12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316 |
- //$ nobt
- //$ nocpp
- /**
- * @file fft4g.h
- *
- * @brief Wrapper class for Takuya OOURA's FFT functions.
- *
- * Functions from the FFT package by: Copyright(C) 1996-2001 Takuya OOURA
- * http://www.kurims.kyoto-u.ac.jp/~ooura/fft.html
- *
- * Modified and used with permission granted by the license.
- *
- * Here, the original "fft4g.c" file was wrapped into the "ooura_fft" class.
- */
- #ifndef R8B_FFT4G_INCLUDED
- #define R8B_FFT4G_INCLUDED
- /*
- Fast Fourier/Cosine/Sine Transform
- dimension :one
- data length :power of 2
- decimation :frequency
- radix :4, 2
- data :inplace
- table :use
- functions
- cdft: Complex Discrete Fourier Transform
- rdft: Real Discrete Fourier Transform
- ddct: Discrete Cosine Transform
- ddst: Discrete Sine Transform
- dfct: Cosine Transform of RDFT (Real Symmetric DFT)
- dfst: Sine Transform of RDFT (Real Anti-symmetric DFT)
- function prototypes
- void cdft(int, int, FPType *, int *, FPType *);
- void rdft(int, int, FPType *, int *, FPType *);
- void ddct(int, int, FPType *, int *, FPType *);
- void ddst(int, int, FPType *, int *, FPType *);
- void dfct(int, FPType *, FPType *, int *, FPType *);
- void dfst(int, FPType *, FPType *, int *, FPType *);
- -------- Complex DFT (Discrete Fourier Transform) --------
- [definition]
- <case1>
- X[k] = sum_j=0^n-1 x[j]*exp(2*pi*i*j*k/n), 0<=k<n
- <case2>
- X[k] = sum_j=0^n-1 x[j]*exp(-2*pi*i*j*k/n), 0<=k<n
- (notes: sum_j=0^n-1 is a summation from j=0 to n-1)
- [usage]
- <case1>
- ip[0] = 0; // first time only
- cdft(2*n, 1, a, ip, w);
- <case2>
- ip[0] = 0; // first time only
- cdft(2*n, -1, a, ip, w);
- [parameters]
- 2*n :data length (int)
- n >= 1, n = power of 2
- a[0...2*n-1] :input/output data (FPType *)
- input data
- a[2*j] = Re(x[j]),
- a[2*j+1] = Im(x[j]), 0<=j<n
- output data
- a[2*k] = Re(X[k]),
- a[2*k+1] = Im(X[k]), 0<=k<n
- ip[0...*] :work area for bit reversal (int *)
- length of ip >= 2+sqrt(n)
- strictly,
- length of ip >=
- 2+(1<<(int)(log(n+0.5)/log(2))/2).
- ip[0],ip[1] are pointers of the cos/sin table.
- w[0...n/2-1] :cos/sin table (FPType *)
- w[],ip[] are initialized if ip[0] == 0.
- [remark]
- Inverse of
- cdft(2*n, -1, a, ip, w);
- is
- cdft(2*n, 1, a, ip, w);
- for (j = 0; j <= 2 * n - 1; j++) {
- a[j] *= 1.0 / n;
- }
- .
- -------- Real DFT / Inverse of Real DFT --------
- [definition]
- <case1> RDFT
- R[k] = sum_j=0^n-1 a[j]*cos(2*pi*j*k/n), 0<=k<=n/2
- I[k] = sum_j=0^n-1 a[j]*sin(2*pi*j*k/n), 0<k<n/2
- <case2> IRDFT (excluding scale)
- a[k] = (R[0] + R[n/2]*cos(pi*k))/2 +
- sum_j=1^n/2-1 R[j]*cos(2*pi*j*k/n) +
- sum_j=1^n/2-1 I[j]*sin(2*pi*j*k/n), 0<=k<n
- [usage]
- <case1>
- ip[0] = 0; // first time only
- rdft(n, 1, a, ip, w);
- <case2>
- ip[0] = 0; // first time only
- rdft(n, -1, a, ip, w);
- [parameters]
- n :data length (int)
- n >= 2, n = power of 2
- a[0...n-1] :input/output data (FPType *)
- <case1>
- output data
- a[2*k] = R[k], 0<=k<n/2
- a[2*k+1] = I[k], 0<k<n/2
- a[1] = R[n/2]
- <case2>
- input data
- a[2*j] = R[j], 0<=j<n/2
- a[2*j+1] = I[j], 0<j<n/2
- a[1] = R[n/2]
- ip[0...*] :work area for bit reversal (int *)
- length of ip >= 2+sqrt(n/2)
- strictly,
- length of ip >=
- 2+(1<<(int)(log(n/2+0.5)/log(2))/2).
- ip[0],ip[1] are pointers of the cos/sin table.
- w[0...n/2-1] :cos/sin table (FPType *)
- w[],ip[] are initialized if ip[0] == 0.
- [remark]
- Inverse of
- rdft(n, 1, a, ip, w);
- is
- rdft(n, -1, a, ip, w);
- for (j = 0; j <= n - 1; j++) {
- a[j] *= 2.0 / n;
- }
- .
