123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421 |
- #include "rar.hpp"
- // We used "Screaming Fast Galois Field Arithmetic Using Intel SIMD
- // Instructions" paper by James S. Plank, Kevin M. Greenan
- // and Ethan L. Miller for fast SSE based multiplication.
- // Also we are grateful to Artem Drobanov and Bulat Ziganshin
- // for samples and ideas allowed to make Reed-Solomon codec more efficient.
- RSCoder16::RSCoder16()
- {
- Decoding=false;
- ND=NR=NE=0;
- ValidFlags=NULL;
- MX=NULL;
- DataLog=NULL;
- DataLogSize=0;
- gfInit();
- }
- RSCoder16::~RSCoder16()
- {
- delete[] gfExp;
- delete[] gfLog;
- delete[] DataLog;
- delete[] MX;
- delete[] ValidFlags;
- }
- // Initialize logarithms and exponents Galois field tables.
- void RSCoder16::gfInit()
- {
- gfExp=new uint[4*gfSize+1];
- gfLog=new uint[gfSize+1];
- for (uint L=0,E=1;L<gfSize;L++)
- {
- gfLog[E]=L;
- gfExp[L]=E;
- gfExp[L+gfSize]=E; // Duplicate the table to avoid gfExp overflow check.
- E<<=1;
- if (E>gfSize)
- E^=0x1100B; // Irreducible field-generator polynomial.
- }
- // log(0)+log(x) must be outside of usual log table, so we can set it
- // to 0 and avoid check for 0 in multiplication parameters.
- gfLog[0]= 2*gfSize;
- for (uint I=2*gfSize;I<=4*gfSize;I++) // Results for log(0)+log(x).
- gfExp[I]=0;
- }
- uint RSCoder16::gfAdd(uint a,uint b) // Addition in Galois field.
- {
- return a^b;
- }
- uint RSCoder16::gfMul(uint a,uint b) // Multiplication in Galois field.
- {
- return gfExp[gfLog[a]+gfLog[b]];
- }
- uint RSCoder16::gfInv(uint a) // Inverse element in Galois field.
- {
- return a==0 ? 0:gfExp[gfSize-gfLog[a]];
- }
- bool RSCoder16::Init(uint DataCount, uint RecCount, bool *ValidityFlags)
- {
- ND = DataCount;
- NR = RecCount;
- NE = 0;
- Decoding=ValidityFlags!=NULL;
- if (Decoding)
- {
- delete[] ValidFlags;
- ValidFlags=new bool[ND + NR];
- for (uint I = 0; I < ND + NR; I++)
- ValidFlags[I]=ValidityFlags[I];
- for (uint I = 0; I < ND; I++)
- if (!ValidFlags[I])
- NE++;
- uint ValidECC=0;
- for (uint I = ND; I < ND + NR; I++)
- if (ValidFlags[I])
- ValidECC++;
- if (NE > ValidECC || NE == 0 || ValidECC == 0)
- return false;
- }
- // 2021.09.01 - we allowed RR and REV >100%, so no more NR > ND check.
- if (ND + NR > gfSize || /*NR > ND ||*/ ND == 0 || NR == 0)
- return false;
- delete[] MX;
- if (Decoding)
- {
- MX=new uint[NE * ND];
- MakeDecoderMatrix();
- InvertDecoderMatrix();
- }
- else
- {
- MX=new uint[NR * ND];
- MakeEncoderMatrix();
- }
- return true;
- }
- void RSCoder16::MakeEncoderMatrix()
- {
- // Create Cauchy encoder generator matrix. Skip trivial "1" diagonal rows,
- // which would just copy source data to destination.
- for (uint I = 0; I < NR; I++)
- for (uint J = 0; J < ND; J++)
- MX[I * ND + J] = gfInv( gfAdd( (I+ND), J) );
- }
- void RSCoder16::MakeDecoderMatrix()
- {
- // Create Cauchy decoder matrix. Skip trivial rows matching valid data
- // units and containing "1" on main diagonal. Such rows would just copy
- // source data to destination and they have no real value for us.
- // Include rows only for broken data units and replace them by first
- // available valid recovery code rows.
- for (uint Flag=0, R=ND, Dest=0; Flag < ND; Flag++)
- if (!ValidFlags[Flag]) // For every broken data unit.
- {
- while (!ValidFlags[R]) // Find a valid recovery unit.
