123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361 |
- #include <bfc/platform/types.h>
- #include "sort.h"
- #include <assert.h>
- /***
- *qsort.c - quicksort algorithm; qsort() library function for sorting arrays
- *
- * Copyright (c) Microsoft Corporation. All rights reserved.
- *
- *Purpose:
- * To implement the qsort() routine for sorting arrays.
- *
- *******************************************************************************/
- /* Always compile this module for speed, not size */
- #pragma optimize("t", on)
- /* prototypes for local routines */
- static void shortsort(uint8_t *lo, uint8_t *hi, size_t width, const void *context,
- int (__fastcall *comp)(const void *, const void *, const void *));
- static void swap(uint8_t *p, uint8_t *q, size_t width);
- /* this parameter defines the cutoff between using quick sort and
- insertion sort for arrays; arrays with lengths shorter or equal to the
- below value use insertion sort */
- #define CUTOFF 8 /* testing shows that this is good value */
- /***
- *qsort(base, num, wid, context, comp) - quicksort function for sorting arrays
- *
- *Purpose:
- * quicksort the array of elements
- * side effects: sorts in place
- * maximum array size is number of elements times size of elements,
- * but is limited by the virtual address space of the processor
- *
- *Entry:
- * char *base = pointer to base of array
- * size_t num = number of elements in the array
- * size_t width = width in bytes of each array element
- * int (*comp)() = pointer to function returning analog of strcmp for
- * strings, but supplied by user for comparing the array elements.
- * it accepts 2 pointers to elements and returns neg if 1<2, 0 if
- * 1=2, pos if 1>2.
- *
- *Exit:
- * returns void
- *
- *Exceptions:
- *
- *******************************************************************************/
- /* sort the array between lo and hi (inclusive) */
- #define STKSIZ (8*sizeof(void*) - 2)
- void __cdecl nu::qsort (
- void *base,
- size_t num,
- size_t width,
- const void *context,
- int (__fastcall *comp)(const void *, const void *, const void *)
- )
- {
- /* Note: the number of stack entries required is no more than
- 1 + log2(num), so 30 is sufficient for any array */
- uint8_t *lo, *hi; /* ends of sub-array currently sorting */
- uint8_t *mid; /* points to middle of subarray */
- uint8_t *loguy, *higuy; /* traveling pointers for partition step */
- size_t size; /* size of the sub-array */
- uint8_t *lostk[STKSIZ] = {0}, *histk[STKSIZ] = {0};
- int stkptr; /* stack for saving sub-array to be processed */
- assert((width % sizeof(void *)) == 0);
- if (num < 2 || width == 0)
- return; /* nothing to do */
- stkptr = 0; /* initialize stack */
- lo = static_cast<uint8_t *>(base);
- hi = (uint8_t *)base + width * (num-1); /* initialize limits */
- /* this entry point is for pseudo-recursion calling: setting
- lo and hi and jumping to here is like recursion, but stkptr is
- preserved, locals aren't, so we preserve stuff on the stack */
- recurse:
- size = (hi - lo) / width + 1; /* number of el's to sort */
- /* below a certain size, it is faster to use a O(n^2) sorting method */
- if (size <= CUTOFF) {
- shortsort(lo, hi, width, context, comp);
- }
- else {
- /* First we pick a partitioning element. The efficiency of the
- algorithm demands that we find one that is approximately the median
- of the values, but also that we select one fast. We choose the
- median of the first, middle, and last elements, to avoid bad
- performance in the face of already sorted data, or data that is made
- up of multiple sorted runs appended together. Testing shows that a
- median-of-three algorithm provides better performance than simply
- picking the middle element for the latter case. */
- mid = lo + (size / 2) * width; /* find middle element */
- /* Sort the first, middle, last elements into order */
- if (comp(lo, mid, context) > 0) {
- swap(lo, mid, width);
- }
- if (comp(lo, hi, context) > 0) {
- swap(lo, hi, width);
- }
- if (comp(mid, hi, context) > 0) {
- swap(mid, hi, width);
- }
- /* We now wish to partition the array into three pieces, one consisting
- of elements <= partition element, one of elements equal to the
- partition element, and one of elements > than it. This is done
- below; comments indicate conditions established at every step. */
- loguy = lo;
- higuy = hi;
- /* Note that higuy decreases and loguy increases on every iteration,
- so loop must terminate. */
- for (;;) {
- /* lo <= loguy < hi, lo < higuy <= hi,
- A[i] <= A[mid] for lo <= i <= loguy,
- A[i] > A[mid] for higuy <= i < hi,
- A[hi] >= A[mid] */
- /* The doubled loop is to avoid calling comp(mid,mid), since some
- existing comparison funcs don't work when passed the same
- value for both pointers. */
- if (mid > loguy) {
- do {
- loguy += width;
- } while (loguy < mid && comp(loguy, mid, context) <= 0);
- }
- if (mid <= loguy) {
- do {
- loguy += width;
- } while (loguy <= hi && comp(loguy, mid, context) <= 0);
- }
