123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332 |
- /*
- * Paula.cpp
- * ---------
- * Purpose: Emulating the Amiga's sound chip, Paula, by implementing resampling using band-limited steps (BLEPs)
- * Notes : The BLEP table generator code is a translation of Antti S. Lankila's original Python code.
- * Authors: OpenMPT Devs
- * Antti S. Lankila
- * The OpenMPT source code is released under the BSD license. Read LICENSE for more details.
- */
- #include "stdafx.h"
- #include "Paula.h"
- #include "TinyFFT.h"
- #include "Tables.h"
- #include "mpt/base/numbers.hpp"
- #include <complex>
- #include <numeric>
- OPENMPT_NAMESPACE_BEGIN
- namespace Paula
- {
- namespace
- {
- MPT_NOINLINE std::vector<double> KaiserFIR(int numTaps, double cutoff, double beta)
- {
- const double izeroBeta = Izero(beta);
- const double kPi = 4.0 * std::atan(1.0) * cutoff;
- const double xDiv = 1.0 / ((numTaps / 2) * (numTaps / 2));
- const int numTapsDiv2 = numTaps / 2;
- std::vector<double> result(numTaps);
- for(int i = 0; i < numTaps; i++)
- {
- double fsinc;
- if(i == numTapsDiv2)
- {
- fsinc = 1.0;
- } else
- {
- const double x = i - numTapsDiv2;
- const double xPi = x * kPi;
- // - sinc - - Kaiser window - -sinc-
- fsinc = std::sin(xPi) * Izero(beta * std::sqrt(1 - x * x * xDiv)) / (izeroBeta * xPi);
- }
- result[i] = fsinc * cutoff;
- }
- return result;
- }
- MPT_NOINLINE void FIR_MinPhase(std::vector<double> &table, const TinyFFT &fft)
- {
- std::vector<std::complex<double>> cepstrum(fft.Size());
- MPT_ASSERT(cepstrum.size() >= table.size());
- for(size_t i = 0; i < table.size(); i++)
- cepstrum[i] = table[i];
- // Compute the real cepstrum: fft -> abs + ln -> ifft -> real
- fft.FFT(cepstrum);
- for(auto &v : cepstrum)
- v = std::log(std::abs(v));
- fft.IFFT(cepstrum);
- fft.Normalize(cepstrum);
- // Window the cepstrum in such a way that anticausal components become rejected
- for(size_t i = 1; i < cepstrum.size() / 2; i++)
- {
- cepstrum[i] *= 2;
- cepstrum[i + cepstrum.size() / 2] *= 0;
- }
- // Now cancel the previous steps: fft -> exp -> ifft -> real
- fft.FFT(cepstrum);
- for(auto &v : cepstrum)
- v = std::exp(v);
- fft.IFFT(cepstrum);
- fft.Normalize(cepstrum);
- for(size_t i = 0; i < table.size(); i++)
- table[i] = cepstrum[i].real();
- }
- class BiquadFilter
- {
- double b0, b1, b2, a1, a2, x1 = 0.0, x2 = 0.0, y1 = 0.0, y2 = 0.0;
- double Filter(double x0)
- {
- double y0 = b0 * x0 + b1 * x1 + b2 * x2 - a1 * y1 - a2 * y2;
- x2 = x1;
- x1 = x0;
- y2 = y1;
- y1 = y0;
- return y0;
- }
- public:
- BiquadFilter(double b0_, double b1_, double b2_, double a1_, double a2_)
- : b0(b0_), b1(b1_), b2(b2_), a1(a1_), a2(a2_)
- { }
- std::vector<double> Run(std::vector<double> table)
- {
- x1 = 0.0;
- x2 = 0.0;
- y1 = 0.0;
- y2 = 0.0;
- // Initialize filter to stable state
- for(int i = 0; i < 10000; i++)
- Filter(table[0]);
- // Now run the filter
- for(auto &v : table)
- v = Filter(v);
- return table;
- }
- };
- // Observe: a and b are reversed here. To be absolutely clear:
- // a is the nominator and b is the denominator. :-/
- BiquadFilter ZTransform(double a0, double a1, double a2, double b0, double b1, double b2, double fc, double fs)
- {
- // Prewarp s - domain coefficients
