rent.fun 1.7 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849
  1. #import std
  2. #import nat
  3. #import flo
  4. #import fit
  5. #import plo
  6. #import ren
  7. #import tbl
  8. #output dot'tex' sectioned_table8+ -+
  9. ~&/<<'$x$'>^: 0,<'$y$'>^: 0,<'$z$'>^: 0>,
  10. |=&h; * ~&K7; <.~&h; :^(printf/'%0.2f'+ ~&h,0!*+ ~&t),printf/*'%0.2f'+ ~&th,~&tth>+-
  11. xy = # (* :^x/0%ei ~&lrNCC) ~&iiK0 float* iota 4
  12. -{
  13. {{wy{gkkszggzjz{[zgfxZggzjz{[tVkfzSvjgtvjkvwwy{]
  14. ftVjSC]fzgc[fvk_fv{gkkszBg=fu>K]ftVjBc]fzg_[fvjc
  15. fvwgkkszBfBg?MtVxBg__tVjBgcC]fzgj[fvkzggzjz{[tV]
  16. fsalW>Bg<ZJBg=fxhzBg]fv]zBgvjM{fvj_fvwgkkszB]f<c
  17. ^CtVdCHBfBg=_g]flVjeotVjBgf?tVkfwkfvkZggzjz{[tTV
  18. MB=TBd[]hBf<=XBvBg<>EtVhBg_ltVjBgp[]fzgt{fvkCfvw
  19. gkksz<TTDB^R=tVxdTlVdtlVdVxM{]glVjjCtVjBg^atVkfy
  20. cvjg{fv{gkksz><U^>]hu\TVfFBdW><ExBl]gmMFJBg=ftvJ
  21. Bg]fxPZBgvki[fvkcfvwgkksx<<<T=^]fxB]zeFCtW><JlVd
  22. VxM{]flVj@s]ftVj<^ZBgvk=kfvkJggjjz{[\\=]BB=TJTA\
  23. [pZBlW>AlhBvBkXutVhBgiG]ftVjUzBgvj{vjg{fvwgkks\>
  24. \D=\\A^a\ZCt<zBHBl\@UlVdVhF[]glVjAwtVjBgpwtVkfvN
  25. zgf{vjjvwwx<\DNDF=Ta\BCxPDV]fgaHBl]fl<AzBg=fz<LJ
  26. Bg]fxHtVkfvczgfyvjjvwt<<DDf=TA]dW<>JCtVh=xBfBg<O
  27. ]flVjjjBg]fuMO]fzgv[fvkzggj<<c\TZz<R=hUBBlVghBvB
  28. g<KZBg=ftEjBg]ftRjBgvjJ{fvjz<\<e<^=t[=tWPvBHBfDo
  29. lVdVhazBk=fxMjBg]fx=S]fzgij<<>`>>]z>lBBm_BBdWdfW
  30. =hDVhaS]flVjgO]ftVk\w\<<d=fC^s=dTlPVCtWdJ_=f]fl@
  31. {]flVj=CtF<F>>B=\`=TBH=ZBlWd?g=j]fnPZ<D>jD=nTC]_
  32. TB]_=joRl<df^>\TG<TTll?\=<FBdBS\>\d\\<<}-
  33. #output-
  34. #output dot'tex' "f". right_lit_rendering/('ohe+',~&iiX div\2. plus/1. sqrt 5.) visualization[
  35. picture_frame: ((360.,360.),(-40.,-35.)),
  36. abscissa: axis[variable: '$x$'],
  37. pegaxis: axis[variable: '$y$'],
  38. ordinates: <axis[variable: '$z$']>,
  39. curves: curve$[peg: ~&hl,points: * ^/~&r ~&lrNCC; (multivariate "f") xy]* |=&l ~&iiK0 ari40/0. 3.]
  40. chsur = chord_fit 0
  41. sisur = sinusoid
  42. posur = one_piece_polynomial