- /* lo < loguy <= hi+1, A[i] <= A[mid] for lo <= i < loguy,
- either loguy > hi or A[loguy] > A[mid] */
- do {
- higuy -= width;
- } while (higuy > mid && comp(higuy, mid, context) > 0);
- /* lo <= higuy < hi, A[i] > A[mid] for higuy < i < hi,
- either higuy == lo or A[higuy] <= A[mid] */
- if (higuy < loguy)
- break;
- /* if loguy > hi or higuy == lo, then we would have exited, so
- A[loguy] > A[mid], A[higuy] <= A[mid],
- loguy <= hi, higuy > lo */
- swap(loguy, higuy, width);
- /* If the partition element was moved, follow it. Only need
- to check for mid == higuy, since before the swap,
- A[loguy] > A[mid] implies loguy != mid. */
- if (mid == higuy)
- mid = loguy;
- /* A[loguy] <= A[mid], A[higuy] > A[mid]; so condition at top
- of loop is re-established */
- }
- /* A[i] <= A[mid] for lo <= i < loguy,
- A[i] > A[mid] for higuy < i < hi,
- A[hi] >= A[mid]
- higuy < loguy
- implying:
- higuy == loguy-1
- or higuy == hi - 1, loguy == hi + 1, A[hi] == A[mid] */
- /* Find adjacent elements equal to the partition element. The
- doubled loop is to avoid calling comp(mid,mid), since some
- existing comparison funcs don't work when passed the same value
- for both pointers. */
- higuy += width;
- if (mid < higuy) {
- do {
- higuy -= width;
- } while (higuy > mid && comp(higuy, mid, context) == 0);
- }
- if (mid >= higuy) {
- do {
- higuy -= width;
- } while (higuy > lo && comp(higuy, mid, context) == 0);
- }
- /* OK, now we have the following:
- higuy < loguy
- lo <= higuy <= hi
- A[i] <= A[mid] for lo <= i <= higuy
- A[i] == A[mid] for higuy < i < loguy
- A[i] > A[mid] for loguy <= i < hi
- A[hi] >= A[mid] */
- /* We've finished the partition, now we want to sort the subarrays
- [lo, higuy] and [loguy, hi].
- We do the smaller one first to minimize stack usage.
- We only sort arrays of length 2 or more.*/
- if ( higuy - lo >= hi - loguy ) {
- if (lo < higuy) {
- lostk[stkptr] = lo;
- histk[stkptr] = higuy;
- ++stkptr;
- } /* save big recursion for later */
- if (loguy < hi) {
- lo = loguy;
- goto recurse; /* do small recursion */
- }
- }
- else {
- if (loguy < hi) {
- lostk[stkptr] = loguy;
- histk[stkptr] = hi;
- ++stkptr; /* save big recursion for later */
- }
- if (lo < higuy) {
- hi = higuy;
- goto recurse; /* do small recursion */
- }
- }
- }
- /* We have sorted the array, except for any pending sorts on the stack.
- Check if there are any, and do them. */
- --stkptr;
- if (stkptr >= 0) {
- lo = lostk[stkptr];
- hi = histk[stkptr];
- goto recurse; /* pop subarray from stack */
- }
- else
- return; /* all subarrays done */
- }
- /***
- *shortsort(hi, lo, width, comp) - insertion sort for sorting short arrays
- *
- *Purpose:
- * sorts the sub-array of elements between lo and hi (inclusive)
- * side effects: sorts in place
- * assumes that lo < hi
- *
- *Entry:
- * char *lo = pointer to low element to sort
- * char *hi = pointer to high element to sort
- * size_t width = width in bytes of each array element
- * int (*comp)() = pointer to function returning analog of strcmp for
- * strings, but supplied by user for comparing the array elements.
- * it accepts 2 pointers to elements and returns neg if 1<2, 0 if
- * 1=2, pos if 1>2.
- *
- *Exit:
- * returns void
- *
- *Exceptions:
- *
- *******************************************************************************/
- static void __cdecl shortsort (
- uint8_t *lo,
- uint8_t *hi,
- size_t width,
- const void *context,
- int (__fastcall *comp)(const void *, const void *, const void *)
- )
- {
- uint8_t *p;
- /* Note: in assertions below, i and j are alway inside original bound of
- array to sort. */
- while (hi > lo) {
- /* A[i] <= A[j] for i <= j, j > hi */
- uint8_t *max = lo;
- for (p = lo+width; p <= hi; p += width) {
- /* A[i] <= A[max] for lo <= i < p */
- if (comp(p, max, context) > 0) {
- max = p;
- }
- /* A[i] <= A[max] for lo <= i <= p */
- }
- /* A[i] <= A[max] for lo <= i <= hi */
- swap(max, hi, width);
- /* A[i] <= A[hi] for i <= hi, so A[i] <= A[j] for i <= j, j >= hi */
- hi -= width;
- /* A[i] <= A[j] for i <= j, j > hi, loop top condition established */
- }
- /* A[i] <= A[j] for i <= j, j > lo, which implies A[i] <= A[j] for i < j,
- so array is sorted */
- }
- /***
- *swap(a, b, width) - swap two elements
- *
- *Purpose:
- * swaps the two array elements of size width
- *
- *Entry:
- * char *a, *b = pointer to two elements to swap
- * size_t width = width in bytes of each array element
- *
- *Exit:
- * returns void
- *
- *Exceptions:
- *
- *******************************************************************************/
- static void swap (
- uint8_t *_a,
- uint8_t *_b,
- size_t width
- )
- {
- #if 1
- void *tmp;
- void **a = (void **)_a;
- void **b = (void **)_b;
- if ( a != b )
- /* Do the swap one character at a time to avoid potential alignment
- problems. */
- do {
- tmp = *a;
- *a++ = *b;
- *b++ = tmp;
- width-=sizeof(void *);
- } while (width);
- #else
- //void *temp = alloca(width);
- memcpy(temp, a, width);
- memcpy(a, b, width);
- memcpy(b, temp, width);
- #endif
- }
|