,
  30. int blockshape_y)
  31. {
  32. int mv_a, mv_b, mv_c, pred_vec=0;
  33. int mvPredType, rFrameL, rFrameU, rFrameUR;
  34. int hv;
  35. VideoParameters *p_Vid = currMB->p_Vid;
  36. mvPredType = MVPRED_MEDIAN;
  37. if (currMB->mb_field)
  38. {
  39. rFrameL = block[0].available
  40. ? (p_Vid->mb_data[block[0].mb_addr].mb_field
  41. ? motion[block[0].pos_y][block[0].pos_x].ref_idx
  42. : motion[block[0].pos_y][block[0].pos_x].ref_idx * 2) : -1;
  43. rFrameU = block[1].available
  44. ? (p_Vid->mb_data[block[1].mb_addr].mb_field
  45. ? motion[block[1].pos_y][block[1].pos_x].ref_idx
  46. : motion[block[1].pos_y][block[1].pos_x].ref_idx * 2) : -1;
  47. rFrameUR = block[2].available
  48. ? (p_Vid->mb_data[block[2].mb_addr].mb_field
  49. ? motion[block[2].pos_y][block[2].pos_x].ref_idx
  50. : motion[block[2].pos_y][block[2].pos_x].ref_idx * 2) : -1;
  51. }
  52. else
  53. {
  54. rFrameL = block[0].available
  55. ? (p_Vid->mb_data[block[0].mb_addr].mb_field
  56. ? motion[block[0].pos_y][block[0].pos_x].ref_idx >>1
  57. : motion[block[0].pos_y][block[0].pos_x].ref_idx) : -1;
  58. rFrameU = block[1].available
  59. ? (p_Vid->mb_data[block[1].mb_addr].mb_field
  60. ? motion[block[1].pos_y][block[1].pos_x].ref_idx >>1
  61. : motion[block[1].pos_y][block[1].pos_x].ref_idx) : -1;
  62. rFrameUR = block[2].available
  63. ? (p_Vid->mb_data[block[2].mb_addr].mb_field
  64. ? motion[block[2].pos_y][block[2].pos_x].ref_idx >>1
  65. : motion[block[2].pos_y][block[2].pos_x].ref_idx) : -1;
  66. }
  67. /* Prediction if only one of the neighbors uses the reference frame
  68. * we are checking
  69. */
  70. if(rFrameL == ref_frame && rFrameU != ref_frame && rFrameUR != ref_frame)
  71. mvPredType = MVPRED_L;
  72. else if(rFrameL != ref_frame && rFrameU == ref_frame && rFrameUR != ref_frame)
  73. mvPredType = MVPRED_U;
  74. else if(rFrameL != ref_frame && rFrameU != ref_frame && rFrameUR == ref_frame)
  75. mvPredType = MVPRED_UR;
  76. // Directional predictions
  77. if(blockshape_x == 8 && blockshape_y == 16)
  78. {
  79. if(mb_x == 0)
  80. {
  81. if(rFrameL == ref_frame)
  82. mvPredType = MVPRED_L;
  83. }
  84. else
  85. {
  86. if( rFrameUR == ref_frame)
  87. mvPredType = MVPRED_UR;
  88. }
  89. }
  90. else if(blockshape_x == 16 && blockshape_y == 8)
  91. {
  92. if(mb_y == 0)
  93. {
  94. if(rFrameU == ref_frame)
  95. mvPredType = MVPRED_U;
  96. }
  97. else
  98. {
  99. if(rFrameL == ref_frame)
  100. mvPredType = MVPRED_L;
  101. }
  102. }
  103. for (hv=0; hv < 2; hv++)
  104. {
  105. if (hv == 0)
  106. {
  107. mv_a = block[0].available ? motion[block[0].pos_y][block[0].pos_x].mv[hv] : 0;
  108. mv_b = block[1].available ? motion[block[1].pos_y][block[1].pos_x].mv[hv] : 0;
  109. mv_c = block[2].available ? motion[block[2].pos_y][block[2].pos_x].mv[hv] : 0;
  110. }
  111. else
  112. {
  113. if (currMB->mb_field)
  114. {
  115. mv_a = block[0].available ? p_Vid->mb_data[block[0].mb_addr].mb_field
  116. ? motion[block[0].pos_y][block[0].pos_x].mv[hv]
  117. : motion[block[0].pos_y][block[0].pos_x].mv[hv] / 2
  118. : 0;
  119. mv_b = block[1].available ? p_Vid->mb_data[block[1].mb_addr].mb_field
  120. ? motion[block[1].pos_y][block[1].pos_x].mv[hv]
  121. : motion[block[1].pos_y][block[1].pos_x].mv[hv] / 2
  122. : 0;
  123. mv_c = block[2].available ? p_Vid->mb_data[block[2].mb_addr].mb_field
  124. ? motion[block[2].pos_y][block[2].pos_x].mv[hv]
  125. : motion[block[2].pos_y][block[2].pos_x].mv[hv] / 2
  126. : 0;
  127. }
  128. else
  129. {
  130. mv_a = block[0].available ? p_Vid->mb_data[block[0].mb_addr].mb_field
  131. ? motion[block[0].pos_y][block[0].pos_x].mv[hv] * 2
  132. : motion[block[0].pos_y][block[0].pos_x].mv[hv]
  133. : 0;
  134. mv_b = block[1].available ? p_Vid->mb_data[block[1].mb_addr].mb_field
  135. ? motion[block[1].pos_y][block[1].pos_x].mv[hv] * 2
  136. : motion[block[1].pos_y][block[1].pos_x].mv[hv]
  137. : 0;
  138. mv_c = block[2].available ? p_Vid->mb_data[block[2].mb_addr].mb_field
  139. ? motion[block[2].pos_y][block[2].pos_x].mv[hv] * 2
  140. : motion[block[2].pos_y][block[2].pos_x].mv[hv]
  141. : 0;
  142. }
  143. }
  144. switch (mvPredType)
  145. {
  146. case MVPRED_MEDIAN:
  147. if(!(block[1].available || block[2].available))
  148. {
  149. pred_vec = mv_a;
  150. }
  151. else
  152. {
  153. pred_vec = mv_a + mv_b + mv_c - imin(mv_a, imin(mv_b, mv_c)) - imax(mv_a, imax(mv_b ,mv_c));
  154. }
  155. break;
  156. case MVPRED_L:
  157. pred_vec = mv_a;
  158. break;
  159. case MVPRED_U:
  160. pred_vec = mv_b;
  161. break;
  162. case MVPRED_UR:
  163. pred_vec = mv_c;
  164. break;
  165. default:
  166. break;
  167. }
  168. pmv[hv] = (short) pred_vec;
  169. }
  170. }
  171. /*!