- -------- DCT (Discrete Cosine Transform) / Inverse of DCT --------
- [definition]
- <case1> IDCT (excluding scale)
- C[k] = sum_j=0^n-1 a[j]*cos(pi*j*(k+1/2)/n), 0<=k<n
- <case2> DCT
- C[k] = sum_j=0^n-1 a[j]*cos(pi*(j+1/2)*k/n), 0<=k<n
- [usage]
- <case1>
- ip[0] = 0; // first time only
- ddct(n, 1, a, ip, w);
- <case2>
- ip[0] = 0; // first time only
- ddct(n, -1, a, ip, w);
- [parameters]
- n :data length (int)
- n >= 2, n = power of 2
- a[0...n-1] :input/output data (FPType *)
- output data
- a[k] = C[k], 0<=k<n
- ip[0...*] :work area for bit reversal (int *)
- length of ip >= 2+sqrt(n/2)
- strictly,
- length of ip >=
- 2+(1<<(int)(log(n/2+0.5)/log(2))/2).
- ip[0],ip[1] are pointers of the cos/sin table.
- w[0...n*5/4-1] :cos/sin table (FPType *)
- w[],ip[] are initialized if ip[0] == 0.
- [remark]
- Inverse of
- ddct(n, -1, a, ip, w);
- is
- a[0] *= 0.5;
- ddct(n, 1, a, ip, w);
- for (j = 0; j <= n - 1; j++) {
- a[j] *= 2.0 / n;
- }
- .
- -------- DST (Discrete Sine Transform) / Inverse of DST --------
- [definition]
- <case1> IDST (excluding scale)
- S[k] = sum_j=1^n A[j]*sin(pi*j*(k+1/2)/n), 0<=k<n
- <case2> DST
- S[k] = sum_j=0^n-1 a[j]*sin(pi*(j+1/2)*k/n), 0<k<=n
- [usage]
- <case1>
- ip[0] = 0; // first time only
- ddst(n, 1, a, ip, w);
- <case2>
- ip[0] = 0; // first time only
- ddst(n, -1, a, ip, w);
- [parameters]
- n :data length (int)
- n >= 2, n = power of 2
- a[0...n-1] :input/output data (FPType *)
- <case1>
- input data
- a[j] = A[j], 0<j<n
- a[0] = A[n]
- output data
- a[k] = S[k], 0<=k<n
- <case2>
- output data
- a[k] = S[k], 0<k<n
- a[0] = S[n]
- ip[0...*] :work area for bit reversal (int *)
- length of ip >= 2+sqrt(n/2)
- strictly,
- length of ip >=
- 2+(1<<(int)(log(n/2+0.5)/log(2))/2).
- ip[0],ip[1] are pointers of the cos/sin table.
- w[0...n*5/4-1] :cos/sin table (FPType *)
- w[],ip[] are initialized if ip[0] == 0.
- [remark]
- Inverse of
- ddst(n, -1, a, ip, w);
- is
- a[0] *= 0.5;
- ddst(n, 1, a, ip, w);
- for (j = 0; j <= n - 1; j++) {
- a[j] *= 2.0 / n;
- }
- .
- -------- Cosine Transform of RDFT (Real Symmetric DFT) --------
- [definition]
- C[k] = sum_j=0^n a[j]*cos(pi*j*k/n), 0<=k<=n
- [usage]
- ip[0] = 0; // first time only
- dfct(n, a, t, ip, w);
- [parameters]
- n :data length - 1 (int)
- n >= 2, n = power of 2
- a[0...n] :input/output data (FPType *)
- output data
- a[k] = C[k], 0<=k<=n
- t[0...n/2] :work area (FPType *)
- ip[0...*] :work area for bit reversal (int *)
- length of ip >= 2+sqrt(n/4)
- strictly,
- length of ip >=
- 2+(1<<(int)(log(n/4+0.5)/log(2))/2).
- ip[0],ip[1] are pointers of the cos/sin table.
- w[0...n*5/8-1] :cos/sin table (FPType *)
- w[],ip[] are initialized if ip[0] == 0.
- [remark]
- Inverse of
- a[0] *= 0.5;
- a[n] *= 0.5;
- dfct(n, a, t, ip, w);
- is
- a[0] *= 0.5;
- a[n] *= 0.5;
- dfct(n, a, t, ip, w);
- for (j = 0; j <= n; j++) {
- a[j] *= 2.0 / n;
- }
- .
- -------- Sine Transform of RDFT (Real Anti-symmetric DFT) --------
- [definition]
- S[k] = sum_j=1^n-1 a[j]*sin(pi*j*k/n), 0<k<n
- [usage]
- ip[0] = 0; // first time only
- dfst(n, a, t, ip, w);
- [parameters]
- n :data length + 1 (int)
- n >= 2, n = power of 2
- a[0...n-1] :input/output data (FPType *)
- output data
- a[k] = S[k], 0<k<n
- (a[0] is used for work area)
- t[0...n/2-1] :work area (FPType *)
- ip[0...*] :work area for bit reversal (int *)
- length of ip >= 2+sqrt(n/4)
- strictly,
- length of ip >=
- 2+(1<<(int)(log(n/4+0.5)/log(2))/2).
- ip[0],ip[1] are pointers of the cos/sin table.
- w[0...n*5/8-1] :cos/sin table (FPType *)
- w[],ip[] are initialized if ip[0] == 0.
- [remark]
- Inverse of
- dfst(n, a, t, ip, w);
- is
- dfst(n, a, t, ip, w);
- for (j = 1; j <= n - 1; j++) {
- a[j] *= 2.0 / n;
- }
- .
- Appendix :
- The cos/sin table is recalculated when the larger table required.
- w[] and ip[] are compatible with all routines.
- */
- namespace r8b {
- /**
- * @brief A wrapper class around Takuya OOURA's FFT functions.
- *
- * A wrapper class around fft4g.c file's FFT functions by Takuya OOURA.
- * Provides static private functions for use by the CDSPRealFFT class.
