1
0

sha1.c 7.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240
  1. /*
  2. SHA-1 in C
  3. By Steve Reid <[email protected]>
  4. 100% Public Domain
  5. Test Vectors (from FIPS PUB 180-1)
  6. "abc"
  7. A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D
  8. "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"
  9. 84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1
  10. A million repetitions of "a"
  11. 34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F
  12. */
  13. #define LITTLE_ENDIAN /* This should be #define'd if true. */
  14. /* #define SHA1HANDSOFF * Copies data before messing with it. */
  15. #include <stdio.h>
  16. #include <string.h>
  17. typedef struct {
  18. unsigned long state[5];
  19. unsigned long count[2];
  20. unsigned char buffer[64];
  21. } SHA1_CTX;
  22. void SHA1Transform(unsigned long state[5], unsigned char buffer[64]);
  23. void SHA1Init(SHA1_CTX* context);
  24. void SHA1Update(SHA1_CTX* context, unsigned char* data, unsigned int len);
  25. void SHA1Final(unsigned char digest[20], SHA1_CTX* context);
  26. #define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))
  27. /* blk0() and blk() perform the initial expand. */
  28. /* I got the idea of expanding during the round function from SSLeay */
  29. #ifdef LITTLE_ENDIAN
  30. #define blk0(i) (block->l[i] = (rol(block->l[i],24)&0xFF00FF00) \
  31. |(rol(block->l[i],8)&0x00FF00FF))
  32. #else
  33. #define blk0(i) block->l[i]
  34. #endif
  35. #define blk(i) (block->l[i&15] = rol(block->l[(i+13)&15]^block->l[(i+8)&15] \
  36. ^block->l[(i+2)&15]^block->l[i&15],1))
  37. /* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */
  38. #define R0(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk0(i)+0x5A827999+rol(v,5);w=rol(w,30);
  39. #define R1(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=rol(w,30);
  40. #define R2(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=rol(w,30);
  41. #define R3(v,w,x,y,z,i) z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=rol(w,30);
  42. #define R4(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=rol(w,30);
  43. /* Hash a single 512-bit block. This is the core of the algorithm. */
  44. void SHA1Transform(unsigned long state[5], unsigned char buffer[64])
  45. {
  46. unsigned long a, b, c, d, e;
  47. typedef union {
  48. unsigned char c[64];
  49. unsigned long l[16];
  50. } CHAR64LONG16;
  51. CHAR64LONG16* block;
  52. /*
  53. printf("SHA1Transform:\n");
  54. for (k = 0; k < 4; k++) {
  55. for (i = 0; i < 4; i++) {
  56. for (j = 0; j < 4; j++) {
  57. printf("%02X", buffer[k*16+i*4+j]);
  58. }
  59. putchar(' ');
  60. }
  61. putchar('\n');
  62. }
  63. printf("SHA1Transform (translated):\n");
  64. for (k = 0; k < 4; k++) {
  65. for (i = 0; i < 4; i++) {
  66. for (j = 0; j < 4; j++) {
  67. long x = buffer[k*16+i*4+j] & 0xFF;
  68. printf("%02X", cryptTable[x] & 0xFF);
  69. }
  70. putchar(' ');
  71. }
  72. putchar('\n');
  73. }
  74. */
  75. #ifdef SHA1HANDSOFF
  76. static unsigned char workspace[64];
  77. block = (CHAR64LONG16*)workspace;
  78. memcpy(block, buffer, 64);
  79. #else
  80. block = (CHAR64LONG16*)buffer;
  81. #endif
  82. /* Copy context->state[] to working vars */
  83. a = state[0];
  84. b = state[1];
  85. c = state[2];
  86. d = state[3];
  87. e = state[4];
  88. /* 4 rounds of 20 operations each. Loop unrolled. */
  89. R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
  90. R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
  91. R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
  92. R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
  93. R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
  94. R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
  95. R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
  96. R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
  97. R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
  98. R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
  99. R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
