123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277 |
- ////////////////////////////////////////////////////////////////////////////////
- ///
- /// Peak detection routine.
- ///
- /// The routine detects highest value on an array of values and calculates the
- /// precise peak location as a mass-center of the 'hump' around the peak value.
- ///
- /// Author : Copyright (c) Olli Parviainen
- /// Author e-mail : oparviai 'at' iki.fi
- /// SoundTouch WWW: http://www.surina.net/soundtouch
- ///
- ////////////////////////////////////////////////////////////////////////////////
- //
- // License :
- //
- // SoundTouch audio processing library
- // Copyright (c) Olli Parviainen
- //
- // This library is free software; you can redistribute it and/or
- // modify it under the terms of the GNU Lesser General Public
- // License as published by the Free Software Foundation; either
- // version 2.1 of the License, or (at your option) any later version.
- //
- // This library is distributed in the hope that it will be useful,
- // but WITHOUT ANY WARRANTY; without even the implied warranty of
- // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- // Lesser General Public License for more details.
- //
- // You should have received a copy of the GNU Lesser General Public
- // License along with this library; if not, write to the Free Software
- // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
- //
- ////////////////////////////////////////////////////////////////////////////////
- #include <math.h>
- #include <assert.h>
- #include "PeakFinder.h"
- using namespace soundtouch;
- #define max(x, y) (((x) > (y)) ? (x) : (y))
- PeakFinder::PeakFinder()
- {
- minPos = maxPos = 0;
- }
- // Finds real 'top' of a peak hump from neighnourhood of the given 'peakpos'.
- int PeakFinder::findTop(const float *data, int peakpos) const
- {
- int i;
- int start, end;
- float refvalue;
- refvalue = data[peakpos];
- // seek within ±10 points
- start = peakpos - 10;
- if (start < minPos) start = minPos;
- end = peakpos + 10;
- if (end > maxPos) end = maxPos;
- for (i = start; i <= end; i ++)
- {
- if (data[i] > refvalue)
- {
- peakpos = i;
- refvalue = data[i];
- }
- }
- // failure if max value is at edges of seek range => it's not peak, it's at slope.
- if ((peakpos == start) || (peakpos == end)) return 0;
- return peakpos;
- }
- // Finds 'ground level' of a peak hump by starting from 'peakpos' and proceeding
- // to direction defined by 'direction' until next 'hump' after minimum value will
- // begin
- int PeakFinder::findGround(const float *data, int peakpos, int direction) const
- {
- int lowpos;
- int pos;
- int climb_count;
- float refvalue;
- float delta;
- climb_count = 0;
- refvalue = data[peakpos];
- lowpos = peakpos;
- pos = peakpos;
- while ((pos > minPos+1) && (pos < maxPos-1))
- {
- int prevpos;
- prevpos = pos;
- pos += direction;
- // calculate derivate
- delta = data[pos] - data[prevpos];
- if (delta <= 0)
- {
- // going downhill, ok
- if (climb_count)
- {
- climb_count --; // decrease climb count
- }
- // check if new minimum found
- if (data[pos] < refvalue)
- {
- // new minimum found
- lowpos = pos;
- refvalue = data[pos];
- }
- }
- else
- {
- // going uphill, increase climbing counter
- climb_count ++;
- if (climb_count > 5) break; // we've been climbing too long => it's next uphill => quit
- }
- }
- return lowpos;
- }
- // Find offset where the value crosses the given level, when starting from 'peakpos' and
- // proceeds to direction defined in 'direction'
- int PeakFinder::findCrossingLevel(const float *data, float level, int peakpos, int direction) const
- {
- float peaklevel;
- int pos;
- peaklevel = data[peakpos];
- assert(peaklevel >= level);
- pos = peakpos;
- while ((pos >= minPos) && (pos + direction < maxPos))
- {
- if (data[pos + direction] < level) return pos; // crossing found
- pos += direction;
- }
- return -1; // not found
- }
- // Calculates the center of mass location of 'data' array items between 'firstPos' and 'lastPos'
- double PeakFinder::calcMassCenter(const float *data, int firstPos, int lastPos) const
- {
- int i;
- float sum;
- float wsum;
- sum = 0;
- wsum = 0;
- for (i = firstPos; i <= lastPos; i ++)
- {
- sum += (float)i * data[i];
- wsum += data[i];
- }
- if (wsum < 1e-6) return 0;
- return sum / wsum;
- }
- /// get exact center of peak near given position by calculating local mass of center
- double PeakFinder::getPeakCenter(const float *data, int peakpos) const
- {
- float peakLevel; // peak level
- int crosspos1, crosspos2; // position where the peak 'hump' crosses cutting level
- float cutLevel; // cutting value
- float groundLevel; // ground level of the peak
- int gp1, gp2; // bottom positions of the peak 'hump'
- // find ground positions.