- */
- class ooura_fft
- {
- friend class CDSPRealFFT;
- private:
- typedef double FPType;
- static void cdft(int n, int isgn, FPType *a, int *ip, FPType *w)
- {
- if (n > (ip[0] << 2)) {
- makewt(n >> 2, ip, w);
- }
- if (n > 4) {
- if (isgn >= 0) {
- bitrv2(n, ip + 2, a);
- cftfsub(n, a, w);
- } else {
- bitrv2conj(n, ip + 2, a);
- cftbsub(n, a, w);
- }
- } else if (n == 4) {
- cftfsub(n, a, w);
- }
- }
- static void rdft(int n, int isgn, FPType *a, int *ip, FPType *w)
- {
- int nw, nc;
- double xi;
- nw = ip[0];
- if (n > (nw << 2)) {
- nw = n >> 2;
- makewt(nw, ip, w);
- }
- nc = ip[1];
- if (n > (nc << 2)) {
- nc = n >> 2;
- makect(nc, ip, w + nw);
- }
- if (isgn >= 0) {
- if (n > 4) {
- bitrv2(n, ip + 2, a);
- cftfsub(n, a, w);
- rftfsub(n, a, nc, w + nw);
- } else if (n == 4) {
- cftfsub(n, a, w);
- }
- xi = a[0] - a[1];
- a[0] += a[1];
- a[1] = xi;
- } else {
- a[1] = 0.5 * (a[0] - a[1]);
- a[0] -= a[1];
- if (n > 4) {
- rftbsub(n, a, nc, w + nw);
- bitrv2(n, ip + 2, a);
- cftbsub(n, a, w);
- } else if (n == 4) {
- cftfsub(n, a, w);
- }
- }
- }
- static void ddct(int n, int isgn, FPType *a, int *ip, FPType *w)
- {
- int j, nw, nc;
- double xr;
- nw = ip[0];
- if (n > (nw << 2)) {
- nw = n >> 2;
- makewt(nw, ip, w);
- }
- nc = ip[1];
- if (n > nc) {
- nc = n;
- makect(nc, ip, w + nw);
- }
- if (isgn < 0) {
- xr = a[n - 1];
- for (j = n - 2; j >= 2; j -= 2) {
- a[j + 1] = a[j] - a[j - 1];
- a[j] += a[j - 1];
- }
- a[1] = a[0] - xr;
- a[0] += xr;
- if (n > 4) {
- rftbsub(n, a, nc, w + nw);
- bitrv2(n, ip + 2, a);
- cftbsub(n, a, w);
- } else if (n == 4) {
- cftfsub(n, a, w);
- }
- }
- dctsub(n, a, nc, w + nw);
- if (isgn >= 0) {
- if (n > 4) {
- bitrv2(n, ip + 2, a);
- cftfsub(n, a, w);
- rftfsub(n, a, nc, w + nw);
- } else if (n == 4) {
- cftfsub(n, a, w);
- }
- xr = a[0] - a[1];
- a[0] += a[1];
- for (j = 2; j < n; j += 2) {
- a[j - 1] = a[j] - a[j + 1];
- a[j] += a[j + 1];
- }
- a[n - 1] = xr;
- }
- }
- static void ddst(int n, int isgn, FPType *a, int *ip, FPType *w)
- {
- int j, nw, nc;
- double xr;
- nw = ip[0];
- if (n > (nw << 2)) {
- nw = n >> 2;
- makewt(nw, ip, w);
- }
- nc = ip[1];
- if (n > nc) {
- nc = n;
- makect(nc, ip, w + nw);
- }
- if (isgn < 0) {
- xr = a[n - 1];
- for (j = n - 2; j >= 2; j -= 2) {
- a[j + 1] = -a[j] - a[j - 1];
- a[j] -= a[j - 1];
- }
- a[1] = a[0] + xr;
- a[0] -= xr;
- if (n > 4) {
- rftbsub(n, a, nc, w + nw);
- bitrv2(n, ip + 2, a);
- cftbsub(n, a, w);
- } else if (n == 4) {
- cftfsub(n, a, w);
- }
- }
- dstsub(n, a, nc, w + nw);
- if (isgn >= 0) {
- if (n > 4) {
- bitrv2(n, ip + 2, a);
- cftfsub(n, a, w);
- rftfsub(n, a, nc, w + nw);
- } else if (n == 4) {
- cftfsub(n, a, w);
- }
- xr = a[0] - a[1];
- a[0] += a[1];
- for (j = 2; j < n; j += 2) {
- a[j - 1] = -a[j] - a[j + 1];
- a[j] -= a[j + 1];
- }
- a[n - 1] = -xr;
- }
- }
- static void dfct(int n, FPType *a, FPType *t, int *ip, FPType *w)
- {
- int j, k, l, m, mh, nw, nc;
- double xr, xi, yr, yi;
- nw = ip[0];
- if (n > (nw << 3)) {
- nw = n >> 3;
- makewt(nw, ip, w);
- }
- nc = ip[1];
- if (n > (nc << 1)) {
- nc = n >> 1;
- makect(nc, ip, w + nw);
- }
- m = n >> 1;
- yi = a[m];
- xi = a[0] + a[n];
- a[0] -= a[n];
- t[0] = xi - yi;
- t[m] = xi + yi;
- if (n > 2) {
