123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609 |
- /*
- * FILE: sha2.c
- * AUTHOR: Aaron D. Gifford <[email protected]>
- *
- * Copyright (c) 2000-2001, Aaron D. Gifford
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- * 3. Neither the name of the copyright holder nor the names of contributors
- * may be used to endorse or promote products derived from this software
- * without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
- * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
- * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- * SUCH DAMAGE.
- *
- */
- #include <string.h> /* memcpy()/memset() or bcopy()/bzero() */
- #include <assert.h> /* assert() */
- #include "sha2.h"
- /*
- * ASSERT NOTE:
- * Some sanity checking code is included using assert(). On my FreeBSD
- * system, this additional code can be removed by compiling with NDEBUG
- * defined. Check your own systems manpage on assert() to see how to
- * compile WITHOUT the sanity checking code on your system.
- *
- * UNROLLED TRANSFORM LOOP NOTE:
- * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
- * loop version for the hash transform rounds (defined using macros
- * later in this file). Either define on the command line, for example:
- *
- * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
- *
- * or define below:
- *
- * #define SHA2_UNROLL_TRANSFORM
- *
- */
- /*** SHA-256/384/512 Machine Architecture Definitions *****************/
- /*
- * BYTE_ORDER NOTE:
- *
- * Please make sure that your system defines BYTE_ORDER. If your
- * architecture is little-endian, make sure it also defines
- * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
- * equivilent.
- *
- * If your system does not define the above, then you can do so by
- * hand like this:
- *
- * #define LITTLE_ENDIAN 1234
- * #define BIG_ENDIAN 4321
- *
- * And for little-endian machines, add:
- *
- * #define BYTE_ORDER LITTLE_ENDIAN
- *
- * Or for big-endian machines:
- *
- * #define BYTE_ORDER BIG_ENDIAN
- *
- * The FreeBSD machine this was written on defines BYTE_ORDER
- * appropriately by including <sys/types.h> (which in turn includes
- * <machine/endian.h> where the appropriate definitions are actually
- * made).
- */
- #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
- #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
- #endif
- /*
- * Define the followingsha2_* types to types of the correct length on
- * the native archtecture. Most BSD systems and Linux define u_intXX_t
- * types. Machines with very recent ANSI C headers, can use the
- * uintXX_t definintions from inttypes.h by defining SHA2_USE_INTTYPES_H
- * during compile or in the sha.h header file.
- *
- * Machines that support neither u_intXX_t nor inttypes.h's uintXX_t
- * will need to define these three typedefs below (and the appropriate
- * ones in sha.h too) by hand according to their system architecture.
- *
- * Thank you, Jun-ichiro itojun Hagino, for suggesting using u_intXX_t
- * types and pointing out recent ANSI C support for uintXX_t in inttypes.h.
- */
- #ifdef SHA2_USE_INTTYPES_H
- typedef uint8_t sha2_byte; /* Exactly 1 byte */
- typedef uint32_t sha2_word32; /* Exactly 4 bytes */
- typedef uint64_t sha2_word64; /* Exactly 8 bytes */
- #else /* SHA2_USE_INTTYPES_H */
- typedef u_int8_t sha2_byte; /* Exactly 1 byte */
- typedef u_int32_t sha2_word32; /* Exactly 4 bytes */
- typedef u_int64_t sha2_word64; /* Exactly 8 bytes */
- #endif /* SHA2_USE_INTTYPES_H */
- /*** SHA-256/384/512 Various Length Definitions ***********************/
- /* NOTE: Most of these are in sha2.h */
- #define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8)
- #define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16)
- #define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16)
- /*** ENDIAN REVERSAL MACROS *******************************************/
- #if BYTE_ORDER == LITTLE_ENDIAN
- #define REVERSE32(w,x) { \
- sha2_word32 tmp = (w); \
- tmp = (tmp >> 16) | (tmp << 16); \
- (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
- }
- #ifdef WIN32
- #define REVERSE64(w,x) { \
- sha2_word64 tmp = (w); \
- tmp = (tmp >> 32) | (tmp << 32); \
- tmp = ((tmp & 0xff00ff00ff00ff00Ui64) >> 8) | \
- ((tmp & 0x00ff00ff00ff00ffUi64) << 8); \
- (x) = ((tmp & 0xffff0000ffff0000Ui64) >> 16) | \
- ((tmp & 0x0000ffff0000ffffUi64) << 16); \
- }
- #else
- #define REVERSE64(w,x) { \
- sha2_word64 tmp = (w); \
- tmp = (tmp >> 32) | (tmp << 32); \
- tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
- ((tmp & 0x00ff00ff00ff00ffULL) << 8); \
- (x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
- ((tmp & 0x0000ffff0000ffffULL) << 16); \
- }
- #endif /* WIN32 */
- #endif /* BYTE_ORDER == LITTLE_ENDIAN */
- /*
- * Macro for incrementally adding the unsigned 64-bit integer n to the
- * unsigned 128-bit integer (represented using a two-element array of
- * 64-bit words):
- */
- #define ADDINC128(w,n) { \
- (w)[0] += (sha2_word64)(n); \
- if ((w)[0] < (n)) { \
- (w)[1]++; \
- } \
- }
- /*
- * Macros for copying blocks of memory and for zeroing out ranges
- * of memory. Using these macros makes it easy to switch from
- * using memset()/memcpy() and using bzero()/bcopy().