- gp1 = findGround(data, peakpos, -1);
- gp2 = findGround(data, peakpos, 1);
- peakLevel = data[peakpos];
- if (gp1 == gp2)
- {
- // avoid rounding errors when all are equal
- assert(gp1 == peakpos);
- cutLevel = groundLevel = peakLevel;
- } else {
- // get average of the ground levels
- groundLevel = 0.5f * (data[gp1] + data[gp2]);
- // calculate 70%-level of the peak
- cutLevel = 0.70f * peakLevel + 0.30f * groundLevel;
- }
- // find mid-level crossings
- crosspos1 = findCrossingLevel(data, cutLevel, peakpos, -1);
- crosspos2 = findCrossingLevel(data, cutLevel, peakpos, 1);
- if ((crosspos1 < 0) || (crosspos2 < 0)) return 0; // no crossing, no peak..
- // calculate mass center of the peak surroundings
- return calcMassCenter(data, crosspos1, crosspos2);
- }
- double PeakFinder::detectPeak(const float *data, int aminPos, int amaxPos)
- {
- int i;
- int peakpos; // position of peak level
- double highPeak, peak;
- this->minPos = aminPos;
- this->maxPos = amaxPos;
- // find absolute peak
- peakpos = minPos;
- peak = data[minPos];
- for (i = minPos + 1; i < maxPos; i ++)
- {
- if (data[i] > peak)
- {
- peak = data[i];
- peakpos = i;
- }
- }
-
- // Calculate exact location of the highest peak mass center
- highPeak = getPeakCenter(data, peakpos);
- peak = highPeak;
- // Now check if the highest peak were in fact harmonic of the true base beat peak
- // - sometimes the highest peak can be Nth harmonic of the true base peak yet
- // just a slightly higher than the true base
- for (i = 1; i < 3; i ++)
- {
- double peaktmp, harmonic;
- int i1,i2;
- harmonic = (double)pow(2.0, i);
- peakpos = (int)(highPeak / harmonic + 0.5f);
- if (peakpos < minPos) break;
- peakpos = findTop(data, peakpos); // seek true local maximum index
- if (peakpos == 0) continue; // no local max here
- // calculate mass-center of possible harmonic peak
- peaktmp = getPeakCenter(data, peakpos);
- // accept harmonic peak if
- // (a) it is found
- // (b) is within ±4% of the expected harmonic interval
- // (c) has at least half x-corr value of the max. peak
- double diff = harmonic * peaktmp / highPeak;
- if ((diff < 0.96) || (diff > 1.04)) continue; // peak too afar from expected
- // now compare to highest detected peak
- i1 = (int)(highPeak + 0.5);
- i2 = (int)(peaktmp + 0.5);
- if (data[i2] >= 0.4*data[i1])
- {
- // The harmonic is at least half as high primary peak,
- // thus use the harmonic peak instead
- peak = peaktmp;
- }
- }
- return peak;
- }
|