  172. ************************************************************************
  173. * \brief
  174. * Get motion vector predictor
  175. ************************************************************************
  176. */
  177. // TODO: benski> make SSE3/MMX version
  178. static void GetMotionVectorPredictorNormal (Macroblock *currMB,
  179. PixelPos *block, // <--> block neighbors
  180. short pmv[2],
  181. short ref_frame,
  182. PicMotion **motion,
  183. int mb_x,
  184. int mb_y,
  185. int blockshape_x,
  186. int blockshape_y)
  187. {
  188. int rFrameL = block[0].available ? motion[block[0].pos_y][block[0].pos_x].ref_idx : -1;
  189. int rFrameU = block[1].available ? motion[block[1].pos_y][block[1].pos_x].ref_idx : -1;
  190. int rFrameUR = block[2].available ? motion[block[2].pos_y][block[2].pos_x].ref_idx : -1;
  191. /* Prediction if only one of the neighbors uses the reference frame
  192. * we are checking
  193. */
  194. if (rFrameL == ref_frame &&
  195. ((rFrameU != ref_frame && rFrameUR != ref_frame) || (blockshape_x == 8 && blockshape_y == 16 && mb_x == 0) || (blockshape_x == 16 && blockshape_y == 8 && mb_y != 0)))
  196. { // left
  197. pmv[0] = block[0].available ? motion[block[0].pos_y][block[0].pos_x].mv[0] : 0;
  198. pmv[1] = block[0].available ? motion[block[0].pos_y][block[0].pos_x].mv[1] : 0;
  199. }
  200. else if (rFrameU == ref_frame &&
  201. ((rFrameL != ref_frame && rFrameUR != ref_frame) || (blockshape_x == 16 && blockshape_y == 8 && mb_y == 0)))
  202. { // up
  203. pmv[0] = block[1].available ? motion[block[1].pos_y][block[1].pos_x].mv[0] : 0;
  204. pmv[1] = block[1].available ? motion[block[1].pos_y][block[1].pos_x].mv[1] : 0;
  205. }
  206. else if (rFrameUR == ref_frame &&
  207. ((rFrameL != ref_frame && rFrameU != ref_frame) || (blockshape_x == 8 && blockshape_y == 16 && mb_x != 0)))
  208. { // upper right
  209. pmv[0] = block[2].available ? motion[block[2].pos_y][block[2].pos_x].mv[0] : 0;
  210. pmv[1] = block[2].available ? motion[block[2].pos_y][block[2].pos_x].mv[1] : 0;
  211. }
  212. else
  213. { // median
  214. if(!(block[1].available || block[2].available))
  215. {
  216. pmv[0] = block[0].available ? motion[block[0].pos_y][block[0].pos_x].mv[0] : 0;
  217. pmv[1] = block[0].available ? motion[block[0].pos_y][block[0].pos_x].mv[1] : 0;
  218. }
  219. else
  220. {
  221. int mv_a = block[0].available ? motion[block[0].pos_y][block[0].pos_x].mv[0] : 0;
  222. int mv_b = block[1].available ? motion[block[1].pos_y][block[1].pos_x].mv[0] : 0;
  223. int mv_c = block[2].available ? motion[block[2].pos_y][block[2].pos_x].mv[0] : 0;
  224. pmv[0] = mv_a + mv_b + mv_c - imin(mv_a, imin(mv_b, mv_c)) - imax(mv_a, imax(mv_b ,mv_c));
  225. mv_a = block[0].available ? motion[block[0].pos_y][block[0].pos_x].mv[1] : 0;
  226. mv_b = block[1].available ? motion[block[1].pos_y][block[1].pos_x].mv[1] : 0;
  227. mv_c = block[2].available ? motion[block[2].pos_y][block[2].pos_x].mv[1] : 0;
  228. pmv[1] = mv_a + mv_b + mv_c - imin(mv_a, imin(mv_b, mv_c)) - imax(mv_a, imax(mv_b ,mv_c));
  229. }
  230. }
  231. }
  232. void init_motion_vector_prediction(Macroblock *currMB, int mb_aff_frame_flag)
  233. {
  234. if (mb_aff_frame_flag)
  235. currMB->GetMVPredictor = GetMotionVectorPredictorMBAFF;
  236. else
  237. currMB->GetMVPredictor = GetMotionVectorPredictorNormal;
  238. }