- *
- * Please define either SHA2_USE_MEMSET_MEMCPY or define
- * SHA2_USE_BZERO_BCOPY depending on which function set you
- * choose to use:
- */
- #if !defined(SHA2_USE_MEMSET_MEMCPY) && !defined(SHA2_USE_BZERO_BCOPY)
- /* Default to memset()/memcpy() if no option is specified */
- #define SHA2_USE_MEMSET_MEMCPY 1
- #endif
- #if defined(SHA2_USE_MEMSET_MEMCPY) && defined(SHA2_USE_BZERO_BCOPY)
- /* Abort with an error if BOTH options are defined */
- #error Define either SHA2_USE_MEMSET_MEMCPY or SHA2_USE_BZERO_BCOPY, not both!
- #endif
- #ifdef SHA2_USE_MEMSET_MEMCPY
- #define MEMSET_BZERO(p,l) memset((p), 0, (l))
- #define MEMCPY_BCOPY(d,s,l) memcpy((d), (s), (l))
- #endif
- #ifdef SHA2_USE_BZERO_BCOPY
- #define MEMSET_BZERO(p,l) bzero((p), (l))
- #define MEMCPY_BCOPY(d,s,l) bcopy((s), (d), (l))
- #endif
- /*** THE SIX LOGICAL FUNCTIONS ****************************************/
- /*
- * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
- *
- * NOTE: The naming of R and S appears backwards here (R is a SHIFT and
- * S is a ROTATION) because the SHA-256/384/512 description document
- * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
- * same "backwards" definition.
- */
- /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
- #define R(b,x) ((x) >> (b))
- /* 32-bit Rotate-right (used in SHA-256): */
- #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
- /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
- #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
- /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
- #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
- #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
- /* Four of six logical functions used in SHA-256: */
- #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))
- #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))
- #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))
- #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))
- /* Four of six logical functions used in SHA-384 and SHA-512: */
- #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
- #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
- #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x)))
- #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x)))
- /*** INTERNAL FUNCTION PROTOTYPES *************************************/
- /* NOTE: These should not be accessed directly from outside this
- * library -- they are intended for private internal visibility/use
- * only.
- */
- void SHA512_Last(SHA512_CTX*);
- void SHA256_Transform(SHA256_CTX*, const sha2_word32*);
- void SHA512_Transform(SHA512_CTX*, const sha2_word64*);
- /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
- /* Hash constant words K for SHA-256: */
- const static sha2_word32 K256[64] = {
- 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
- 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
- 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
- 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
- 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
- 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
- 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
- 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
- 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
- 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
- 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
- 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
- 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
- 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
- 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
- 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
- };
- /* Initial hash value H for SHA-256: */
- const static sha2_word32 sha256_initial_hash_value[8] = {
- 0x6a09e667UL,
- 0xbb67ae85UL,
- 0x3c6ef372UL,
- 0xa54ff53aUL,
- 0x510e527fUL,
- 0x9b05688cUL,
- 0x1f83d9abUL,
- 0x5be0cd19UL
- };
- /*
- * Constant used by SHA256/384/512_End() functions for converting the
- * digest to a readable hexadecimal character string:
- */
- static const char *sha2_hex_digits = "0123456789abcdef";
- /*** SHA-256: *********************************************************/
- void SHA256_Init(SHA256_CTX* context) {
- if (context == (SHA256_CTX*)0) {
- return;
- }
- MEMCPY_BCOPY(context->state, sha256_initial_hash_value, SHA256_DIGEST_LENGTH);