- const double wp = 2.0 * fs * std::tan(mpt::numbers::pi * fc / fs);
- a2 /= wp * wp;
- a1 /= wp;
- b2 /= wp * wp;
- b1 /= wp;
- // Compute bilinear transform and return it
- const double bd = 4 * b2 * fs * fs + 2 * b1 * fs + b0;
- return BiquadFilter(
- (4 * a2 * fs * fs + 2 * a1 * fs + a0) / bd,
- (2 * a0 - 8 * a2 * fs * fs) / bd,
- (4 * a2 * fs * fs - 2 * a1 * fs + a0) / bd,
- (2 * b0 - 8 * b2 * fs * fs) / bd,
- (4 * b2 * fs * fs - 2 * b1 * fs + b0) / bd);
- }
- BiquadFilter MakeRCLowpass(double sampleRate, double freq)
- {
- const double omega = (2.0 * mpt::numbers::pi) * freq / sampleRate;
- const double term = 1 + 1 / omega;
- return BiquadFilter(1 / term, 0.0, 0.0, -1.0 + 1.0 / term, 0.0);
- }
- BiquadFilter MakeButterworth(double fs, double fc, double res_dB = 0)
- {
- // 2nd-order Butterworth s-domain coefficients are:
- //
- // b0 = 1.0 b1 = 0 b2 = 0
- // a0 = 1 a1 = sqrt(2) a2 = 1
- //
- // by tweaking the a1 parameter, some resonance can be produced.
- const double res = std::pow(10.0, (-res_dB / 10.0 / 2.0));
- return ZTransform(1, 0, 0, 1, std::sqrt(2) * res, 1, fc, fs);
- }
- MPT_NOINLINE void Integrate(std::vector<double> &table)
- {
- const double total = std::accumulate(table.begin(), table.end(), 0.0);
- double startVal = -total;
- for(auto &v : table)
- {
- startVal += v;
- v = startVal;
- }
- }
- MPT_NOINLINE void Quantize(const std::vector<double> &in, Paula::BlepArray &quantized)
- {
- MPT_ASSERT(in.size() == Paula::BLEP_SIZE);
- constexpr int fact = 1 << Paula::BLEP_SCALE;
- const double cv = fact / (in.back() - in.front());
- for(int i = 0; i < Paula::BLEP_SIZE; i++)
- {
- double val = in[i] * cv;
- #ifdef MPT_INTMIXER
- val = mpt::round(val);
- #endif
- quantized[i] = static_cast<mixsample_t>(-val);
- }
- }
- } // namespace
- void BlepTables::InitTables()
- {
- constexpr double sampleRate = Paula::PAULA_HZ;
- // Because Amiga only has 84 dB SNR, the noise floor is low enough with -90 dB.
- // A500 model uses slightly lower-quality kaiser window to obtain slightly
- // steeper stopband attenuation. The fixed filters attenuates the sidelobes by
- // 12 dB, compensating for the worse performance of the kaiser window.
- // 21 kHz stopband is not fully attenuated by 22 kHz. If the sampling frequency
- // is 44.1 kHz, all frequencies above 22 kHz will alias over 20 kHz, thus inaudible.
- // The output should be aliasingless for 48 kHz sampling frequency.
- auto unfilteredA500 = KaiserFIR(Paula::BLEP_SIZE, 21000.0 / sampleRate * 2.0, 8.0);
- auto unfilteredA1200 = KaiserFIR(Paula::BLEP_SIZE, 21000.0 / sampleRate * 2.0, 9.0);
- // Move filtering effects to start to allow IIRs more time to settle
- constexpr size_t padSize = 8;
- constexpr int fftSize = static_cast<int>(mpt::bit_width(size_t(Paula::BLEP_SIZE)) + mpt::bit_width(padSize) - 2);
- const TinyFFT fft(fftSize);
- FIR_MinPhase(unfilteredA500, fft);
- FIR_MinPhase(unfilteredA1200, fft);
- // Make digital models for the filters on Amiga 500 and 1200.
- auto filterFixed5kHz = MakeRCLowpass(sampleRate, 4900.0);
- // The leakage filter seems to reduce treble in both models a bit
- // The A500 filter seems to be well modelled only with a 4.9 kHz
- // filter although the component values would suggest 5 kHz filter.