- mh = m >> 1;
- for (j = 1; j < mh; j++) {
- k = m - j;
- xr = a[j] - a[n - j];
- xi = a[j] + a[n - j];
- yr = a[k] - a[n - k];
- yi = a[k] + a[n - k];
- a[j] = xr;
- a[k] = yr;
- t[j] = xi - yi;
- t[k] = xi + yi;
- }
- t[mh] = a[mh] + a[n - mh];
- a[mh] -= a[n - mh];
- dctsub(m, a, nc, w + nw);
- if (m > 4) {
- bitrv2(m, ip + 2, a);
- cftfsub(m, a, w);
- rftfsub(m, a, nc, w + nw);
- } else if (m == 4) {
- cftfsub(m, a, w);
- }
- a[n - 1] = a[0] - a[1];
- a[1] = a[0] + a[1];
- for (j = m - 2; j >= 2; j -= 2) {
- a[2 * j + 1] = a[j] + a[j + 1];
- a[2 * j - 1] = a[j] - a[j + 1];
- }
- l = 2;
- m = mh;
- while (m >= 2) {
- dctsub(m, t, nc, w + nw);
- if (m > 4) {
- bitrv2(m, ip + 2, t);
- cftfsub(m, t, w);
- rftfsub(m, t, nc, w + nw);
- } else if (m == 4) {
- cftfsub(m, t, w);
- }
- a[n - l] = t[0] - t[1];
- a[l] = t[0] + t[1];
- k = 0;
- for (j = 2; j < m; j += 2) {
- k += l << 2;
- a[k - l] = t[j] - t[j + 1];
- a[k + l] = t[j] + t[j + 1];
- }
- l <<= 1;
- mh = m >> 1;
- for (j = 0; j < mh; j++) {
- k = m - j;
- t[j] = t[m + k] - t[m + j];
- t[k] = t[m + k] + t[m + j];
- }
- t[mh] = t[m + mh];
- m = mh;
- }
- a[l] = t[0];
- a[n] = t[2] - t[1];
- a[0] = t[2] + t[1];
- } else {
- a[1] = a[0];
- a[2] = t[0];
- a[0] = t[1];
- }
- }
- static void dfst(int n, FPType *a, FPType *t, int *ip, FPType *w)
- {
- int j, k, l, m, mh, nw, nc;
- double xr, xi, yr, yi;
- nw = ip[0];
- if (n > (nw << 3)) {
- nw = n >> 3;
- makewt(nw, ip, w);
- }
- nc = ip[1];
- if (n > (nc << 1)) {
- nc = n >> 1;
- makect(nc, ip, w + nw);
- }
- if (n > 2) {
- m = n >> 1;
- mh = m >> 1;
- for (j = 1; j < mh; j++) {
- k = m - j;
- xr = a[j] + a[n - j];
- xi = a[j] - a[n - j];
- yr = a[k] + a[n - k];
- yi = a[k] - a[n - k];
- a[j] = xr;
- a[k] = yr;
- t[j] = xi + yi;
- t[k] = xi - yi;
- }
- t[0] = a[mh] - a[n - mh];
- a[mh] += a[n - mh];
- a[0] = a[m];
- dstsub(m, a, nc, w + nw);
- if (m > 4) {
- bitrv2(m, ip + 2, a);
- cftfsub(m, a, w);
- rftfsub(m, a, nc, w + nw);
- } else if (m == 4) {
- cftfsub(m, a, w);
- }
- a[n - 1] = a[1] - a[0];
- a[1] = a[0] + a[1];
- for (j = m - 2; j >= 2; j -= 2) {
- a[2 * j + 1] = a[j] - a[j + 1];
- a[2 * j - 1] = -a[j] - a[j + 1];
- }
- l = 2;
- m = mh;
- while (m >= 2) {
- dstsub(m, t, nc, w + nw);
- if (m > 4) {
- bitrv2(m, ip + 2, t);
- cftfsub(m, t, w);
- rftfsub(m, t, nc, w + nw);
- } else if (m == 4) {
- cftfsub(m, t, w);
- }
- a[n - l] = t[1] - t[0];
- a[l] = t[0] + t[1];
- k = 0;
- for (j = 2; j < m; j += 2) {
- k += l << 2;
- a[k - l] = -t[j] - t[j + 1];
- a[k + l] = t[j] - t[j + 1];
- }
- l <<= 1;
- mh = m >> 1;
- for (j = 1; j < mh; j++) {
- k = m - j;
- t[j] = t[m + k] + t[m + j];
- t[k] = t[m + k] - t[m + j];
- }
- t[0] = t[m + mh];
- m = mh;
- }
- a[l] = t[0];
- }
- a[0] = 0;
- }
- /* -------- initializing routines -------- */
- static void makewt(int nw, int *ip, FPType *w)
- {
- int j, nwh;
- double delta, x, y;
- ip[0] = nw;
- ip[1] = 1;
- if (nw > 2) {
- nwh = nw >> 1;
- delta = atan(1.0) / nwh;
- w[0] = 1;
- w[1] = 0;
- w[nwh] = cos(delta * nwh);
- w[nwh + 1] = w[nwh];
- if (nwh > 2) {
- for (j = 2; j < nwh; j += 2) {
- x = cos(delta * j);
- y = sin(delta * j);
- w[j] = x;
- w[j + 1] = y;
- w[nw - j] = y;
- w[nw - j + 1] = x;
- }
- bitrv2(nw, ip + 2, w);
- }