- MEMSET_BZERO(context->buffer, SHA256_BLOCK_LENGTH);
- context->bitcount = 0;
- }
- #ifdef SHA2_UNROLL_TRANSFORM
- /* Unrolled SHA-256 round macros: */
- #if BYTE_ORDER == LITTLE_ENDIAN
- #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
- REVERSE32(*data++, W256[j]); \
- T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
- K256[j] + W256[j]; \
- (d) += T1; \
- (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
- j++
- #else /* BYTE_ORDER == LITTLE_ENDIAN */
- #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
- T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
- K256[j] + (W256[j] = *data++); \
- (d) += T1; \
- (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
- j++
- #endif /* BYTE_ORDER == LITTLE_ENDIAN */
- #define ROUND256(a,b,c,d,e,f,g,h) \
- s0 = W256[(j+1)&0x0f]; \
- s0 = sigma0_256(s0); \
- s1 = W256[(j+14)&0x0f]; \
- s1 = sigma1_256(s1); \
- T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
- (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
- (d) += T1; \
- (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
- j++
- void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
- sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
- sha2_word32 T1, *W256;
- int j;
- W256 = (sha2_word32*)context->buffer;
- /* Initialize registers with the prev. intermediate value */
- a = context->state[0];
- b = context->state[1];
- c = context->state[2];
- d = context->state[3];
- e = context->state[4];
- f = context->state[5];
- g = context->state[6];
- h = context->state[7];
- j = 0;
- do {
- /* Rounds 0 to 15 (unrolled): */
- ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
- ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
- ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
- ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
- ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
- ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
- ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
- ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
- } while (j < 16);
- /* Now for the remaining rounds to 64: */
- do {
- ROUND256(a,b,c,d,e,f,g,h);
- ROUND256(h,a,b,c,d,e,f,g);
- ROUND256(g,h,a,b,c,d,e,f);
- ROUND256(f,g,h,a,b,c,d,e);
- ROUND256(e,f,g,h,a,b,c,d);
- ROUND256(d,e,f,g,h,a,b,c);
- ROUND256(c,d,e,f,g,h,a,b);
- ROUND256(b,c,d,e,f,g,h,a);
- } while (j < 64);
- /* Compute the current intermediate hash value */
- context->state[0] += a;
- context->state[1] += b;
- context->state[2] += c;
- context->state[3] += d;
- context->state[4] += e;
- context->state[5] += f;
- context->state[6] += g;
- context->state[7] += h;
- /* Clean up */
- a = b = c = d = e = f = g = h = T1 = 0;
- }
- #else /* SHA2_UNROLL_TRANSFORM */
- void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
- sha2_word32 a, b, c, d, e, f, g, h;
- sha2_word32 T1, T2, *W256;
- int j;
- W256 = (sha2_word32*)context->buffer;
- /* Initialize registers with the prev. intermediate value */
- a = context->state[0];
- b = context->state[1];
- c = context->state[2];
- d = context->state[3];
- e = context->state[4];
- f = context->state[5];
- g = context->state[6];
- h = context->state[7];
- j = 0;
- do {
- #if BYTE_ORDER == LITTLE_ENDIAN
- /* Copy data while converting to host byte order */
- REVERSE32(*data++,W256[j]);
- /* Apply the SHA-256 compression function to update a..h */
- T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
- #else /* BYTE_ORDER == LITTLE_ENDIAN */
- /* Apply the SHA-256 compression function to update a..h with copy */
- T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
- #endif /* BYTE_ORDER == LITTLE_ENDIAN */
- T2 = Sigma0_256(a) + Maj(a, b, c);
- h = g;
- g = f;
- f = e;
- e = d + T1;
- d = c;
- c = b;
- b = a;
- a = T1 + T2;
- j++;
- } while (j < 16);
- do {
- sha2_word32 s0, s1;
- /* Part of the message block expansion: */
- s0 = W256[(j+1)&0x0f];
- s0 = sigma0_256(s0);
- s1 = W256[(j+14)&0x0f];
- s1 = sigma1_256(s1);
- /* Apply the SHA-256 compression function to update a..h */
- T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
- (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
- T2 = Sigma0_256(a) + Maj(a, b, c);
- h = g;
- g = f;
- f = e;
- e = d + T1;
- d = c;
- c = b;
- b = a;
- a = T1 + T2;
- j++;
- } while (j < 64);
- /* Compute the current intermediate hash value */