- R++;
- for (uint J = 0; J < ND; J++) // And place its row to matrix.
- MX[Dest*ND + J] = gfInv( gfAdd(R,J) );
- Dest++;
- R++;
- }
- }
- // Apply Gauss–Jordan elimination to find inverse of decoder matrix.
- // We have the square NDxND matrix, but we do not store its trivial
- // diagonal "1" rows matching valid data, so we work with NExND matrix.
- // Our original Cauchy matrix does not contain 0, so we skip search
- // for non-zero pivot.
- void RSCoder16::InvertDecoderMatrix()
- {
- uint *MI=new uint[NE * ND]; // We'll create inverse matrix here.
- memset(MI, 0, ND * NE * sizeof(*MI)); // Initialize to identity matrix.
- for (uint Kr = 0, Kf = 0; Kr < NE; Kr++, Kf++)
- {
- while (ValidFlags[Kf]) // Skip trivial rows.
- Kf++;
- MI[Kr * ND + Kf] = 1; // Set diagonal 1.
- }
- // Kr is the number of row in our actual reduced NE x ND matrix,
- // which does not contain trivial diagonal 1 rows.
- // Kf is the number of row in full ND x ND matrix with all trivial rows
- // included.
- for (uint Kr = 0, Kf = 0; Kf < ND; Kr++, Kf++) // Select pivot row.
- {
- while (ValidFlags[Kf] && Kf < ND)
- {
- // Here we process trivial diagonal 1 rows matching valid data units.
- // Their processing can be simplified comparing to usual rows.
- // In full version of elimination we would set MX[I * ND + Kf] to zero
- // after MI[..]^=, but we do not need it for matrix inversion.
- for (uint I = 0; I < NE; I++)
- MI[I * ND + Kf] ^= MX[I * ND + Kf];
- Kf++;
- }
- if (Kf == ND)
- break;
- uint *MXk = MX + Kr * ND; // k-th row of main matrix.
- uint *MIk = MI + Kr * ND; // k-th row of inversion matrix.
- uint PInv = gfInv( MXk[Kf] ); // Pivot inverse.
- // Divide the pivot row by pivot, so pivot cell contains 1.
- for (uint I = 0; I < ND; I++)
- {
- MXk[I] = gfMul( MXk[I], PInv );
- MIk[I] = gfMul( MIk[I], PInv );
- }
- for (uint I = 0; I < NE; I++)
- if (I != Kr) // For all rows except containing the pivot cell.
- {
- // Apply Gaussian elimination Mij -= Mkj * Mik / pivot.
- // Since pivot is already 1, it is reduced to Mij -= Mkj * Mik.
- uint *MXi = MX + I * ND; // i-th row of main matrix.
- uint *MIi = MI + I * ND; // i-th row of inversion matrix.
- uint Mik = MXi[Kf]; // Cell in pivot position.
- for (uint J = 0; J < ND; J++)
- {
- MXi[J] ^= gfMul(MXk[J] , Mik);
- MIi[J] ^= gfMul(MIk[J] , Mik);
- }
- }
- }
- // Copy data to main matrix.
- for (uint I = 0; I < NE * ND; I++)
- MX[I] = MI[I];
- delete[] MI;
- }
- #if 0
- // Multiply matrix to data vector. When encoding, it contains data in Data
- // and stores error correction codes in Out. When decoding it contains
- // broken data followed by ECC in Data and stores recovered data to Out.
- // We do not use this function now, everything is moved to UpdateECC.
- void RSCoder16::Process(const uint *Data, uint *Out)
- {
- uint ProcData[gfSize];
- for (uint I = 0; I < ND; I++)
- ProcData[I]=Data[I];
- if (Decoding)
- {
- // Replace broken data units with first available valid recovery codes.
- // 'Data' array must contain recovery codes after data.
- for (uint I=0, R=ND, Dest=0; I < ND; I++)
- if (!ValidFlags[I]) // For every broken data unit.
- {
- while (!ValidFlags[R]) // Find a valid recovery unit.
- R++;
- ProcData[I]=Data[R];
- R++;
- }
- }
- uint H=Decoding ? NE : NR;
- for (uint I = 0; I < H; I++)
- {
- uint R = 0; // Result of matrix row multiplication to data.