- }
- }
- static void makect(int nc, int *ip, FPType *c)
- {
- int j, nch;
- double delta;
- ip[1] = nc;
- if (nc > 1) {
- nch = nc >> 1;
- delta = atan(1.0) / nch;
- c[0] = cos(delta * nch);
- c[nch] = 0.5 * c[0];
- for (j = 1; j < nch; j++) {
- c[j] = 0.5 * cos(delta * j);
- c[nc - j] = 0.5 * sin(delta * j);
- }
- }
- }
- /* -------- child routines -------- */
- static void bitrv2(int n, int *ip, FPType *a)
- {
- int j, j1, k, k1, l, m, m2;
- double xr, xi, yr, yi;
- ip[0] = 0;
- l = n;
- m = 1;
- while ((m << 3) < l) {
- l >>= 1;
- for (j = 0; j < m; j++) {
- ip[m + j] = ip[j] + l;
- }
- m <<= 1;
- }
- m2 = 2 * m;
- if ((m << 3) == l) {
- for (k = 0; k < m; k++) {
- for (j = 0; j < k; j++) {
- j1 = 2 * j + ip[k];
- k1 = 2 * k + ip[j];
- xr = a[j1];
- xi = a[j1 + 1];
- yr = a[k1];
- yi = a[k1 + 1];
- a[j1] = yr;
- a[j1 + 1] = yi;
- a[k1] = xr;
- a[k1 + 1] = xi;
- j1 += m2;
- k1 += 2 * m2;
- xr = a[j1];
- xi = a[j1 + 1];
- yr = a[k1];
- yi = a[k1 + 1];
- a[j1] = yr;
- a[j1 + 1] = yi;
- a[k1] = xr;
- a[k1 + 1] = xi;
- j1 += m2;
- k1 -= m2;
- xr = a[j1];
- xi = a[j1 + 1];
- yr = a[k1];
- yi = a[k1 + 1];
- a[j1] = yr;
- a[j1 + 1] = yi;
- a[k1] = xr;
- a[k1 + 1] = xi;
- j1 += m2;
- k1 += 2 * m2;
- xr = a[j1];
- xi = a[j1 + 1];
- yr = a[k1];
- yi = a[k1 + 1];
- a[j1] = yr;
- a[j1 + 1] = yi;
- a[k1] = xr;
- a[k1 + 1] = xi;
- }
- j1 = 2 * k + m2 + ip[k];
- k1 = j1 + m2;
- xr = a[j1];
- xi = a[j1 + 1];
- yr = a[k1];
- yi = a[k1 + 1];
- a[j1] = yr;
- a[j1 + 1] = yi;
- a[k1] = xr;
- a[k1 + 1] = xi;
- }
- } else {
- for (k = 1; k < m; k++) {
- for (j = 0; j < k; j++) {
- j1 = 2 * j + ip[k];
- k1 = 2 * k + ip[j];
- xr = a[j1];
- xi = a[j1 + 1];
- yr = a[k1];
- yi = a[k1 + 1];
- a[j1] = yr;
- a[j1 + 1] = yi;
- a[k1] = xr;
- a[k1 + 1] = xi;
- j1 += m2;
- k1 += m2;
- xr = a[j1];
- xi = a[j1 + 1];
- yr = a[k1];
- yi = a[k1 + 1];
- a[j1] = yr;
- a[j1 + 1] = yi;
- a[k1] = xr;
- a[k1 + 1] = xi;
- }
- }
- }
- }
- static void bitrv2conj(int n, int *ip, FPType *a)
- {
- int j, j1, k, k1, l, m, m2;
- double xr, xi, yr, yi;
- ip[0] = 0;
- l = n;
- m = 1;
- while ((m << 3) < l) {
- l >>= 1;
- for (j = 0; j < m; j++) {
- ip[m + j] = ip[j] + l;
- }
- m <<= 1;
- }
- m2 = 2 * m;
- if ((m << 3) == l) {
- for (k = 0; k < m; k++) {
- for (j = 0; j < k; j++) {
- j1 = 2 * j + ip[k];
- k1 = 2 * k + ip[j];
- xr = a[j1];
- xi = -a[j1 + 1];
- yr = a[k1];
- yi = -a[k1 + 1];
- a[j1] = yr;
- a[j1 + 1] = yi;
- a[k1] = xr;
- a[k1 + 1] = xi;
- j1 += m2;
- k1 += 2 * m2;
- xr = a[j1];
- xi = -a[j1 + 1];
- yr = a[k1];
- yi = -a[k1 + 1];
- a[j1] = yr;
- a[j1 + 1] = yi;
- a[k1] = xr;
- a[k1 + 1] = xi;
- j1 += m2;
- k1 -= m2;
- xr = a[j1];
- xi = -a[j1 + 1];
- yr = a[k1];
- yi = -a[k1 + 1];
- a[j1] = yr;
- a[j1 + 1] = yi;
- a[k1] = xr;
- a[k1 + 1] = xi;
- j1 += m2;
- k1 += 2 * m2;
- xr = a[j1];
- xi = -a[j1 + 1];
- yr = a[k1];
- yi = -a[k1 + 1];
- a[j1] = yr;
- a[j1 + 1] = yi;
- a[k1] = xr;
- a[k1 + 1] = xi;
- }
- k1 = 2 * k + ip[k];
- a[k1 + 1] = -a[k1 + 1];
- j1 = k1 + m2;
- k1 = j1 + m2;
- xr = a[j1];
- xi = -a[j1 + 1];
- yr = a[k1];
- yi = -a[k1 + 1];
- a[j1] = yr;
- a[j1 + 1] = yi;
- a[k1] = xr;
- a[k1 + 1] = xi;
- k1 += m2;
- a[k1 + 1] = -a[k1 + 1];
- }
- } else {
- a[1] = -a[1];
- a[m2 + 1] = -a[m2 + 1];