  100. R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
  101. R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
  102. R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
  103. R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
  104. R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
  105. R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
  106. R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
  107. R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
  108. R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
  109. /* Add the working vars back into context.state[] */
  110. state[0] += a;
  111. state[1] += b;
  112. state[2] += c;
  113. state[3] += d;
  114. state[4] += e;
  115. /* Wipe variables */
  116. a = b = c = d = e = 0;
  117. }
  118. /* SHA1Init - Initialize new context */
  119. void SHA1Init(SHA1_CTX* context)
  120. {
  121. /* SHA1 initialization constants */
  122. context->state[0] = 0x67452301;
  123. context->state[1] = 0xEFCDAB89;
  124. context->state[2] = 0x98BADCFE;
  125. context->state[3] = 0x10325476;
  126. context->state[4] = 0xC3D2E1F0;
  127. context->count[0] = context->count[1] = 0;
  128. }
  129. /* Run your data through this. */
  130. void SHA1Update(SHA1_CTX* context, unsigned char* data, unsigned int len)
  131. {
  132. unsigned int i, j;
  133. j = (context->count[0] >> 3) & 63;
  134. if ((context->count[0] += len << 3) < (len << 3)) context->count[1]++;
  135. context->count[1] += (len >> 29);
  136. if ((j + len) > 63) {
  137. memcpy(&context->buffer[j], data, (i = 64-j));
  138. SHA1Transform(context->state, context->buffer);
  139. for ( ; i + 63 < len; i += 64) {
  140. SHA1Transform(context->state, &data[i]);
  141. }
  142. j = 0;
  143. }
  144. else i = 0;
  145. memcpy(&context->buffer[j], &data[i], len - i);
  146. }
  147. /* Add padding and return the message digest. */
  148. void SHA1Final(unsigned char digest[20], SHA1_CTX* context)
  149. {
  150. unsigned long i, j;
  151. unsigned char finalcount[8];
  152. for (i = 0; i < 8; i++) {
  153. finalcount[i] = (unsigned char)((context->count[(i >= 4 ? 0 : 1)]
  154. >> ((3-(i & 3)) * 8) ) & 255); /* Endian independent */
  155. }
  156. SHA1Update(context, (unsigned char *)"\200", 1);
  157. while ((context->count[0] & 504) != 448) {
  158. SHA1Update(context, (unsigned char *)"\0", 1);
  159. }
  160. SHA1Update(context, finalcount, 8); /* Should cause a SHA1Transform() */
  161. for (i = 0; i < 20; i++) {
  162. digest[i] = (unsigned char)
  163. ((context->state[i>>2] >> ((3-(i & 3)) * 8) ) & 255);
  164. }
  165. /* Wipe variables */
  166. i = j = 0;
  167. memset(context->buffer, 0, 64);
  168. memset(context->state, 0, 20);
  169. memset(context->count, 0, 8);
  170. memset(&finalcount, 0, 8);
  171. #ifdef SHA1HANDSOFF /* make SHA1Transform overwrite it's own static vars */
  172. SHA1Transform(context->state, context->buffer);
  173. #endif
  174. }
  175. /*************************************************************/
  176. /*
  177. int main(int argc, char** argv)
  178. {
  179. int i, j;
  180. SHA1_CTX context;
  181. unsigned char digest[20], buffer[16384];
  182. FILE* file;
  183. if (argc > 2) {
  184. puts("Public domain SHA-1 implementation - by Steve Reid <[email protected]>");
  185. puts("Produces the SHA-1 hash of a file, or stdin if no file is specified.");
  186. exit(0);
  187. }
  188. if (argc < 2) {
  189. file = stdin;
  190. }
  191. else {
  192. if (!(file = fopen(argv[1], "rb"))) {
  193. fputs("Unable to open file.", stderr);
  194. exit(-1);
  195. }
  196. }
  197. SHA1Init(&context);
  198. while (!feof(file)) { /* note: what if ferror(file)
  199. i = fread(buffer, 1, 16384, file);
  200. SHA1Update(&context, buffer, i);
  201. }
  202. SHA1Final(digest, &context);
  203. fclose(file);
  204. for (i = 0; i < 5; i++) {
  205. for (j = 0; j < 4; j++) {
  206. printf("%02X", digest[i*4+j]);
  207. }
  208. putchar(' ');
  209. }
  210. putchar('\n');
  211. exit(0);
  212. }
  213. */