123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154 |
- /*
- * TinyFFT.cpp
- * -----------
- * Purpose: A simple FFT implementation for power-of-two FFTs
- * Notes : This is a C++ adaption of Ryuhei Mori's BSD 2-clause licensed TinyFFT
- * available from https://github.com/ryuhei-mori/tinyfft
- * Authors: Ryuhei Mori
- * OpenMPT Devs
- * The OpenMPT source code is released under the BSD license. Read LICENSE for more details.
- */
- #include "stdafx.h"
- #include "TinyFFT.h"
- OPENMPT_NAMESPACE_BEGIN
- void TinyFFT::GenerateTwiddleFactors(uint32 i, uint32 b, std::complex<double> z)
- {
- if(b == 0)
- w[i] = z;
- else
- {
- GenerateTwiddleFactors(i, b >> 1, z);
- GenerateTwiddleFactors(i | b, b >> 1, z * w[b]);
- }
- }
- TinyFFT::TinyFFT(const uint32 fftSize)
- : w(std::size_t(1) << (fftSize - 1))
- , k(fftSize)
- {
- const uint32 m = 1 << k;
- constexpr double PI2_ = 6.28318530717958647692;
- const double arg = -PI2_ / m;
- for(uint32 i = 1, j = m / 4; j; i <<= 1, j >>= 1)
- {
- w[i] = std::exp(I * (arg * j));
- }
- GenerateTwiddleFactors(0, m / 4, 1);
- }
- uint32 TinyFFT::Size() const noexcept
- {
- return 1 << k;
- }
- // Computes in-place FFT of size 2^k of A, result is in bit-reversed order.
- void TinyFFT::FFT(std::vector<std::complex<double>> &A) const
- {
- MPT_ASSERT(A.size() == (std::size_t(1) << k));
- const uint32 m = 1 << k;
- uint32 u = 1;
- uint32 v = m / 4;
- if(k & 1)
- {
- for(uint32 j = 0; j < m / 2; j++)
- {
- auto Ajv = A[j + (m / 2)];
- A[j + (m / 2)] = A[j] - Ajv;
- A[j] += Ajv;
- }
- u <<= 1;
- v >>= 1;
- }
- for(uint32 i = k & ~1; i > 0; i -= 2)
- {
- for(uint32 jh = 0; jh < u; jh++)
- {
- auto wj = w[jh << 1];
- auto wj2 = w[jh];
- auto wj3 = wj2 * wj;
- for(uint32 j = jh << i, je = j + v; j < je; j++)
- {
- auto tmp0 = A[j];
- auto tmp1 = wj * A[j + v];
- auto tmp2 = wj2 * A[j + 2 * v];
- auto tmp3 = wj3 * A[j + 3 * v];
- auto ttmp0 = tmp0 + tmp2;
- auto ttmp2 = tmp0 - tmp2;
- auto ttmp1 = tmp1 + tmp3;
- auto ttmp3 = -I * (tmp1 - tmp3);
- A[j] = ttmp0 + ttmp1;
- A[j + v] = ttmp0 - ttmp1;
- A[j + 2 * v] = ttmp2 + ttmp3;
- A[j + 3 * v] = ttmp2 - ttmp3;
- }
- }
- u <<= 2;
- v >>= 2;
- }
- }
- // Computes in-place IFFT of size 2^k of A, input is expected to be in bit-reversed order.
- void TinyFFT::IFFT(std::vector<std::complex<double>> &A) const
- {
- MPT_ASSERT(A.size() == (std::size_t(1) << k));
- const uint32 m = 1 << k;
- uint32 u = m / 4;
- uint32 v = 1;
- for(uint32 i = 2; i <= k; i += 2)
- {
- for(uint32 jh = 0; jh < u; jh++)
- {
- auto wj = std::conj(w[jh << 1]);
- auto wj2 = std::conj(w[jh]);
- auto wj3 = wj2 * wj;
- for(uint32 j = jh << i, je = j + v; j < je; j++)
- {
- auto tmp0 = A[j];
- auto tmp1 = A[j + v];
- auto tmp2 = A[j + 2 * v];
- auto tmp3 = A[j + 3 * v];
- auto ttmp0 = tmp0 + tmp1;
- auto ttmp1 = tmp0 - tmp1;
- auto ttmp2 = tmp2 + tmp3;
- auto ttmp3 = I * (tmp2 - tmp3);
- A[j] = ttmp0 + ttmp2;
- A[j + v] = wj * (ttmp1 + ttmp3);
- A[j + 2 * v] = wj2 * (ttmp0 - ttmp2);
- A[j + 3 * v] = wj3 * (ttmp1 - ttmp3);
- }
- }
- u >>= 2;
- v <<= 2;
- }
- if(k & 1)
- {
- for(uint32 j = 0; j < m / 2; j++)
- {
- auto Ajv = A[j + (m / 2)];
- A[j + (m / 2)] = A[j] - Ajv;
- A[j] += Ajv;
- }
- }
- }
- void TinyFFT::Normalize(std::vector<std::complex<double>> &data)
- {
- const double s = static_cast<double>(data.size());
- for(auto &v : data)
- v /= s;
- }
- OPENMPT_NAMESPACE_END
|