- uint *MXi=MX + I * ND;
- for (uint J = 0; J < ND; J++)
- R ^= gfMul(MXi[J], ProcData[J]);
- Out[I] = R;
- }
- }
- #endif
- // We update ECC in blocks by applying every data block to all ECC blocks.
- // This function applies one data block to one ECC block.
- void RSCoder16::UpdateECC(uint DataNum, uint ECCNum, const byte *Data, byte *ECC, size_t BlockSize)
- {
- if (DataNum==0) // Init ECC data.
- memset(ECC, 0, BlockSize);
- bool DirectAccess;
- #ifdef LITTLE_ENDIAN
- // We can access data and ECC directly if we have little endian 16 bit uint.
- DirectAccess=sizeof(ushort)==2;
- #else
- DirectAccess=false;
- #endif
- #ifdef USE_SSE
- if (DirectAccess && SSE_UpdateECC(DataNum,ECCNum,Data,ECC,BlockSize))
- return;
- #endif
- if (ECCNum==0)
- {
- if (DataLogSize!=BlockSize)
- {
- delete[] DataLog;
- DataLog=new uint[BlockSize];
- DataLogSize=BlockSize;
- }
- if (DirectAccess)
- for (size_t I=0; I<BlockSize; I+=2)
- DataLog[I] = gfLog[ *(ushort*)(Data+I) ];
- else
- for (size_t I=0; I<BlockSize; I+=2)
- {
- uint D=Data[I]+Data[I+1]*256;
- DataLog[I] = gfLog[ D ];
- }
- }
- uint ML = gfLog[ MX[ECCNum * ND + DataNum] ];
- if (DirectAccess)
- for (size_t I=0; I<BlockSize; I+=2)
- *(ushort*)(ECC+I) ^= gfExp[ ML + DataLog[I] ];
- else
- for (size_t I=0; I<BlockSize; I+=2)
- {
- uint R=gfExp[ ML + DataLog[I] ];
- ECC[I]^=byte(R);
- ECC[I+1]^=byte(R/256);
- }
- }
- #ifdef USE_SSE
- // Data and ECC addresses must be properly aligned for SSE.
- // AVX2 did not provide a noticeable speed gain on i7-6700K here.
- bool RSCoder16::SSE_UpdateECC(uint DataNum, uint ECCNum, const byte *Data, byte *ECC, size_t BlockSize)
- {
- // Check data alignment and SSSE3 support.
- if ((size_t(Data) & (SSE_ALIGNMENT-1))!=0 || (size_t(ECC) & (SSE_ALIGNMENT-1))!=0 ||
- _SSE_Version<SSE_SSSE3)
- return false;
- uint M=MX[ECCNum * ND + DataNum];
- // Prepare tables containing products of M and 4, 8, 12, 16 bit length
- // numbers, which have 4 high bits in 0..15 range and other bits set to 0.
- // Store high and low bytes of resulting 16 bit product in separate tables.
- __m128i T0L,T1L,T2L,T3L; // Low byte tables.
- __m128i T0H,T1H,T2H,T3H; // High byte tables.
- for (uint I=0;I<16;I++)
- {
- ((byte *)&T0L)[I]=gfMul(I,M);
- ((byte *)&T0H)[I]=gfMul(I,M)>>8;
- ((byte *)&T1L)[I]=gfMul(I<<4,M);
- ((byte *)&T1H)[I]=gfMul(I<<4,M)>>8;
- ((byte *)&T2L)[I]=gfMul(I<<8,M);
- ((byte *)&T2H)[I]=gfMul(I<<8,M)>>8;
- ((byte *)&T3L)[I]=gfMul(I<<12,M);
- ((byte *)&T3H)[I]=gfMul(I<<12,M)>>8;
- }
- size_t Pos=0;
- __m128i LowByteMask=_mm_set1_epi16(0xff); // 00ff00ff...00ff
- __m128i Low4Mask=_mm_set1_epi8(0xf); // 0f0f0f0f...0f0f
- __m128i High4Mask=_mm_slli_epi16(Low4Mask,4); // f0f0f0f0...f0f0
- for (; Pos+2*sizeof(__m128i)<=BlockSize; Pos+=2*sizeof(__m128i))
- {
- // We process two 128 bit chunks of source data at once.
- __m128i *D=(__m128i *)(Data+Pos);
- // Place high bytes of both chunks to one variable and low bytes to
- // another, so we can use the table lookup multiplication for 16 values
- // 4 bit length each at once.