- auto filterLeakage = MakeRCLowpass(sampleRate, 32000.0);
- auto filterLED = MakeButterworth(sampleRate, 3275.0, -0.70);
- // Apply fixed filter to A500
- auto amiga500Off = filterFixed5kHz.Run(unfilteredA500);
- // Produce the filtered outputs
- auto amiga1200Off = filterLeakage.Run(unfilteredA1200);
- // Produce LED filters
- auto amiga500On = filterLED.Run(amiga500Off);
- auto amiga1200On = filterLED.Run(amiga1200Off);
- // Integrate to produce blep
- Integrate(amiga500Off);
- Integrate(amiga500On);
- Integrate(amiga1200Off);
- Integrate(amiga1200On);
- Integrate(unfilteredA1200);
- // Quantize and scale
- Quantize(amiga500Off, WinSincIntegral[A500Off]);
- Quantize(amiga500On, WinSincIntegral[A500On]);
- Quantize(amiga1200Off, WinSincIntegral[A1200Off]);
- Quantize(amiga1200On, WinSincIntegral[A1200On]);
- Quantize(unfilteredA1200, WinSincIntegral[Unfiltered]);
- }
- const Paula::BlepArray &BlepTables::GetAmigaTable(Resampling::AmigaFilter amigaType, bool enableFilter) const
- {
- if(amigaType == Resampling::AmigaFilter::A500)
- return enableFilter ? WinSincIntegral[A500On] : WinSincIntegral[A500Off];
- if(amigaType == Resampling::AmigaFilter::A1200)
- return enableFilter ? WinSincIntegral[A1200On] : WinSincIntegral[A1200Off];
- return WinSincIntegral[Unfiltered];
- }
- // we do not initialize blepState here
- // cppcheck-suppress uninitMemberVar
- State::State(uint32 sampleRate)
- {
- double amigaClocksPerSample = static_cast<double>(PAULA_HZ) / sampleRate;
- numSteps = static_cast<int>(amigaClocksPerSample / MINIMUM_INTERVAL);
- stepRemainder = SamplePosition::FromDouble(amigaClocksPerSample - numSteps * MINIMUM_INTERVAL);
- remainder = SamplePosition(0);
- }
- void State::Reset()
- {
- remainder = SamplePosition(0);
- activeBleps = 0;
- firstBlep = MAX_BLEPS / 2u;
- globalOutputLevel = 0;
- }
- void State::InputSample(int16 sample)
- {
- if(sample != globalOutputLevel)
- {
- // Start a new blep: level is the difference, age (or phase) is 0 clocks.
- firstBlep = (firstBlep - 1u) % MAX_BLEPS;
- if(activeBleps < std::size(blepState))
- activeBleps++;
- blepState[firstBlep].age = 0;
- blepState[firstBlep].level = sample - globalOutputLevel;
- globalOutputLevel = sample;
- }
- }
- // Return output simulated as series of bleps
- int State::OutputSample(const BlepArray &WinSincIntegral)
- {
- int output = globalOutputLevel * (1 << Paula::BLEP_SCALE);
- uint32 lastBlep = firstBlep + activeBleps;
- for(uint32 i = firstBlep; i != lastBlep; i++)
- {
- const auto &blep = blepState[i % MAX_BLEPS];
- output -= WinSincIntegral[blep.age] * blep.level;
- }
- output /= (1 << (Paula::BLEP_SCALE - 2)); // - 2 to compensate for the fact that we reduced the input sample bit depth
- return output;
- }
- // Advance the simulation by given number of clock ticks
- void State::Clock(int cycles)
- {
- uint32 lastBlep = firstBlep + activeBleps;
- for(uint32 i = firstBlep; i != lastBlep; i++)
- {
- auto &blep = blepState[i % MAX_BLEPS];
- blep.age += static_cast<uint16>(cycles);
- if(blep.age >= Paula::BLEP_SIZE)
- {
- activeBleps = static_cast<uint16>(i - firstBlep);
- return;
- }
- }
- }
- }
- OPENMPT_NAMESPACE_END
|