- for (k = 1; k < m; k++) {
- for (j = 0; j < k; j++) {
- j1 = 2 * j + ip[k];
- k1 = 2 * k + ip[j];
- xr = a[j1];
- xi = -a[j1 + 1];
- yr = a[k1];
- yi = -a[k1 + 1];
- a[j1] = yr;
- a[j1 + 1] = yi;
- a[k1] = xr;
- a[k1 + 1] = xi;
- j1 += m2;
- k1 += m2;
- xr = a[j1];
- xi = -a[j1 + 1];
- yr = a[k1];
- yi = -a[k1 + 1];
- a[j1] = yr;
- a[j1 + 1] = yi;
- a[k1] = xr;
- a[k1 + 1] = xi;
- }
- k1 = 2 * k + ip[k];
- a[k1 + 1] = -a[k1 + 1];
- a[k1 + m2 + 1] = -a[k1 + m2 + 1];
- }
- }
- }
- static void cftfsub(int n, FPType *a, const FPType *w)
- {
- int j, j1, j2, j3, l;
- double x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i;
- l = 2;
- if (n > 8) {
- cft1st(n, a, w);
- l = 8;
- while ((l << 2) < n) {
- cftmdl(n, l, a, w);
- l <<= 2;
- }
- }
- if ((l << 2) == n) {
- for (j = 0; j < l; j += 2) {
- j1 = j + l;
- j2 = j1 + l;
- j3 = j2 + l;
- x0r = a[j] + a[j1];
- x0i = a[j + 1] + a[j1 + 1];
- x1r = a[j] - a[j1];
- x1i = a[j + 1] - a[j1 + 1];
- x2r = a[j2] + a[j3];
- x2i = a[j2 + 1] + a[j3 + 1];
- x3r = a[j2] - a[j3];
- x3i = a[j2 + 1] - a[j3 + 1];
- a[j] = x0r + x2r;
- a[j + 1] = x0i + x2i;
- a[j2] = x0r - x2r;
- a[j2 + 1] = x0i - x2i;
- a[j1] = x1r - x3i;
- a[j1 + 1] = x1i + x3r;
- a[j3] = x1r + x3i;
- a[j3 + 1] = x1i - x3r;
- }
- } else {
- for (j = 0; j < l; j += 2) {
- j1 = j + l;
- x0r = a[j] - a[j1];
- x0i = a[j + 1] - a[j1 + 1];
- a[j] += a[j1];
- a[j + 1] += a[j1 + 1];
- a[j1] = x0r;
- a[j1 + 1] = x0i;
- }
- }
- }
- static void cftbsub(int n, FPType *a, const FPType *w)
- {
- int j, j1, j2, j3, l;
- double x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i;
- l = 2;
- if (n > 8) {
- cft1st(n, a, w);
- l = 8;
- while ((l << 2) < n) {
- cftmdl(n, l, a, w);
- l <<= 2;
- }
- }
- if ((l << 2) == n) {
- for (j = 0; j < l; j += 2) {
- j1 = j + l;
- j2 = j1 + l;
- j3 = j2 + l;
- x0r = a[j] + a[j1];
- x0i = -a[j + 1] - a[j1 + 1];
- x1r = a[j] - a[j1];
- x1i = -a[j + 1] + a[j1 + 1];
- x2r = a[j2] + a[j3];
- x2i = a[j2 + 1] + a[j3 + 1];
- x3r = a[j2] - a[j3];
- x3i = a[j2 + 1] - a[j3 + 1];
- a[j] = x0r + x2r;
- a[j + 1] = x0i - x2i;
- a[j2] = x0r - x2r;
- a[j2 + 1] = x0i + x2i;
- a[j1] = x1r - x3i;
- a[j1 + 1] = x1i - x3r;
- a[j3] = x1r + x3i;
- a[j3 + 1] = x1i + x3r;
- }
- } else {
- for (j = 0; j < l; j += 2) {
- j1 = j + l;
- x0r = a[j] - a[j1];
- x0i = -a[j + 1] + a[j1 + 1];
- a[j] += a[j1];
- a[j + 1] = -a[j + 1] - a[j1 + 1];
- a[j1] = x0r;
- a[j1 + 1] = x0i;
- }
- }
- }
- static void cft1st(int n, FPType *a, const FPType *w)
- {
- int j, k1, k2;
- double wk1r, wk1i, wk2r, wk2i, wk3r, wk3i;
- double x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i;
- x0r = a[0] + a[2];
- x0i = a[1] + a[3];
- x1r = a[0] - a[2];
- x1i = a[1] - a[3];
- x2r = a[4] + a[6];
- x2i = a[5] + a[7];
- x3r = a[4] - a[6];
- x3i = a[5] - a[7];
- a[0] = x0r + x2r;
- a[1] = x0i + x2i;
- a[4] = x0r - x2r;
- a[5] = x0i - x2i;
- a[2] = x1r - x3i;
- a[3] = x1i + x3r;
- a[6] = x1r + x3i;
- a[7] = x1i - x3r;
- wk1r = w[2];
- x0r = a[8] + a[10];
- x0i = a[9] + a[11];
- x1r = a[8] - a[10];
- x1i = a[9] - a[11];
- x2r = a[12] + a[14];
- x2i = a[13] + a[15];
- x3r = a[12] - a[14];
- x3i = a[13] - a[15];
- a[8] = x0r + x2r;
- a[9] = x0i + x2i;
- a[12] = x2i - x0i;
- a[13] = x0r - x2r;
- x0r = x1r - x3i;