- context->state[0] += a;
- context->state[1] += b;
- context->state[2] += c;
- context->state[3] += d;
- context->state[4] += e;
- context->state[5] += f;
- context->state[6] += g;
- context->state[7] += h;
- /* Clean up */
- a = b = c = d = e = f = g = h = T1 = T2 = 0;
- }
- #endif /* SHA2_UNROLL_TRANSFORM */
- void SHA256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) {
- unsigned int freespace, usedspace;
- if (len == 0) {
- /* Calling with no data is valid - we do nothing */
- return;
- }
- /* Sanity check: */
- assert(context != (SHA256_CTX*)0 && data != (sha2_byte*)0);
- usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
- if (usedspace > 0) {
- /* Calculate how much free space is available in the buffer */
- freespace = SHA256_BLOCK_LENGTH - usedspace;
- if (len >= freespace) {
- /* Fill the buffer completely and process it */
- MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace);
- context->bitcount += freespace << 3;
- len -= freespace;
- data += freespace;
- SHA256_Transform(context, (sha2_word32*)context->buffer);
- } else {
- /* The buffer is not yet full */
- MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
- context->bitcount += len << 3;
- /* Clean up: */
- usedspace = freespace = 0;
- return;
- }
- }
- while (len >= SHA256_BLOCK_LENGTH) {
- /* Process as many complete blocks as we can */
- SHA256_Transform(context, (sha2_word32*)data);
- context->bitcount += SHA256_BLOCK_LENGTH << 3;
- len -= SHA256_BLOCK_LENGTH;
- data += SHA256_BLOCK_LENGTH;
- }
- if (len > 0) {
- /* There's left-overs, so save 'em */
- MEMCPY_BCOPY(context->buffer, data, len);
- context->bitcount += len << 3;
- }
- /* Clean up: */
- usedspace = freespace = 0;
- }
- void SHA256_Final(sha2_byte digest[], SHA256_CTX* context) {
- sha2_word32 *d = (sha2_word32*)digest;
- unsigned int usedspace;
- /* Sanity check: */
- assert(context != (SHA256_CTX*)0);
- /* If no digest buffer is passed, we don't bother doing this: */
- if (digest != (sha2_byte*)0) {
- usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
- #if BYTE_ORDER == LITTLE_ENDIAN
- /* Convert FROM host byte order */
- REVERSE64(context->bitcount,context->bitcount);
- #endif
- if (usedspace > 0) {
- /* Begin padding with a 1 bit: */
- context->buffer[usedspace++] = 0x80;
- if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
- /* Set-up for the last transform: */
- MEMSET_BZERO(&context->buffer[usedspace], SHA256_SHORT_BLOCK_LENGTH - usedspace);
- } else {
- if (usedspace < SHA256_BLOCK_LENGTH) {
- MEMSET_BZERO(&context->buffer[usedspace], SHA256_BLOCK_LENGTH - usedspace);
- }
- /* Do second-to-last transform: */
- SHA256_Transform(context, (sha2_word32*)context->buffer);
- /* And set-up for the last transform: */
- MEMSET_BZERO(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
- }
- } else {
- /* Set-up for the last transform: */
- MEMSET_BZERO(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
- /* Begin padding with a 1 bit: */
- *context->buffer = 0x80;
- }
- /* Set the bit count: */
- *(sha2_word64*)&context->buffer[SHA256_SHORT_BLOCK_LENGTH] = context->bitcount;
- /* Final transform: */
- SHA256_Transform(context, (sha2_word32*)context->buffer);
- #if BYTE_ORDER == LITTLE_ENDIAN
- {
- /* Convert TO host byte order */
- int j;
- for (j = 0; j < 8; j++) {
- REVERSE32(context->state[j],context->state[j]);
- *d++ = context->state[j];
- }
- }
- #else
- MEMCPY_BCOPY(d, context->state, SHA256_DIGEST_LENGTH);
- #endif
- }
- /* Clean up state data: */
- MEMSET_BZERO(context, sizeof(context));
- usedspace = 0;
- }
- char *SHA256_End(SHA256_CTX* context, char buffer[]) {
- sha2_byte digest[SHA256_DIGEST_LENGTH], *d = digest;
- /* Sanity check: */
- assert(context != (SHA256_CTX*)0);
- if (buffer != (char*)0) {
- int i = 0;
- SHA256_Final(digest, context);
- for (; i < SHA256_DIGEST_LENGTH; i++) {
- *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
- *buffer++ = sha2_hex_digits[*d & 0x0f];
- d++;
- }
- *buffer = (char)0;
- } else {
- MEMSET_BZERO(context, sizeof(context));
- }
- MEMSET_BZERO(digest, SHA256_DIGEST_LENGTH);
- return buffer;
- }
- char* SHA256_Data(const sha2_byte* data, size_t len, char digest[SHA256_DIGEST_STRING_LENGTH]) {
- SHA256_CTX context;
- SHA256_Init(&context);
- SHA256_Update(&context, data, len);
- return SHA256_End(&context, digest);
- }
|