- __m128i HighBytes0=_mm_srli_epi16(D[0],8);
- __m128i LowBytes0=_mm_and_si128(D[0],LowByteMask);
- __m128i HighBytes1=_mm_srli_epi16(D[1],8);
- __m128i LowBytes1=_mm_and_si128(D[1],LowByteMask);
- __m128i HighBytes=_mm_packus_epi16(HighBytes0,HighBytes1);
- __m128i LowBytes=_mm_packus_epi16(LowBytes0,LowBytes1);
- // Multiply bits 0..3 of low bytes. Store low and high product bytes
- // separately in cumulative sum variables.
- __m128i LowBytesLow4=_mm_and_si128(LowBytes,Low4Mask);
- __m128i LowBytesMultSum=_mm_shuffle_epi8(T0L,LowBytesLow4);
- __m128i HighBytesMultSum=_mm_shuffle_epi8(T0H,LowBytesLow4);
- // Multiply bits 4..7 of low bytes. Store low and high product bytes separately.
- __m128i LowBytesHigh4=_mm_and_si128(LowBytes,High4Mask);
- LowBytesHigh4=_mm_srli_epi16(LowBytesHigh4,4);
- __m128i LowBytesHigh4MultLow=_mm_shuffle_epi8(T1L,LowBytesHigh4);
- __m128i LowBytesHigh4MultHigh=_mm_shuffle_epi8(T1H,LowBytesHigh4);
- // Add new product to existing sum, low and high bytes separately.
- LowBytesMultSum=_mm_xor_si128(LowBytesMultSum,LowBytesHigh4MultLow);
- HighBytesMultSum=_mm_xor_si128(HighBytesMultSum,LowBytesHigh4MultHigh);
- // Multiply bits 0..3 of high bytes. Store low and high product bytes separately.
- __m128i HighBytesLow4=_mm_and_si128(HighBytes,Low4Mask);
- __m128i HighBytesLow4MultLow=_mm_shuffle_epi8(T2L,HighBytesLow4);
- __m128i HighBytesLow4MultHigh=_mm_shuffle_epi8(T2H,HighBytesLow4);
- // Add new product to existing sum, low and high bytes separately.
- LowBytesMultSum=_mm_xor_si128(LowBytesMultSum,HighBytesLow4MultLow);
- HighBytesMultSum=_mm_xor_si128(HighBytesMultSum,HighBytesLow4MultHigh);
- // Multiply bits 4..7 of high bytes. Store low and high product bytes separately.
- __m128i HighBytesHigh4=_mm_and_si128(HighBytes,High4Mask);
- HighBytesHigh4=_mm_srli_epi16(HighBytesHigh4,4);
- __m128i HighBytesHigh4MultLow=_mm_shuffle_epi8(T3L,HighBytesHigh4);
- __m128i HighBytesHigh4MultHigh=_mm_shuffle_epi8(T3H,HighBytesHigh4);
- // Add new product to existing sum, low and high bytes separately.
- LowBytesMultSum=_mm_xor_si128(LowBytesMultSum,HighBytesHigh4MultLow);
- HighBytesMultSum=_mm_xor_si128(HighBytesMultSum,HighBytesHigh4MultHigh);
- // Combine separate low and high cumulative sum bytes to 16-bit words.
- __m128i HighBytesHigh4Mult0=_mm_unpacklo_epi8(LowBytesMultSum,HighBytesMultSum);
- __m128i HighBytesHigh4Mult1=_mm_unpackhi_epi8(LowBytesMultSum,HighBytesMultSum);
- // Add result to ECC.
- __m128i *StoreECC=(__m128i *)(ECC+Pos);
- StoreECC[0]=_mm_xor_si128(StoreECC[0],HighBytesHigh4Mult0);
- StoreECC[1]=_mm_xor_si128(StoreECC[1],HighBytesHigh4Mult1);
- }
- // If we have non 128 bit aligned data in the end of block, process them
- // in a usual way. We cannot do the same in the beginning of block,
- // because Data and ECC can have different alignment offsets.
- for (; Pos<BlockSize; Pos+=2)
- *(ushort*)(ECC+Pos) ^= gfMul( M, *(ushort*)(Data+Pos) );
- return true;
- }
- #endif
|