- x0i = x1i + x3r;
- a[10] = wk1r * (x0r - x0i);
- a[11] = wk1r * (x0r + x0i);
- x0r = x3i + x1r;
- x0i = x3r - x1i;
- a[14] = wk1r * (x0i - x0r);
- a[15] = wk1r * (x0i + x0r);
- k1 = 0;
- for (j = 16; j < n; j += 16) {
- k1 += 2;
- k2 = 2 * k1;
- wk2r = w[k1];
- wk2i = w[k1 + 1];
- wk1r = w[k2];
- wk1i = w[k2 + 1];
- wk3r = wk1r - 2 * wk2i * wk1i;
- wk3i = 2 * wk2i * wk1r - wk1i;
- x0r = a[j] + a[j + 2];
- x0i = a[j + 1] + a[j + 3];
- x1r = a[j] - a[j + 2];
- x1i = a[j + 1] - a[j + 3];
- x2r = a[j + 4] + a[j + 6];
- x2i = a[j + 5] + a[j + 7];
- x3r = a[j + 4] - a[j + 6];
- x3i = a[j + 5] - a[j + 7];
- a[j] = x0r + x2r;
- a[j + 1] = x0i + x2i;
- x0r -= x2r;
- x0i -= x2i;
- a[j + 4] = wk2r * x0r - wk2i * x0i;
- a[j + 5] = wk2r * x0i + wk2i * x0r;
- x0r = x1r - x3i;
- x0i = x1i + x3r;
- a[j + 2] = wk1r * x0r - wk1i * x0i;
- a[j + 3] = wk1r * x0i + wk1i * x0r;
- x0r = x1r + x3i;
- x0i = x1i - x3r;
- a[j + 6] = wk3r * x0r - wk3i * x0i;
- a[j + 7] = wk3r * x0i + wk3i * x0r;
- wk1r = w[k2 + 2];
- wk1i = w[k2 + 3];
- wk3r = wk1r - 2 * wk2r * wk1i;
- wk3i = 2 * wk2r * wk1r - wk1i;
- x0r = a[j + 8] + a[j + 10];
- x0i = a[j + 9] + a[j + 11];
- x1r = a[j + 8] - a[j + 10];
- x1i = a[j + 9] - a[j + 11];
- x2r = a[j + 12] + a[j + 14];
- x2i = a[j + 13] + a[j + 15];
- x3r = a[j + 12] - a[j + 14];
- x3i = a[j + 13] - a[j + 15];
- a[j + 8] = x0r + x2r;
- a[j + 9] = x0i + x2i;
- x0r -= x2r;
- x0i -= x2i;
- a[j + 12] = -wk2i * x0r - wk2r * x0i;
- a[j + 13] = -wk2i * x0i + wk2r * x0r;
- x0r = x1r - x3i;
- x0i = x1i + x3r;
- a[j + 10] = wk1r * x0r - wk1i * x0i;
- a[j + 11] = wk1r * x0i + wk1i * x0r;
- x0r = x1r + x3i;
- x0i = x1i - x3r;
- a[j + 14] = wk3r * x0r - wk3i * x0i;
- a[j + 15] = wk3r * x0i + wk3i * x0r;
- }
- }
- static void cftmdl(int n, int l, FPType *a, const FPType *w)
- {
- int j, j1, j2, j3, k, k1, k2, m, m2;
- double wk1r, wk1i, wk2r, wk2i, wk3r, wk3i;
- double x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i;
- m = l << 2;
- for (j = 0; j < l; j += 2) {
- j1 = j + l;
- j2 = j1 + l;
- j3 = j2 + l;
- x0r = a[j] + a[j1];
- x0i = a[j + 1] + a[j1 + 1];
- x1r = a[j] - a[j1];
- x1i = a[j + 1] - a[j1 + 1];
- x2r = a[j2] + a[j3];
- x2i = a[j2 + 1] + a[j3 + 1];
- x3r = a[j2] - a[j3];
- x3i = a[j2 + 1] - a[j3 + 1];
- a[j] = x0r + x2r;
- a[j + 1] = x0i + x2i;
- a[j2] = x0r - x2r;
- a[j2 + 1] = x0i - x2i;
- a[j1] = x1r - x3i;
- a[j1 + 1] = x1i + x3r;
- a[j3] = x1r + x3i;
- a[j3 + 1] = x1i - x3r;
- }
- wk1r = w[2];
- for (j = m; j < l + m; j += 2) {
- j1 = j + l;
- j2 = j1 + l;
- j3 = j2 + l;
- x0r = a[j] + a[j1];
- x0i = a[j + 1] + a[j1 + 1];
- x1r = a[j] - a[j1];
- x1i = a[j + 1] - a[j1 + 1];
- x2r = a[j2] + a[j3];
- x2i = a[j2 + 1] + a[j3 + 1];
- x3r = a[j2] - a[j3];
- x3i = a[j2 + 1] - a[j3 + 1];
- a[j] = x0r + x2r;
- a[j + 1] = x0i + x2i;
- a[j2] = x2i - x0i;
- a[j2 + 1] = x0r - x2r;
- x0r = x1r - x3i;
- x0i = x1i + x3r;
- a[j1] = wk1r * (x0r - x0i);
- a[j1 + 1] = wk1r * (x0r + x0i);
- x0r = x3i + x1r;
- x0i = x3r - x1i;
- a[j3] = wk1r * (x0i - x0r);
- a[j3 + 1] = wk1r * (x0i + x0r);
- }
- k1 = 0;
- m2 = 2 * m;
- for (k = m2; k < n; k += m2) {
- k1 += 2;
- k2 = 2 * k1;
- wk2r = w[k1];
- wk2i = w[k1 + 1];
- wk1r = w[k2];
- wk1i = w[k2 + 1];
- wk3r = wk1r - 2 * wk2i * wk1i;
- wk3i = 2 * wk2i * wk1r - wk1i;
- for (j = k; j < l + k; j += 2) {
- j1 = j + l;
- j2 = j1 + l;
- j3 = j2 + l;
- x0r = a[j] + a[j1];
- x0i = a[j + 1] + a[j1 + 1];
- x1r = a[j] - a[j1];
- x1i = a[j + 1] - a[j1 + 1];
- x2r = a[j2] + a[j3];
- x2i = a[j2 + 1] + a[j3 + 1];
- x3r = a[j2] - a[j3];
- x3i = a[j2 + 1] - a[j3 + 1];
- a[j] = x0r + x2r;
- a[j + 1] = x0i + x2i;
- x0r -= x2r;
- x0i -= x2i;
- a[j2] = wk2r * x0r - wk2i * x0i;
- a[j2 + 1] = wk2r * x0i + wk2i * x0r;
- x0r = x1r - x3i;
- x0i = x1i + x3r;
- a[j1] = wk1r * x0r - wk1i * x0i;
- a[j1 + 1] = wk1r * x0i + wk1i * x0r;
- x0r = x1r + x3i;
- x0i = x1i - x3r;
- a[j3] = wk3r * x0r - wk3i * x0i;
- a[j3 + 1] = wk3r * x0i + wk3i * x0r;
- }
- wk1r = w[k2 + 2];
- wk1i = w[k2 + 3];
- wk3r = wk1r - 2 * wk2r * wk1i;
- wk3i = 2 * wk2r * wk1r - wk1i;
- for (j = k + m; j < l + (k + m); j += 2) {
- j1 = j + l;
- j2 = j1 + l;
- j3 = j2 + l;
- x0r = a[j] + a[j1];
- x0i = a[j + 1] + a[j1 + 1];
- x1r = a[j] - a[j1];
- x1i = a[j + 1] - a[j1 + 1];
- x2r = a[j2] + a[j3];
- x2i = a[j2 + 1] + a[j3 + 1];
- x3r = a[j2] - a[j3];
- x3i = a[j2 + 1] - a[j3 + 1];
- a[j] = x0r + x2r;
- a[j + 1] = x0i + x2i;
- x0r -= x2r;
- x0i -= x2i;
- a[j2] = -wk2i * x0r - wk2r * x0i;
- a[j2 + 1] = -wk2i * x0i + wk2r * x0r;
- x0r = x1r - x3i;
- x0i = x1i + x3r;
- a[j1] = wk1r * x0r - wk1i * x0i;
- a[j1 + 1] = wk1r * x0i + wk1i * x0r;
- x0r = x1r + x3i;
- x0i = x1i - x3r;
- a[j3] = wk3r * x0r - wk3i * x0i;
- a[j3 + 1] = wk3r * x0i + wk3i * x0r;
- }
- }
- }
- static void rftfsub(int n, FPType *a, int nc, const FPType *c)
- {
- int j, k, kk, ks, m;
- double wkr, wki, xr, xi, yr, yi;
- m = n >> 1;
- ks = 2 * nc / m;
- kk = 0;
- for (j = 2; j < m; j += 2) {
- k = n - j;
- kk += ks;
- wkr = 0.5 - c[nc - kk];
- wki = c[kk];
- xr = a[j] - a[k];
- xi = a[j + 1] + a[k + 1];
- yr = wkr * xr - wki * xi;
- yi = wkr * xi + wki * xr;
- a[j] -= yr;
- a[j + 1] -= yi;
- a[k] += yr;
- a[k + 1] -= yi;
- }
- }
- static void rftbsub(int n, FPType *a, int nc, const FPType *c)
- {
- int j, k, kk, ks, m;
- double wkr, wki, xr, xi, yr, yi;
- a[1] = -a[1];
- m = n >> 1;
- ks = 2 * nc / m;
- kk = 0;
- for (j = 2; j < m; j += 2) {
- k = n - j;
- kk += ks;
- wkr = 0.5 - c[nc - kk];
- wki = c[kk];
- xr = a[j] - a[k];
- xi = a[j + 1] + a[k + 1];
- yr = wkr * xr + wki * xi;
- yi = wkr * xi - wki * xr;
- a[j] -= yr;
- a[j + 1] = yi - a[j + 1];
- a[k] += yr;
- a[k + 1] = yi - a[k + 1];
- }
- a[m + 1] = -a[m + 1];
- }
- static void dctsub(int n, FPType *a, int nc, const FPType *c)
- {
- int j, k, kk, ks, m;
- double wkr, wki, xr;
- m = n >> 1;
- ks = nc / n;
- kk = 0;
- for (j = 1; j < m; j++) {
- k = n - j;
- kk += ks;
- wkr = c[kk] - c[nc - kk];
- wki = c[kk] + c[nc - kk];
- xr = wki * a[j] - wkr * a[k];
- a[j] = wkr * a[j] + wki * a[k];
- a[k] = xr;
- }
- a[m] *= c[0];
- }
- static void dstsub(int n, FPType *a, int nc, const FPType *c)
- {
- int j, k, kk, ks, m;
- double wkr, wki, xr;
- m = n >> 1;
- ks = nc / n;
- kk = 0;
- for (j = 1; j < m; j++) {
- k = n - j;
- kk += ks;
- wkr = c[kk] - c[nc - kk];
- wki = c[kk] + c[nc - kk];
- xr = wki * a[k] - wkr * a[j];
- a[k] = wkr * a[k] + wki * a[j];
- a[j] = xr;
- }
- a[m] *= c[0];
- }
- };
- } // namespace r8b
- #endif // R8B_FFT4G_INCLUDED
|